MECANISMOS PARA REDUCIR LOS COSTES DERIVADOS DE LOS ENCUENTROS AGRESIVOS EN LOS MACHOS DE LA LAGARTIJA SERRANA (“LACERTA MONTICOLA”)

MEMORIA PARA OPTAR AL GRADO DE DOCTOR
PRESENTADA POR
Pedro Aragón Carrera

Bajo la dirección de los doctores
José Martín Rueda
Pilar López Martínez

Madrid, 2001

MECANISMOS PARA REDUCIR LOS COSTES DERIVADOS DE
LOS ENCUENTROS AGRESIVOS EN LOS MACHOS DE LA
LAGARTIJA SERRANA (LACERTA MONTICOLA)

PEDRO ARAGON CARRERA

Noviembre 2000
Memoria que presenta PEDRO ARAGON CARRERA para optar al Título de Doctor en Ciencias Biológicas. Dirigida por JOSE MARTIN RUEDA, Doctor en Ciencias Biológicas por la Universidad Complutense de Madrid y Científico Titular del Consejo Superior de Investigaciones Científicas con destino en la Unidad de Ecología Evolutiva del Museo Nacional de Ciencias Naturales de Madrid y por PILAR LOPEZ MARTINEZ, Doctora en Ciencias Biológicas por la Universidad Complutense de Madrid e Investigadora Contratada en el Departamento de Ecología Evolutiva del Museo Nacional de Ciencias Naturales de Madrid.

Firmado:

Vº Bº:

El Autor Los directores

Madrid, Noviembre 2000
INDICE

AGRADECIMIENTOS

INTRODUCCION..1

OBJETIVOS E HIPOTESIS..7

ESPECIE DE ESTUDIO...10

AREA DE ESTUDIO..11

Capítulo 1. RECONOCIMIENTO INTRAESPECIFICO Y PAPEL DE LAS FEROMONAS EN EL USO DEL ESPACIO.

I. DISCRIMINACION DE LAS SECRECIONES FEMORALES DE CONESPECIFICOS FAMILIARES Y NO FAMILIARES...........13

RESUMEN..13

INTRODUCCION...13

MATERIAL Y METODOS..15

Análisis estadístico...18

RESULTADOS..18

DISCUSION...22
II. Efecto de las señales químicas de los conospecíficos en la colonización y la selección de refugios

Capítulo 2. Discriminación de conospecíficos familiares y no familiares: implicaciones de las relaciones espaciales en condiciones naturales.

I. Respuesta químiensorial de los machos residentes en función de la talla frente a los excrementos de machos conospecíficos.
II. RESPUESTA DE LOS MACHOS INTRUSOS FRENTE A LAS SEÑALES QUIMICAS DE LOS CONESPECIFICOS

MATERIAL Y METODOS...49
Procedimiento experimental...49
Análisis de los datos...51
RESULTADOS..52
DISCUSION..57
Respuesta de los machos residentes frente a los excrementos de otros machos...59
Respuesta de los machos intrusos frente a los olores de machos conespecíficos...62

Capítulo 3. EL PAPEL DE LA COLORACION INTRASEXUAL DICROMATICA EN LAS RELACIONES SOCIALES

RESUMEN..66
INTRODUCCION..67
MATERIAL Y METODOS...70
RESULTADOS

Resultados generales

Areas de campeo

Solapamiento del área de campeo entre machos

Solapamiento del área de campeo entre machos y hembras

Exclusividad del área

Actividad excursiva

Interacciones agonísticas

Interacciones intersexuales y custodia de hembras

DISCUSION

Solapamiento y defensa del área de campeo

Interacciones sociales
Capítulo 4. ESTRATEGIA ESPACIAL Y TEMPORAL EN FUNCION DE LA HABILIDAD COMPETITIVA.

RESUMEN..90

INTRODUCCION..90

MATERIAL Y METODOS..93

Metodología general...93
Solapamiento temporal..93
Tipos de actividad..93
Variación temporal en el tamaño y en el solapamiento de las áreas de campeo.................................94
Tiempo empleado desplazándose y distancia recorrida ..95

RESULTADOS..96

Solapamiento temporal..96
Tipos de actividad..96
Variación temporal en el tamaño del área de campeo..99
Variación temporal en el solapamiento de las áreas de campeo ..99
Distancia recorrida y tiempo empleado desplazándose...104

DISCUSION...107

Solapamiento temporal y tipos de actividad ..107
Variación temporal en el tamaño y solapamiento de las áreas de
Capítulo 5. CAMBIOS ESTACIONALES EN LA ACTIVIDAD Y LAS RELACIONES ESPACIALES.

RESUMEN...111

INTRODUCCION...112

MATERIAL Y METODOS..113

Relaciones espaciales y actividad..113

Efecto de la temperatura en la actividad...113

Distancia recorrida y tiempo empleado desplazándose.........................115

Interacciones sociales..115

RESULTADOS..116

Actividad y temperatura ambiente...116

Relaciones espaciales...119

Distancia recorrida y tiempo empleado desplazándose.........................122

Interacciones sociales...125

DISCUSION...128

CONCLUSIONES...131

REFERENCIAS..133
AGRADECIMIENTOS

En especial a José Martín y Pilar López por asesorarme en la elaboración de esta tesis, y a mis padres y a Lorena por apoyarme en todo el proceso. Sin estas personas esta tesis hubiese sido inviable.

A Manuel, Montse, David y toda mi familia de Asturias.

A todos los compañeros y amigos del departamento, como por ejemplo a Alberto, a Emilio, a Juancho, a Luisa, a Pilar, a Jose, a Luis y un largo etc.

A todos mis amigos que no están relacionados con el tema directamente, que aun sin entender a veces lo que hago respetaron mi decisión de intentar dedicarme a esto. Esto dice mucho de personas como Luigi, Dani, Pelopo, Joe, las Alis, Javi, Isa, Nati, Gonzà, Silvia, Ester, Fox, Elena, el Sego, Eva, Paco, J.R., Arturo, Oscar, César, Senos, Jorge, Marisa, M. Paz ... (como me habré olvidado de alguien que escriba su nombre en el espacio punteado o que calle para siempre).

A Lorena por ser un caso especial ya que no solo respeto lo que hago sino que además me comprende y por muchas otras cosas que no vamos a analizar ahora. A Rosa por sus increíbles boquerones en vinagre, el curso de la humanidad ya no será el mismo sin ellos. A Luis Miguel por amenizarnos con el teclado.

A Nino por avisarnos cuando nos llamaban por TELEEEEEEEEEEEFONO!!!!!

A las instituciones u organismos que no me seleccionaron para darme una subvención o beca predoctoral, esta tesis es la prueba de que se equivocaron.

Parte de los gastos se solventaron a cargo del proyecto DGICYT PB-98-0505, cuyo investigador principal es José Martín, y por la ASAB.

A todos los domingueros que me he ido encontrando durante el trabajo de
Introducción
campo, sólo por ver las caras que ponían cuando me disponía a cazar las lagartijas con una caña de pescar, han merecido la pena las temporadas de campo perdido en la montaña.

A los animales que han pasado por el Ventorrillo (perros, lagartijas, lagartos, culebras, pájaros, tritones, topillos, culebrillas ciegas, ratones, vacas, caballos, avispas, opiliones, comadrejas, lirones, galápagos, etc.) por dar una nota de color.

Al macho 5-19, la lagartija más observada, que contribuyó de forma especial a elaborar algunas predicciones. Quiero presentar aquí mi admiración por este individuo que a tantos conespecíficos del mismo sexo expulsó sin ser batido. Probablemente, si pasas por la parcela de estudio el próximo verano aun podrás verlo entorno a la coordenada (355, 95) dando guerra. Si lo ves, procura no molestarle para que continúe la leyenda.....
INTRODUCCION

Cuando muchos individuos explotan los mismos recursos limitados, esto los convierte en competidores, y las decisiones de cada uno pueden depender de lo que están haciendo los otros. Una de las posibles formas de competición entre individuos es la defensa de los recursos, que consiste en evitar que otros animales accedan a esos recursos mediante la lucha o despliegues agresivos (KREBS y DAVIES, 1993). Los animales compiten para obtener unos beneficios que en último término supondrán el aumento del éxito reproductor de los individuos o la supervivencia de sus genes en sus crías o individuos emparentados (MOYNIHAN, 1998). En cuanto a los costes, normalmente se mencionan tres tipos asociados a la agresión (WITTENBERGER, 1981); el aumento del riesgo de depredación (ej. MARLER y MOORE, 1988), el aumento de los costes energéticos (ej. GILL y WOLF, 1975) y el aumento de la tasa de lesión (ej. HUNTINGFORD y TURNER, 1987). Cuanto más agresivo es un animal obtendrá mayores beneficios, pero si es demasiado agresivo podría tener costes demasiado altos, por lo tanto, debe estimar los costes y beneficios relativos para maximizar los beneficios netos. Cuando los beneficios exceden a los costes estamos ante estrategias evolutivamente estables (MAYNARD SMITH, 1982). Los machos que frecuentemente participan en interacciones agonísticas pueden incurrir en mayores costes energéticos y de supervivencia. Así, por ejemplo, se demostró experimentalmente que los machos del iguánido *Sceloporus jarrovi* a los que se les implantó testosterona participaron en más interacciones agonísticas y dedicaron menos tiempo a alimentarse, lo que supuso una disminución en la acumulación de reservas y en la tasa de crecimiento y un aumento del riesgo de depredación (MARLER y MOORE, 1989). La vida reproductora de los machos más agresivos puede ser menor porque podrían ser menos competitivos en el siguiente
Introducción

El período reproductor por haber crecido menos, por tener menos energía para el comportamiento agresivo y de cortejo o por no haber sobrevivido al invierno debido a que no acumularon las reservas suficientes (MARLER y MOORE, 1988).

En un encuentro con un posible contrincante, un animal necesita conocer la especie a la que éste pertenece, el género, el estatus social o reproductor, la habilidad para la lucha y el estado emocional. Toda esta información le indicará si su oponente puede ser objeto de agresión, y si es así, el grado de dureza y la efectividad de la agresión. Esta información está potencialmente disponible en una compleja gama de señales (visuales, sonoras, químicas y físicas) que los animales pueden emitir y que son usadas por los individuos durante los encuentros agonísticos de diferentes formas. Además, aunque dentro de los estímulos procedentes del oponente, unos tengan más efectividad que otros, estas señales pueden interactuar entre sí y con el estado interno del animal receptor. A través de estas señales los receptores de la información pueden estimar la magnitud y la dirección de la asimetría en cuanto a la habilidad para la lucha entre emisor y receptor. Esto es beneficioso para ambos ya que se podría evitar una lucha innecesaria (HUNTINGFORD y TURNER, 1987). Por otro lado, el efecto que puede producir un tipo de estímulo en particular depende del contexto en el que ocurre, como por ejemplo, la condición de residente o la experiencia previa con el oponente. En un experimento con el cícldo Oreochromis mossambicus las luchas ganadas por los residentes que eran de mayor tamaño que sus oponentes tuvieron una duración menor que los encuentros ganados por los intrusos de mayor tamaño o los residentes de menor tamaño (TURNER, 1994). Además, en otro experimento con el lacértido Lacerta agilis, las interacciones agresivas que tenían lugar en un segundo encuentro entre los mismos machos duraron menos tiempo que en el primer encuentro (OLSSON, 1994c). Por lo tanto, el comportamiento agonístico no es una respuesta mecánica sino que es el
Introducción

resultado de un proceso complejo de toma de decisiones. En este sentido, los animales responden en función de la probabilidad de ser el ganador de una lucha y de los costes y beneficios que supone el proceso a corto y largo plazo.

Dentro de las señales visuales, la coloración es importante en el control del comportamiento agonístico. La comunicación mediante la coloración puede informar sobre el estado interno del animal, como ha sido demostrado en peces (ej. MARTIN y HENGSTEBECK, 1981; KINGSTON, 1980), y sobre la habilidad para la lucha del emisor lo cual ha sido demostrado en aves (ej. RHOWER, 1975; RØSKAFT y RHOWER, 1987). En reptiles, la comunicación mediante señales cromáticas está bien desarrollada en saurios ya que la mayoría son diurnos y terrestres. Los colores llamativos de los machos son exhibidos principalmente durante los despliegues sexuales y agresivos en varias familias de saurios (revisado en COOPER y GREENBERG, 1992). Numerosos estudios con iguánidos sugieren que la coloración podría ser importante en el comportamiento agresivo en los géneros Anolis (LOSOS, 1985), Sauromalus (PRIETO y RYAN, 1978), Sceloporus (COOPER y BURNS, 1987), Urosaurus (ZUCKER, 1989) y en Uta (FERGUSON, 1966). En los agámites la coloración está sujeta a rápidos cambios fisiológicos que tienen una función en la señalización territorial (ej. MADSEN y LOMAN, 1987). Por otra parte, los camaleones de los géneros Chamaleo y Brookesia presentan una coloración brillante durante el comportamiento agresivo (PARCHER, 1974). Existen también trabajos, que demuestran que algunos machos de gecónidos diurnos pertenecientes a los géneros Phelsuma y Lygodactylus adoptan una coloración brillante cuando son propietarios del territorio o cuando son dominantes en los terrarios (COOPER y GREENBERG, 1992). Un estudio llevado a cabo con el eslizón Eumeces laticeps demostró que los machos respondieron de forma mucho más agresiva hacia las hembras con las cabezas pintadas emulando la coloración naranja de los machos
Introducción

(COOPER y VITT, 1988). Este tipo de experimentos también se ha realizado con algunas especies de lacértidos, en los cuales, los machos atacan a las hembras pintadas emulando a los machos, en lugar de mostrar un comportamiento de cortejo (COOPER y GREENBERG, 1992). Un estudio reciente con Psamodromus algirus demostró que la coloración que adoptan los machos grandes sería costosa para los machos pequeños jóvenes. Cuando los machos jóvenes son pintados como los grandes son atacados por los machos grandes y de mayor edad (MARTÍN y FORSMAN, 1999).

Por otro lado, la comunicación química mediante el uso de feromonas en vertebrados presenta una gran ventaja que es permitir a los receptores fijar ciertos parámetros de su entorno social en ausencia del emisor, siendo ésta en algunos casos una información muy precisa (EISENBERG y KLEIMAN, 1972). La comunicación olfativa en los mamíferos ha sido estudiada ampliamente y se ha demostrado que las secreciones procedentes de las glándulas cutáneas, la orina y los excrementos pueden actuar como canal transmisor de señales químicas (JOHNSON, 1973). Dentro de los anfibios, las salamandras de la familia Plethodontidae han sido muy estudias demostrándose que transmiten una gran variedad de información a través de las señales químicas, que es útil para el reconocimiento de especies (OVASKA y DAVIS, 1992), sexo (HOUCK y REAGAN, 1990; MATHIS 1990), tamaño y estatus social (MATHIS, 1990) y reconocimiento individual (JAEGGER, 1981). La comunicación mediante el uso de feromonas se encuentra en una gran variedad de reptiles, estando muy desarrollada en serpientes y en algunas familias de saurios (ver revisión de MASON, 1992). En serpientes, los sacos anales son una de las glándulas oolorosas más estudiadas. Una de las posibles funciones de estas glándulas es el marcaje. Los machos dominantes de Vipera berus que están custodiando a una hembra restriegan la cloaca rodeando a la hembra después de haber perseguido a un macho intruso (ANDRÉN, 1986). Por otro lado, las
señales químicas cumplen un papel importante al menos en el cortejo y en el comportamiento agonístico en algunas familias de saurios. Las secreciones químicas implicadas en la comunicación intraespecífica pueden proceder de la superficie del cuerpo, de la región cloacal, de glándulas específicas o de las glándulas femorales (Simon, 1983). En uno de los saurios más estudiado, el eslizón Eumeces laticeps, las feromonas transmiten información relacionada con la especie (Cooper y Vitt, 1986; Cooper y Garstka, 1987a), sexo (Cooper y Vitt, 1984; Cooper y Garstka, 1987b) y condición reproductora (Cooper et al., 1986). Un ejemplo del papel de las feromonas en las interacciones agonísticas lo tenemos en un trabajo realizado con el gecónido Eublepharis macularius; los machos residentes atacan a los machos intrusos después de una investigación química mutua (Mason y Gutzke, 1990). Por otro lado, los machos del iguánido Dipsosaurus dorsalis lamen el sustrato y el cuerpo de los machos conespecíficos durante los encuentros agresivos (Glinski y Krekorian, 1985), y el análisis de las extrusiones linguales sugiere que podría darse reconocimiento individual (Krekorian, 1989). También el iguánido Sauromalus obesus lame a sus conespecíficos durante la agresión (Mason, 1992), y además depositan los excrementos en lugares prominentes y probablemente las señales químicas procedentes de las deposiciones denotan su presencia (Carpenter, 1975). En otro ejemplo de marcaje con señales químicas, los individuos pertenecientes a la especie Heloderma suspectum restriegan la cloaca para marcar las áreas comunes y establecer jerarquías sociales (Beck, 1990).

Por otro lado, existen estrategias alternativas para obtener los recursos deseados, que son llevadas a cabo por individuos que no son capaces de competir con éxito mediante la lucha o el despliegue de señales. Normalmente los machos más jóvenes o pequeños no son capaces de competir con los machos más viejos o grandes lo que les lleva a intentar adquirir los recursos de una forma furtiva. En muchos casos esta no es la
estrategia que aporta mayores beneficios, pero es la más aceptable dentro de estas circunstancias. Un ejemplo de esta situación en vertebrados es el caso del sapo corredor, *Bufo calamita*, donde los machos más pequeños adoptan la estrategia de ser satélites (ARAK, 1988). En la mayoría de los casos el tamaño está relacionado con la edad y por lo tanto los individuos al tener mayor edad pueden cambiar de estrategia adoptando la más rentable. Sin embargo, en ocasiones el tamaño de los machos pequeños no varía a lo largo de su vida como es el caso de la abeja *Centris pallida* donde encontramos diferentes estrategias siendo los machos pequeños los que obtienen cópulas de forma oportunista durante toda su vida reproductora (ALCOCK et al., 1977). Los beneficios que suponen determinados tipos de estrategias pueden ser obtenidos a largo plazo tal y como se ha sugerido en reptiles donde la estrategia de los individuos subordinados es disminuir la actividad para reducir las interacciones agonísticas y el riesgo de depredación (COOPER y VITT, 1987) aumentando así su supervivencia y la posibilidad de reproducirse en el futuro (ROSE, 1981).

Bajo la asunción de que las interacciones agonísticas no sólo suponen beneficios sino también costes, cualquier explicación desde el punto de vista de las teorías evolutivas requeriría un beneficio neto para las especies en las que este comportamiento persiste en la naturaleza. Sería ventajosa la existencia de mecanismos para reducir la frecuencia y la intensidad de las interacciones agresivas cuando los costes superan a los beneficios. Estos mecanismos pueden ser por ejemplo, una comunicación intraespecífica mediante señales visuales y químicas así como una segregación espacio-temporal y en el tipo de actividad.

Las características de la lagartija serrana (*Lacerta monticola*) la convierten en una especie excelente para examinar que mecanismos actúan en este sentido. Las áreas de campeo de los machos de la lagartija *L. monticola* solapan e incluyen áreas de
Introducción

campeo de muchas hembras (número de hembras que solapan/macho: $\bar{X} \pm SE = 8.4 \pm 0.9$) y cada macho normalmente copula con varias hembras. Por lo tanto, el propósito de las interacciones agonísticas entre los machos podría ser el incremento de su éxito reproductor (ver capítulo 5). Dado el alto solapamiento entre las áreas de campeo entre los machos, se esperaría que la frecuencia de interacciones agonísticas fuese más alta de lo que se observa en el campo (Número de interacciones agonísticas/mes/individuo: $\bar{X} \pm SE = 1.2 \pm 0.3$). Esto sugiere que podrían existir mecanismos para reducir los costes derivados de las interacciones agonísticas. De hecho, el ahorro potencial de tiempo y energía puede ser de vital importancia en esta especie ya que los individuos tienen que aparearse y acumular reservas para sobrevivir en el invierno durante un corto periodo de actividad anual (de abril a octubre) que suele estar interrumpido por una climatología adversa.

La presente tesis se enmarca dentro de este contexto. Se han estudiado parte de los mecanismos que podrían intervenir reduciendo los costes que pueden suponer los encuentros agresivos entre los machos de *L. monticola*. Se tendrán en cuenta factores que podrían afectar al balance entre los costes y beneficios que los individuos deben considerar antes de iniciar un enfrentamiento agonístico, como el de intruso-residente, familiaridad, habilidad competitiva y estacionalidad.

OBJETIVOS E HIPÓTESIS

Se quiere examinar en concreto los siguientes objetivos e hipótesis:

- **Discriminación de señales químicas procedentes de las secreciones femorales.**

Se va a analizar en condiciones experimentales la respuesta de los machos en presencia
Introducción

de secreciones femorales de un macho conespecífico. Se examinará si el comportamiento exploratorio varía en función de la procedencia de las secreciones (la propia secreción, procedente de un conespecífico familiar o no familiar) cuando el receptor tiene la condición de residente.

- Discriminación de señales químicas procedentes de los excrementos. Se va a analizar en condiciones experimentales la respuesta de los machos en presencia de los excrementos de otros machos conespecíficos. Se examinará si el comportamiento exploratorio varía en función de la procedencia de las secreciones cuando el receptor tiene la condición de residente. Se estudiará si la respuesta depende de las relaciones espaciales en el campo entre el macho experimental y el donante, y de la habilidad competitiva relativa y absoluta.

- El uso del espacio en función de señales químicas de conespecíficos. Se quiere examinar en condiciones experimentales el papel de las señales químicas en ausencia del emisor en el comportamiento de los machos de *L. monticola* cuando son intrusos en un terrario. Se va a comprobar si el uso del espacio de los machos depende de la presencia o ausencia de señales químicas procedentes de otros machos conespecíficos. También se examinará si el uso del espacio marcado con señales químicas de otro conespecífico depende de las características de cada individuo.

- Discriminación de señales químicas. Condición de intruso. Se va a analizar en condiciones experimentales la respuesta de los individuos cuando se encuentran en un sustrato que contiene señales químicas de machos conespecíficos. Se examinará si el comportamiento exploratorio varía en función de la procedencia de las secreciones
Introducción

cuando el receptor tiene la condición de intruso. Se estudiará si la respuesta depende de las relaciones espaciales en el campo entre el macho experimental y el donante y de la habilidad competitiva de ambos.

- **Relaciones espaciales en función de la habilidad competitiva.** Se examinarán las relaciones espaciales en el campo en función de la habilidad competitiva de los machos y el posible papel de la coloración en los individuos. Se predice que los machos más competitivos (y dominantes) tendrán una probabilidad de éxito mayor en las interacciones agonísticas y tendrán áreas más exclusivas, mientras que los machos subordinados utilizarán estrategias alternativas.

- **Patrones de actividad en función de la habilidad competitiva.** Se va a analizar la variación temporal de la actividad y de las relaciones espaciales. También se examinará si la distribución de los tipos de actividad dependen de la habilidad competitiva. Partiendo de que la magnitud de los costes va a depender de la habilidad competitiva, se predice la existencia de diferentes estrategias en función de ésta.

- **Patrones de actividad en función de la estacionalidad.** Se va a estudiar la variación de la actividad y de las relaciones espaciales en función de la estacionalidad (periodo reproductor y periodo no reproductor). Se predice que el balance entre los costes y los beneficios será diferente para machos y hembras en el paso del periodo reproductor al no reproductor, lo que llevará a cambios en las estrategias de uso del tiempo y el espacio.

ESPECIE DE ESTUDIO
Introducción

La lagartija serrana (*Lacerta monticola* BOULENGER, 1905) es un lacértido diurno de pequeño o mediano tamaño, de aspecto robusto, endémico de la Península Ibérica (SALVADOR, 1984). La mayoría de las poblaciones se encuentran acantonadas en áreas muy limitadas. Sus poblaciones se hallan estrechamente ligadas a hábitats rocosos de las zonas de alta montaña del centro y el norte de España (Cordillera Cantábrica y Sistema central), excepto algunas poblaciones localizadas casi a nivel del mar en el noroeste (ELVIRA y VIGAL, 1982). Es una especie depredadora generalista que se alimenta de una gran variedad de artrópodos (DOMÍNGUEZ *et al*., 1982; ORTEGA-RUBIO, 1991; PÉREZ-MELLADO *et al*., 1991).

En el Sistema Central se encuentra la subespecie *L. monticola cyreni* (MÜLLER y HELLMICH, 1937) y en la Sierra de Guadarrama se encuentra entre los 1750 y 2350 m de altitud. En esta población, la talla mínima (longitud cabeza-cloaca, LCC), de los individuos reproductores es de 61 mm para los machos y 67 mm para las hembras. Estas lagartijas están activas desde Mayo hasta Octubre, el apareamiento ocurre en Mayo y Junio. Producen una única puesta anual de 4-9 huevos en Julio y los recién nacidos aparecen a mediados de Agosto (PALACIOS y SALVADOR, 1974; SALVADOR, 1984; ELVIRA y VIGAL, 1985; MARTÍN, 1992). Los machos de esta especie defienden territorios frente a otros machos, pero el solapamiento entre sus áreas de campeo es alto y las interacciones agonísticas ocurren durante la estación reproductora (MARTÍN y SALVADOR, 1993a, 1997). Datos sobre otras poblaciones se pueden encontrar en MARTÍNEZ-RICA (1977); PÉREZ-MELLADO (1982); BARBADILLO (1985); ARGÜELLO y SALVADOR (1988); PÉREZ-MELLADO *et al*., (1988); ARGÜELLO (1990a; b); BRAÑA *et al*., (1990) y GALÁN (1991).

En la parcela de estudio *L. monticola* es la única especie de saurio presente, aunque a menor altitud convive con algunos individuos minoritarios de la lagartija
Introducción

La mayor parte del trabajo de campo se realizó en la zona de Siete Picos (Sierra de Guadarrama, Sistema central), concretamente en el “Alto de Telégrafo” entre la provincia de Madrid y Segovia a una altitud de 1900 m. Aunque también se realizó una parte de las capturas y seguimientos en otra zona de las inmediaciones del Puerto de Navacerrada. En el lugar de estudio predominan los parches de roquedos de formación granítica intercalados con matorrales de piorno serrano (*Cytisus oromediterraneus*) y enebro rastrero (*Juniperus communis subsp. alpina*) (IZCO, 1984). Entre los roquedos y los matorrales se encuentran pastizales de gramíneas del género *Festuca* junto a otras plantas herbáceas (MARTÍN y SALVADOR, 1992). En los canchales se desarrollan comunidades glerícolas y de helechos (Para más detalles ver IZCO, 1984 y RIVAS-MARTÍNEZ ET AL., 1987).

El clima es riguroso, siendo la temperatura media del mes más frío (Enero) de -4.1 ºC, y la media del más cálido (Julio) 21.9 ºC. La precipitación media en el área es de 1170 m, la mayor parte en forma de nieve, que generalmente cubre el área desde Diciembre a Abril (\(X = 87.6 \text{ días}, \) MONTERO y GONZÁLEZ, 1984; MARTÍN, 1992).
Capítulo 1.

RECONOCIMIENTO INTRAESPECIFICO Y PAPEL DE LAS FEROMONAS EN EL USO DEL ESPACIO

I. DISCRIMINACION DE LAS SECRECIONES FEMORALES DE CONESPECIFICOS FAMILIARES Y NO FAMILIARES

RESUMEN

Se realizó un trabajo de laboratorio para analizar el papel de las secreciones de las glándulas femorales en la comunicación intraespecífica en esta especie. Las diferencias en las tasas de extrusiones lingüales dirigidas a las secreciones de las glándulas femorales presentadas en algodón indicaron que los machos son capaces de detectar y discriminar entre sus propias secreciones y las de otros machos conespecíficos familiares y no familiares. La respuesta fue más fuerte frente al estímulo procedente de los machos no familiares. Estos resultados sugieren que las secreciones de las glándulas femorales juegan un papel importante en la comunicación intraespecífica de esta especie y podría contribuir a reducir o evitar los costes de las interacciones agresivas.

INTRODUCCION

Cuando existe discriminación entre conespecíficos, las concentraciones relativas de los compuestos químicos deberían ser variables entre los individuos (BEECHER, 1989). Esto ocurre entre los individuos de la iguana del desierto, Dipsosaurus dorsalis (ALBERTS, 1990), los cuales son capaces de detectar y responder diferencialmente a las
Discriminación de familiares y no familiares

secreciones femorales propias y a las de otros conespecíficos no familiares (ALBERTS, 1992). Los machos de la iguana verde, *Iguana iguana*, utilizan señales químicas procedentes de las secreciones de las glándulas femorales para discriminar entre machos conespecíficos familiares y no familiares (ALBERTS y WERNER, 1993). La capacidad de los saurios territoriales para discriminar entre vecinos y no vecinos podría ayudar a reducir la frecuencia y la intensidad de los encuentros agresivos (GLINSKI y KREKORIAN, 1985).

El órgano vomeronasal está bien desarrollado en los *Squamatidae* y dentro de este grupo *Lacertidae* es una de las familias en las que está mejor desarrollado (ver HALPERN, 1992). Aunque hay algunos estudios que han sugerido un posible papel de las secreciones femorales de los lacértidos en la comunicación mediante feromonas (ej. GÓMEZ ET AL., 1993), no existe una evidencia empírica directa.

La extrusión lingual (comportamiento asociado con el órgano vomeronasal) refleja la investigación quimiosensorial de los estímulos (HALPERN, 1992). Las tasas de extrusiones linguales suelen ser utilizadas en los experimentos sobre discriminación quimiosensorial (COOPER, 1994; COOPER y BURGHARDT, 1990). En este estudio, se presentan los resultados de la primera evidencia directa sobre discriminación de las secreciones femorales en lacértidos. Se realizó un experimento para examinar: 1) si los machos de *L. monticola* son capaces de detectar y discriminar sus propias secreciones femorales de las de otros machos a partir de señales químicas; y 2) si los machos de *L. monticola* son capaces de discriminar las secreciones femorales de machos familiares de las de los no familiares.

MATERIAL Y METODOS

Durante el mes de Mayo de 1999, se capturaron 40 machos adultos de *L.*
Discriminación de familiares y no familiares

monticola (longitud cabeza-cloaca, LCC: $\overline{X} \pm 1ES = 68.9 \pm 0.9$ mm) con lazo corredizo en el “Alto del Telégrafo” (Sierra de Guadarrama, Sistema Central) a una altitud de 1900 m. Los machos se mantuvieron emparejados en cautividad en la estación de campo de “El Ventorrillo” (Navacerrada, provincia de Madrid) a 5 Km del lugar de captura en terrarios al aire libre (60 X 40 cm). Cada terrario contenía sustrato arenoso y piedras como refugio. El alimento y la comida fueron suministrados *ad libitum*. Con el fin de asegurarnos que las lagartijas no habían estado previamente en contacto, las distancias entre los lugares de captura de los machos emparejados fueron de 500 m como mínimo. Los individuos estuvieron en condiciones saludables durante las pruebas y fueron liberados en el lugar de captura exacto al concluir el experimento. Para que los machos fuesen familiares, se mantuvieron en cautividad las parejas de machos durante al menos dos semanas antes de que las pruebas comenzasen (COOPER, 1996). Los machos que se mantuvieron en terrarios diferentes se consideraron como no familiares entre sí. De cada pareja, uno de los machos fue utilizado como individuo experimental y el otro como donante de la secreción femoral.

Para examinar las hipótesis de reconocimiento propio y discriminación de familiares a partir de únicamente señales químicas procedentes de las secreciones femorales, se comparó el número de extrusiones linguales emitidas por 20 machos en sus propios terrarios. Se presentaron estímulos procedentes de varillas de algodón impregnadas con (1) secreciones femorales del propio macho experimental, (2) secreciones femorales de un macho conespecífico no familiar, (3) secreciones femorales de un macho conespecífico familiar, (4) colonia (control oloroso) o (5) agua desionizada (control no oloroso) (COOPER y BURGHARDT, 1990). El agua se utilizó para calibrar la tasa basal de extrusiones linguales en la situación experimental. La colonia se utilizó para verificar la posible discriminación entre el estímulo procedente de un conespecífico no familiar y un estímulo extraño. El control se preparó sumergiendo la
Discriminación de familiares y no familiares

varilla de algodón (1 cm) sujeta a un aplicador de madera (50 cm) en el agua desionizada o en la colonia. Los poros femorales fueron presionados suavemente para extraer las secreciones femorales, y posteriormente los poros fueron cuidadosamente frotados con las varillas de algodón impregnadas previamente con agua desionizada. Se procuró utilizar la misma cantidad de secreción femoral en cada estímulo. Se usaron las secreciones de una pata para utilizarlas como estímulo de un macho familiar y las de la otra pata como estímulo de un macho no familiar, asegurándonos así un nuevo estímulo en cada prueba. Las secreciones femorales de las lagartijas donantes fueron usadas en las pruebas inmediatamente después de su recolección para evitar la disminución de la señal. El estímulo propio fue una excepción porque se esperó 1 h hasta que empezase la prueba para evitar que se estresase el individuo. Esto no afectaría a las propiedades del estímulo ya que las secreciones femorales, cuyos componentes son de baja volatilidad, tienen una larga duración (ALBERTS y WERNER, 1993). Los individuos fueron testados con cada estímulo una vez y el orden de presentación fue al azar. Las pruebas se realizaron en Junio de 1999, coincidiendo con la época de reproducción de las lagartijas en su población original natural, al aire libre en condiciones de sol entre las 0900 y las 1200 h (hora solar), cuando las lagartijas están activas. A cada individuo se le permitió asolearse durante al menos 2 h antes de que comenzasen las pruebas. En experimentos anteriores, se midió la temperatura de las lagartijas y se observó que eran capaces de alcanzar la temperatura corporal óptima para su actividad después de 2 h de asoleamiento (MARTÍN y SALVADOR, 1993b). El experimentador se aproximó lentamente al terrario de la lagartija y suavemente colocó la varilla de algodón a 2 cm enfrente del rostro del animal. Las lagartijas permitieron la aproximación y la realización de la prueba sin escaparse. Se tomó nota del número total de extrusiones linguales, las extrusiones dirigidas al algodón, y las extrusiones no dirigidas durante 60 segundos desde la primera extrusión. También se anotó la latencia hasta la primera
Discriminación de familiares y no familiares

extrusión computada desde que se presentó el estímulo.

Análisis estadístico

Para examinar las diferencias en el número de extrusiones lingüales y la latencia entre los diferentes estímulos se utilizaron ANOVAs de Friedman ya que los datos no se distribuían normalmente o las varianzas no eran homogéneas. El test de la Fmax de Hartley se realizó para determinar si las varianzas era homogéneas. Las comparaciones de los pares de medias se hicieron usando procedimientos de comparación múltiple no paramétrica a posteriori (SOHL y ROHLF, 1995) sólo cuando los resultados de las ANOVAs de Friedman fueron significativos después del ajuste de Bonferroni para comparaciones múltiples (CHANDLER, 1995).

RESULTADOS

Todos los individuos realizaron extrusiones lingüales en todos los tratamientos. En el número total de extrusiones lingüales encontramos diferencias significativas entre los diferentes estímulos (ANOVA de Friedman: \(\chi^2 = 30.57, \text{gl} = 4, \ p < 0.001 \)) (Fig. 1.1). El número de extrusiones lingüales en presencia de la colonia fue significativamente mayor que en el resto de los tratamientos \((P < 0.01 \text{ en todos los casos}) \), pero no hubo diferencias significativas entre el resto de las condiciones \((P > 0.05 \text{ en todos los casos}) \).

El número de extrusiones lingüales dirigidas a los algodones difirió significativamente entre condiciones (ANOVA de Friedman: \(\chi^2 = 59.30, \text{gl} = 4, \ p < 0.001 \)) (Fig. 1.1). Las comparaciones múltiples no paramétricas a posteriori mostraron diferencias significativas en el número de extrusiones lingüales dirigidas entre todas las
Discriminación de familiares y no familiares

condiciones (al menos $P < 0.05$ en todos los casos), (es decir, cada condición difirió significativamente con cada una de las otras). La secreción femoral propia provocó un

Figura 1.1 - Extrusiones linguales ($X \pm 1SE$) emitidas en un minuto por machos de *L. monticola* dirigidas a los algodones impregnados con agua desionizada (control no oloroso) (A), estímulos químicos procedentes de sus propias secreciones femorales (O), de las secreciones femorales de machos familiares (F) o no familiares (NF), y colonia (control oloroso) (C).
número significativamente más alto de extrusiones linguales que el agua desionizada \(P < 0.05 \) y significativamente más bajo que las secreciones de un macho familiar \(P < 0.05 \). El número de extrusiones linguales fue significativamente mayor en presencia de las secreciones femorales de los machos no familiares que de los familiares \(P < 0.05 \) y que sus propias secreciones \(P < 0.01 \). Las varianzas del número de extrusiones linguales dirigidas al estímulo procedente de conespecíficos familiares y no familiares fueron significativamente heterogéneas \(F_{\text{max}} = 6.18, \text{gl} = 1.19, P = 0.002 \). No hubo diferencias significativas entre los tratamientos en el número de extrusiones linguales no dirigidas al estímulo (ANOVA de Friedman: \(\chi_r^2 = 9.14, \text{gl} = 4, P < 0.057 \)). Tampoco se encontraron diferencias significativas entre las condiciones experimentales en la latencia hasta la primera extrusión (ANOVA de Friedman: \(\chi_r^2 = 8.36, \text{gl} = 4, P < 0.07 \)) (Fig. 1.2). Sin embargo, las varianzas de la latencia hasta la primera extrusión fueron significativamente heterogéneas en respuesta al estímulo familiar y no familiar \(F_{\text{max}} = 6.22, \text{gl} = 1.19, P < 0.001 \).
Discriminación de familiares y no familiares

Figura 1.2 - Latencia (seg.) (\(\bar{X} \pm 1SE\)) hasta la primera extrusión de los machos de *L. monticola* en respuesta al agua desionizada (control no oloroso) (A), estímulos químicos procedentes de sus propias secreciones femorales (O), de las secreciones femorales de machos familiares (F) o no familiares (NF), y colonia (control oloroso) (C).
DISCUSION

Los resultados de este experimento indican que los machos de L. monticola pueden detectar y discriminar entre olores procedentes de sus propias secreciones femorales y las de otros machos conospecíficos. El hecho de que el número de extrusiones linguales dirigidas a los algodones con secreciones femorales fuera significativamente mayor que al agua desionizada demuestra que los machos pueden detectar secreciones femorales de machos conospecíficos. Además, el número de extrusiones linguales dirigidas fue significativamente mayor en respuesta a las secreciones de otros machos (familiares y no familiares) que a las propias, lo que indica que en ausencia de otras señales, los machos de L. monticola son capaces de discriminar entre sus propias secreciones y las de otros machos.

Por otro lado, los resultados también muestran reconocimiento propio ya que se observaron diferencias significativas entre las respuestas al estímulo propio, el agua desionizada y el estímulo familiar. En los animales que son capaces de reconocer su propio olor, las marcas olorosas son comúnmente usadas como advertencia de las áreas de campeo o territorios (HALPIN, 1986; HEPPER, 1986; STODDART, 1980). El escincido Tiliqua scincoides discrimina entre sustratos marcados con sus propias señales químicas y los marcados por otros conospecíficos (GRAVES y HALPERN, 1991), y la discriminación entre el propio olor y el de individuos no familiares de iguanas del desierto, D. dorsalis, implicó principalmente contacto directo con el sustrato (ALBERTS, 1989; 1992).

Los machos de L. monticola son capaces de discriminar entre secreciones femorales de conospecíficos familiares y no familiares. La evidencia de esto es que el
número de extrusiones linguales dirigidas a los algodones fue significativamente mayor en respuesta a las secreciones de individuos no familiares que al estímulo de los familiares. Además, las varianzas tanto de las extrusiones linguales dirigidas como de la latencia fueron mayores en presencia del estímulo no familiar que en del familiar lo que apoya la existencia de tal discriminación. La respuesta al control oloroso fue significativamente diferente a la del olor de un conespecífico no familiar, lo que indica que los machos de esta especie discriminan los olores de machos conespecíficos no familiares de otros olores extraños. El hecho de que la respuesta más fuerte a las secreciones femorales fuese dirigida a las secreciones de los machos no familiares sugiere que, cuando dos machos se encuentran, el residente podría exhibir reconocimiento del “dear enemy” a partir de señales químicas. Tal y como ocurre en los machos de Anolis carolinensis (Qualls y Jaeger, 1991) y en los machos de iguanas del desierto, Dipsosaurus dorsalis (Glinski y Krekorian, 1985), los machos residentes de L. monticola podrían mostrar una tendencia más agresiva hacia individuos extraños que hacia sus vecinos, pero con los datos de este experimento no se puede asegurar que esto ocurra. Una explicación alternativa, pero no excluyente, de estos resultados es que ya que los machos no vecinos no han estado en contacto previo los machos residentes podrían necesitar más información sobre el macho no familiar y por lo tanto exhiben una tasa mayor de extrusiones linguales.

Las señales químicas procedentes de los excrementos (López et al., 1998) y las secreciones femorales parecen jugar un papel importante en la comunicación intraespecífica de L. monticola. De esta forma, ambos tipos de señales químicas actuando juntas podrían aportar una información más precisa sobre los conespecíficos. La capacidad para discriminar entre olores de machos conespecíficos familiares y no familiares puede contribuir a estabilizar su sistema social reduciendo los costes de las interacciones agresivas. Estos resultados resaltan la necesidad de nuevos estudios sobre
Discriminación de familiares y no familiares

la existencia de reconocimiento individual y el fenómeno de “dear enemy” cuando se encuentran dos machos.

II. EFECTO DE LAS SEÑALES QUIMICAS DE LOS CONESPECIFICOS EN LA COLONIZACION Y LA SELECCION DE REFUGIOS

RESUMEN

Las señales químicas procedentes del los individuos conespecíficos podrían ser un buen indicador de la calidad del área y podrían informar sobre las características del emisor contribuyendo a estabilizar los sistemas sociales. Se realizó un experimento para examinar las respuestas de los machos frente a substratos no marcados, sustratos marcados por los propios individuos experimentales y sustratos marcados por machos conespecíficos no familiares. No hubo diferencias significativas en el uso de las tejas marcadas cuando se compararon todos los individuos. Sin embargo, considerando los machos cuya talla era superior que la del macho donante, cuanto mayor era el tamaño del macho experimental con respecto al tamaño del macho donante, fue significativamente mayor el número de veces que estuvo en el lado con la teja marcada por el macho no familiar. También hubo un grado de concordancia significativo entre los valores de asimetría de los poros femorales y el número de veces que los machos estuvieron en los sustratos marcados por los machos no familiares. Por lo tanto, la respuesta puede depender de la habilidad competitiva relativa y del estatus. Por otro lado, al seleccionar el refugio, los machos evitaron los sustratos no marcados ya que el
Discriminación de familiares y no familiares

número de veces que los machos estuvieron escondidos bajo las tejas no marcadas fue significativamente menor que bajo las tejas marcadas por los machos no familiares. Estos resultados sugieren que los machos usan feromonas para reducir la frecuencia de los encuentros agonísticos y para reducir el riesgo de depredación.

INTRODUCCION

En vertebrados, existen muchos ejemplos de la influencia de la discriminación de feromonas en el comportamiento espacial y social (STODDART, 1980; GOSLING, 1982). Sin embargo, la mayoría de los estudios sobre comunicación química en reptiles están basados en medir la discriminación mediante extrusiones linguales (COOPER, 1994), mientras que raramente se ha analizado cómo estas señales químicas influyen en la colonización del microhábitat, en el espaciamiento y en la organización social.

Las señales químicas de los conespecíficos podrían actuar como un indicador de la calidad del hábitat, ayudando a la localización del alimento y parejas potenciales, o a evitar depredadores (WOODY y MATHIS, 1997). Así, existen ejemplos de atracción a los conespecíficos en especies territoriales de aves (FISHER, 1954), peces (ITZKOWITZ, 1978) y reptiles (STAMPS, 1988). Sin embargo, estos experimentos de campo y laboratorio examinaron esta idea usando señales de conespecíficos en presencia de los emisores, mientras que son escasos los estudios que examinan las respuestas a las feromonas actuando en ausencia de los emisores (LÓPEZ ET AL., 1998; DOWNES y SHINE, 1998b; ARAGÓN ET AL., 2000). De hecho, una de las ventajas más importantes de la comunicación olfativa es que pueden transmitir información en ausencia del emisor, evitando así interacciones potencialmente costosas (EISENBERG y KLEIMAN, 1972). Por ejemplo, las feromonas de los conespecíficos podrían informar sobre la habilidad
Discriminación de familiares y no familiares

Competitiva del emisor la cual puede estar relacionada con la talla de cada individuo (Mathis y Simons, 1994; Gosling et al., 1996a, b; Zucker y Murray, 1996). Los individuos pueden usar esta información para decidir si evitar un posible encuentro, contribuyendo de esta forma a estabilizar el sistema social al reducirse la frecuencia y la intensidad de las costosas interacciones agonísticas (Glinski y Krekorian, 1985).

Un estudio previo mostró que los excrementos de los machos de L. monticola podrían jugar un papel importante en la comunicación intraespecífica (López et al., 1998). Además, los machos de L. monticola son capaces de detectar y discriminar entre sus propias secreciones femorales las de los machos familiares y las de los no familiares (Aragón et al., en prensa), como ocurre en los machos de iguanas del desierto (Alberts, 1992; Glinski y Krekorian, 1985). Los machos de L. monticola podrían ser capaces de utilizar la información proveniente de las feromonas de sus conespecíficos para tomar decisiones en la colonización del microhábitat y la selección de refugios, evitando o siendo atraídos por los sitios que contienen estas señales químicas.

Se diseñó un experimento de laboratorio para verificar si el espaciamiento y la selección de refugios de los machos de L. monticola están influidos por la presencia de señales químicas procedentes de sus conespecíficos. Concretamente, el objetivo fue determinar 1) si los machos de L. monticola evitan o están atraídos por sustratos no marcados o por sustratos marcados por otros machos conespecíficos no familiares; y 2) si la respuesta a los sustratos marcados por los machos no familiares depende de las características del macho experimental que podrían estar relacionadas con su habilidad competitiva (indicada por su tamaño y sus niveles de asimetría fluctuante).

MATERIAL Y METODOS
Discriminación de familiares y no familiares

Se capturaron 20 machos adultos de L. monticola con lazo corredizo de hilo durante el mes de Junio en una población en el “Alto del Telégrafo”. Las lagartijas se midieron (LCC: $\bar{X} \pm SE = 74.2 \pm 0.4$ mm, rango = 72-78 mm) y se mantuvieron al aire libre en la estación de campo “El Ventorrillo”. Los machos se mantuvieron individualmente en terrarios (60 x 40 cm) con arena como sustrato y dos tejas cóncavas de forma y medidas idénticas (20 x 10 cm) que estaban colocadas simétricamente a cada lado del terrario. Las lagartijas usaron las tejas como plataformas de asoleamiento y como refugios escondiéndose bajo éstas. Se les proporcionaron gusanos de la harina y agua ad libitum. Las lagartijas se mantuvieron en cautividad durante dos semanas antes de dar comienzo a las pruebas para que se familiarizasen con las condiciones de cautividad y para asegurar que las tejas estuviesen suficientemente marcadas. Se observó frecuentemente como los machos depositaban los excrementos y restregaban la cloaca y los poros femorales en las tejas. Al final de los experimentos los individuos se soltaron en el lugar de captura.

Los individuos fueron testados en terrarios rectangulares (60 x 40 cm) limpios, con arena limpia y dos tejas cóncavas (20 x 10 cm) situadas simétricamente a una distancia de 20 cm a cada lado del terrario. Cada macho fue testado en dos condiciones experimentales pero solo participó en un test por día. En el tratamiento control, se colocó una teja procedente del terrario del macho experimental en un lado del terrario y en el otro lado una teja no marcada idéntica para verificar si los machos eluden áreas vacías. En el tratamiento experimental, se colocó una teja procedente del terrario del macho experimental en un lado del terrario y en el otro lado una teja procedente del terrario de un macho no familiar. Con el fin de que los machos experimentales y los donantes no fuesen vecinos en el campo y no hubiesen estado en contacto previo, se usaron tejas provenientes de los terrarios de machos donantes capturados al menos a 1
Discriminación de familiares y no familiares

Km de distancia del lugar de captura de los machos experimentales. Las tejas fueron manipuladas con guantes de látex para evitar una posible contaminación con olor humano y se usaron tejas nuevas en cada prueba para evitar la contaminación olorosa procedente de pruebas anteriores. Se alteró aleatoriamente la posición de las tejas dentro de cada tratamiento y los individuos respondieron a cada tratamiento en un orden aleatorio. Las pruebas se realizaron al aire libre entre las 0900 y las 1400 h (hora solar) cuando las lagartijas estaban en plena actividad.

En cada prueba los machos fueron situados cuidadosamente en el centro del terrario experimental, luego fueron cubiertos con una pequeña caja, y se les dejó unos 2 min. para que se habituasen. Cada prueba comenzó al levantar la caja suavemente dejando que el macho se moviese libremente por el terrario durante 5 h. Siguiendo el método del muestreo de “escaneado instantáneo”, los machos fueron controlados cada 30 min. desde un lugar escondido desde donde se anotó su localización en el terrario (en el suelo, encima de la teja o escondidos bajo ésta). Las localizaciones observadas en cada uno de los diez “scannings” se consideraron como representativas del uso del espacio en los terrarios por parte de los machos. Si un individuo estaba situado en uno de los dos lados del terrario, se designó como lado seleccionado, mientras que si estaba situado en el medio del terrario se designó como que no hubo selección (por ej. LÉNA y FRAIPO, 1998). De esta manera, se anotó el número de veces que las lagartijas estuvieron escondidos o sobre cada teja y el número total de veces que estuvieron en cada lado (la suma de las veces que los machos estuvieron en el suelo, sobre y escondidos bajo cada teja). Al final de cada prueba el macho fue devuelto a su terrario, se quitaron las tejas y el terrario experimental se lavó a fondo con agua.

Para comparar el número de veces que estuvieron en cada lado, sobre o bajo las tejas a través de los tratamientos se utilizaron tests de Wilcoxon de muestras apareadas.
Discriminación de familiares y no familiares

(SIEGEL y CASTELLAN, 1988). Se calcularon los coeficientes de correlación de rangos de Spearman entre el número de veces que los machos estuvieron en cada lado del terrario experimental y la diferencia de LCC entre cada macho experimental y la LCC cada macho donante de la teja marcada. Las correlaciones se realizaron dividiendo los datos en machos que eran de mayor tamaño que los donantes y machos que eran de igual o menor tamaño que los donantes. Esta separación nos permite verificar una posible respuesta diferencial hacia las señales químicas ya que, generalmente, se asume que el tamaño está correlacionado con la habilidad competitiva de los saurios (ej. OLSSON, 1992; ZUCKER y MURRAY, 1996). De hecho, en un estudio de campo con la misma población, los machos que ganaron los encuentros agonísticos (e.d. los perseguidores) fueron significativamente mayores que los machos expulsados (perdedores) (test de la U de Mann-Whitney: Z = 2.57, P < 0.01, N = 19). Por lo tanto, en este experimento, el balance entre los costes y los beneficios de entrar en un área marcada por un macho no familiar deberían ser diferente para estas dos categorías de machos.

Los valores individuales de asimetría podrían ser considerados como indicadores de la calidad y habilidad competitiva de un individuo (ver MÖLLER y SWADDLE, 1997). Por lo tanto, al final del experimento, utilizando una lente binocular se contabilizaron el número de poros femorales de la patas traseras izquierda y derecha de los machos (pata derecha: \(18.2 \pm 0.3\) poros, rango = 16-20; pata izquierda: \(18.5 \pm 0.3\) poros, rango = 16-21). La elección de los poros para medir la simetría no es arbitraria porque la asimetría de los poros femorales parece estar relacionada con la calidad de la feromona, en la cual está basada la selección intersexual (MARTÍN y LÓPEZ, 2000b). Las mediciones se repitieron tres veces y el conteo de los poros se mostró altamente repetible. El valor absoluto de la asimetría de los poros se calculó como la diferencia absoluta del número de poros de la pata derecha menos el de la pata izquierda, y este valor presentó las
Discriminación de familiares y no familiares

Propiedades de la asimetría fluctuante, es decir, se ajustaba a una distribución normal (coeficientes de correlación de Filliben, $r = 0.92$, $N = 20$, $P < 0.0001$) (Aitken et al., 1989) entorno a una media de cero (test de la t para una muestra, $t_{19} = 1.0$, $P = 0.33$). El valor absoluto de la asimetría no varió significativamente con la LCC ($r_s = -0.14$, $P = 0.54$). Se usó el coeficiente de concordancia de Kendall (Siegel y Castellan, 1988) para cuantificar la relación entre el valor absoluto de la asimetría de los poros femorales de los machos y el número de veces que estos machos estuvieron presentes sobre las tejas.

RESULTADOS

La comparación entre tratamientos mostró que no había diferencias significativas en el número de veces que los machos estuvieron sobre su propia teja (test de Wilcoxon, $T = 50.5$, $Z = 0.12$, $P = 0.90$; Fig. 1.3) ni en el lado con su propia teja ($T = 57.5$, $Z = 1.21$, $P = 0.22$). Sin embargo, considerando los machos cuya talla era superior que la del macho donante, cuanto mayor era el tamaño del macho experimental con respecto al tamaño del macho donante, mayor fue el número de veces que estuvo en el lado con la teja marcada por el macho no familiar (correlación de rangos de Spearman: $r_s = 0.80$, $N = 9$, $P = 0.008$). Considerando los machos que era menores o iguales el tamaño que los machos donantes, se obtuvo un resultado similar, aunque si alcanzar la significación, ($r_s = 0.55$, $N = 11$, $P = 0.07$).

Por otro lado, se obtuvo un grado de concordancia negativo entre los “rankings” del valor absoluto de la asimetría fluctuante de los poros femorales y los “rankings” de las veces que los machos estuvieron sobre la teja marcada por el macho no familiar (coeficiente de concordancia de Kendall, $W = -0.45$, $P = 0.032$). En contraste, los valores
Figura 1.3 Número de veces ($\bar{X} \pm 1$ SE) que los machos de *L. monticola* estuvieron encima o escondidos bajo cada teja en el tratamiento control y en el experimental.
Discriminación de familiares y no familiares

de asimetría fluctuante no influyeron en el número de veces que estuvieron sobre su propia teja ($W = -0.01, P = 0.48$).

En cuanto a la utilización de las tejas como refugios, el número de veces que los machos estuvieron escondidos bajo su propia teja no difirió significativamente entre los tratamientos (test de Wilcoxon, $T = 66.5, Z = 1.14, P = 0.25$; Fig. 1.3), pero los machos estuvieron escondidos bajo las tejas no marcadas significativamente menos veces que bajo las tejas marcadas por los machos no familiares ($T = 29.5, Z = 2.22, P = 0.02$; Fig. 1.3).

DISCUSION

En este experimento no encontramos diferencias significativas en el uso de las tejas como plataformas de asoleamiento al comparar todos los individuos. Sin embargo, la respuesta de los machos dependió de las diferencias de la talla relativa entre los machos (ver también MATHIS, 1990; MATHIS y SIMONS, 1994; GOSLING ET AL., 1996a, b). Así, cuando la diferencia positiva en el tamaño de los machos experimentales aumentaba, estuvieron más veces en el lado con la teja marcada por el macho no familiar. Este resultado sugiere que otros factores tales como la habilidad competitiva podrían influir la decsición de dónde estar. Los machos deberían tender a estar sobre las tejas que contuviesen sus propias señales químicas cuando la otra elección posible es la teja marcada por un macho no familiar. Esto es porque la probabilidad de encontrarse con un macho conespecífico es menor cuando los machos están en su propia área de campeo o su territorio que cuando están en el de otro macho, donde pueden incurrir en interacciones agonísticas costosas. Sin embargo, el coste que supone encontrarse con un macho que ha depositado la marca química va a depender de la habilidad competitiva...
 Discriminación de familiares y no familiares

relativa del intruso y del residente (GOSLING ET AL., 1996b), porque la probabilidad de éxito de los machos relativamente mayores en una interacción agonística es mayor cuando la diferencia de tamaño entre los machos aumenta (ej. ZUCKER y MURRAY, 1996). Apoyando esto, en un estudio previo, los machos pequeños de *L. monticola* tendieron a permanecer inmóviles en presencia de excrementos de machos no familiares, sugiriendo que estaban mostrando un comportamiento de sumisión (LÓPEZ ET AL., 1998). De igual manera, un trabajo de campo sugirió que los colonizadores juveniles pequeños de *Anolis aeneus* eran capaces de evitar encuentros con individuos mayores con los que probablemente perderían en una interacción (STAMPS, 1994).

Nuestros resultados también muestran que los machos con una asimetría fluctuante baja en sus poros femorales estuvieron más tiempo en la teja no familiar. Algunos estudios de dominancia social han sugerido que existe una relación negativa entre la asimetría y la dominancia (ej. MÖLLER ET AL., 1996; THORNHILL y SAUER, 1992; SNEDDON y SWADDLE, 1999). Además, un estudio con la misma población mostró que el estatus social de los machos está relacionado con los niveles de asimetría fluctuante de los poros femorales (MUÑOZ ET AL., 2000). Una habilidad competitiva mayor podría permitir a los machos entrar en el área de campeo de otro macho con un riesgo bajo de lesión. Esto podría ser una respuesta adaptativa porque los machos pueden incrementar su éxito reproductor accediendo a las hembras que están establecidas en el área de otros machos.

Por otro lado, los resultados de la comparación de la selección de refugios a través de los tratamientos muestran que los machos evitan áreas vacías. Así, cuando la otra posibilidad en ambos tratamientos era la propia teja los machos permanecieron escondidos más veces bajo la teja del macho no familiar que bajo la teja no marcada. Esta preferencia por los sustratos marcados sugiere que, cuando seleccionan un refugio,
Discriminación de familiares y no familiares

Los machos están atraídos por señales químicas de conospecíficos. Las señales químicas de los conospecíficos podrían ser usadas para estimar si los depredadores están ausentes tal y como ha sido sugerido en tritones y en salamandras (Woody y Mathis, 1997; Aragón et al., 2000). Uno de los depredadores más importantes de L. monticola, la culebra lisa europea (Coronella austriaca), se esconde frecuentemente en determinadas grietas y bajo rocas al acecho de las lagartijas. Esta situación es similar en el geco de las rocas, Oedura lesueurii, y su depredador, la culebra Hoplocephalus bungaroides, (Downes y Shine, 1998a, b). La presencia de señales químicas en un refugio podría identificarlo como un lugar seguro donde esconderse (e.d. sin depredadores), ya que esta siendo usado por otros conospecíficos. Otra explicación alternativa pero no excluyente es que los machos en agregaciones territoriales podrían atraer más hembras que los machos solitarios, como ha sido sugerido en estudios que muestran atracción en animales territoriales, los cuales forman agregaciones territoriales incluso cuando existen cerca áreas vacías óptimas (ej. Tiainen et al., 1983; Stamps, 1988).

En conclusión, los resultados sugieren que los machos de L. monticola usan feromonas para reducir la frecuencia y la intensidad de los encuentros agresivos (Glinski y Krekorian, 1985) y para evitar el riesgo de depredación. Por otro lado, los sustratos marcados por los conospecíficos podrían informar sobre la calidad del hábitat (Stamps, 1987), lo que supondría un ahorro en tiempo y energía a la hora de seleccionar microhábitats y refugios.
Capítulo 2.

DISCRIMINACION DE CONESPECIFICOS FAMILIARES Y NO FAMILIARES: IMPLICACIONES DE LAS RELACIONES ESPACIALES EN CONDICIONES NATURALES

RESUMEN

La capacidad de los saurios para discriminar entre señales químicas de machos conespecíficos familiares y no familiares podría contribuir a reducir los costes de las interacciones agresivas. Se llevó a cabo un estudio de campo para analizar las relaciones espaciales entre los machos. Posteriormente se utilizaron estos individuos en dos experimentos para verificar si los machos pueden utilizar señales químicas para discriminar entre machos conespecíficos familiares (aquellos cuyas áreas de campeo solaparon) y no familiares (aquellos cuyas áreas de campeo no solaparon).

El primer experimento se realizó utilizando como estímulo químico los excrementos de machos familiares y no familiares cuando los machos experimentales estaban en su propio terrario (condición de residente). Las diferencias en las tasas de extrusiones linguales sugieren que, al menos, los machos grandes (LCC < 75 mm) son capaces de discriminar entre machos familiares y no familiares a partir de los excrementos. La tasa de extrusiones linguales dependió de las diferencias relativas de tamaño entre los machos pequeños y los machos donantes de los excrementos. No hubo una correlación significativa en el caso de los machos grandes.
El segundo experimento se realizó en los terrarios de los machos donantes del estímulo químico (condición de intruso de los machos experimentales) para verificar si los machos discriminan entre las señales químicas de los machos familiares y no familiares. Las diferencias en el tiempo intentando escapar y en la tasa de extrusiones linguales sugieren que los machos son capaces de discriminar entre machos familiares y no familiares. La tasa de extrusiones linguales también dependió del tamaño relativo y, además, del grado de solapamiento.

Los resultados de ambos experimentos sugieren que las señales químicas podrían permitir el reconocimiento individual en esta especie, lo que contribuiría a reducir los costes de las interacciones agresivas.

INTRODUCCION

En los sistemas de comunicación química de los vertebrados, la presencia y la concentración relativa de los componentes de las feromonas varía entre los individuos (ALBERTS, 1992). Por lo tanto, estas diferencias pueden servir para varias funciones y aportar información sobre la identidad individual (HALPIN, 1980). Por ejemplo, los olores individuales pueden disuadir a los conespecíficos de entrar en el área usada por el emisor de la señal, especialmente después de experiencias negativas con el productor del olor (HALPIN, 1986). Dentro de los vertebrados, el reconocimiento individual ha sido demostrado en algunos mamíferos (HALPIN, 1986), aves (WHITFIELD, 1987) y salamandras (SIMON y MADISON, 1984).

En los saurios, los sistemas químicos (e.d. vomeronasal, olfativo y gustativo) también juegan un papel importante en la comunicación intraespecífica (HALPERN, 1992; MASON, 1992; COOPER, 1994). Algunos estudios han demostrado que existe
Discriminación de familiares y no familiares

La capacidad para discriminar entre vecinos y no vecinos podría ayudar a estabilizar el sistema social reduciendo la frecuencia y la intensidad de los encuentros agresivos (GLINSKI y KREKORIAN, 1985; GOSLING, 1982; 1990) o favoreciendo la localización de las parejas (COOPER, 1996).

En la mayoría de los estudios sobre discriminación entre familiares y no familiares a través de la investigación química, la principal aproximación experimental ha sido mantener a los individuos juntos hasta la habituación para crear individuos familiares, o mantenerlos separados para crear individuos no familiares (HALPIN, 1986; LAI y JOHNSTON, 1994; COOPER, 1996; GUFFEY ET AL., 1998). Sin embargo, no existe una evidencia empírica directa de que exista discriminación quimiosensorial entre individuos cuyas relaciones espaciales hayan sido previamente determinadas en el entorno natural de los animales. Al forzar a los individuos a que sean familiares, el experimentador podría escoger al azar parejas de machos que no serían vecinos en
Discriminación de familiares y no familiares

condiciones naturales. Por ejemplo, un estudio de campo con juveniles de *Anolis aeneus* refleja que hubo menos diadas de lo esperado en el primer encuentro en las cuales uno de los miembros estuviese en clara desventaja (Stamps, 1994). Por otro lado, la respuesta comportamental de los individuos puede depender también de otros factores como el tamaño, propiedad de un área o experiencia previa (Mathis, 1990; Mathis y Simons, 1994; Gosling et al., 1996a,b; Zucker y Murray, 1996). El comportamiento agonístico podría estar influido por la talla del residente de forma que al encontrarse con una marca olorosa, los individuos mayores tienden a ser más agresivos y los pequeños más sumisos (Mathis y Simons, 1994).

En algunos saurios y serpientes, los excrementos pueden actuar, solos o en combinación con secreciones glandulares, como fuentes de componentes químicos (Duvall, 1979; Simon, 1983; Duvall et al., 1987; Carpenter y Duvall, 1995). Sin embargo, aunque la actividad de las secreciones glandulares de los saurios como feromonas ha sido bien estudiada (Alberts, 1989; 1992; Mason, 1992), sólo algunos estudios han examinado el posible papel de los excrementos en la comunicación intraespecífica. Las señales químicas procedentes de los excrementos son utilizadas en la comunicación intraspecifica en salamandras (ej. Jaeger et al., 1986; Ovaska y Davis, 1992), y, en saurios, algunos estudios aislados con *Sceloporus occidentalis* (Duvall et al., 1987) y *Lacerta monticola* (López et al., 1998) sugieren la existencia de una señal compuesta (visual y olfativa) procedente de los excrementos que puede jugar un papel importante en la comunicación entre machos. En estas especies, y en el gekónido *Coleonyx variegatus* (Carpenter y Duvall, 1995), los excrementos pueden ser usados como marcas olorosas. Por otro lado, como en otros reptiles (Alberts y Werner, 1993), las secreciones femorales también juegan un papel importante en la comunicación de los machos de *L. monticola* (Aragón et al., en prensa).
Discriminación de familiares y no familiares

En este capítulo, se studiaron las relaciones espaciales de los machos de *L. monticola* en condiciones naturales, determinando primero los individuos cuyas áreas de campeo solapaban entre sí. Posteriormente se usaron los individuos en dos experimentos de laboratorio para estudiar la capacidad en el reconocimiento quimiosensorial.

Se realizó un primer experimento para estudiar la habilidad de los machos para discriminar entre las señales procedentes de los excrementos de machos conespecíficos familiares y no familiares cuando el macho experimental está en su propio terrario. De esta forma, se diseñó este experimento para emular una situación natural en la cual un macho detecta el excremento de otro macho conespecífico en su propia área.

El objetivo del segundo experimento fue emular una situación natural en la que los individuos experimentales fuesen intrusos en el área de un conespecífico. Especialmente se analizó la capacidad de los machos para discriminar entre las señales procedentes de los olores de machos conespecíficos familiares y no familiares cuando los machos experimentales están en un área desconocida previamente ocupada por otro macho residente. También se examinó si el comportamiento del macho intruso (comportamiento de escape y tasa de movimiento) podría verse afectado por la presencia de olores del macho residente.

METODOLOGIA GENERAL

El trabajo de campo se llevó a cabo desde Mayo hasta Junio de 1997. Para determinar las relaciones espaciales entre los machos (familiares y no familiares), se realizó el trabajo de campo en una parcela de 0.3 ha (80 X 40 m) la cual fue dividida en 32 cuadrantes de 100 m² cada uno formando una cuadrícula. Las lagartijas (machos: N
Discriminación de familiares y no familiares

= 42; hembras: N = 40) fueron capturadas con lazo corredizo de hilo, marcadas individualmente con pintura acrílica en el dorso y remarcadas siempre que fue necesario. Con el fin de determinar las áreas de campeo se apuntó en un mapa la posición de los individuos cada vez que eran capturados o localizados con respecto a las marcas de la cuadrícula (las coordenadas dentro de la parcela). Los censos se realizaron cada día durante Mayo y Junio de 1997 desde las 0800 hasta las 1500 h (hora solar). Para asegurar independencia de los datos el intervalo de tiempo entre las localizaciones fue para cada macho de al menos tres horas, pero la mayor parte de las localizaciones estaba distribuida a lo largo de los dos meses. El área de campeo de cada individuo fue definida por el polígono convexo utilizando el 100 % de los puntos en el mapa (CHRISTIAN y WALDSCHMIDT, 1984; ROSE, 1982). En un estudio previo con la misma población, aproximadamente diez localizaciones fueron necesarias para describir el 80 % del área de campeo de los machos estimada con todas la localizaciones, por lo tanto se consideró éste como el mínimo número de localizaciones para representar adecuadamente el tamaño del área de campeo en esta población (MARTÍN y SALVADOR, 1997). Así, en este trabajo, se usaron sólo los datos de las áreas de campeo que cumplieron este requisito (Número de localizaciones: $\bar{X} \pm SE = 12.5 \pm 1.8; N = 29$). Los individuos con menos de diez localizaciones se consideraron como transeúntes o con gran parte de su área de campeo fuera de la parcela. Se usó el programa RANGES V (Escrito por R. Kenward. Institute of Terrestrial Ecology, Wareham, UK) (LARKIN y HALKIN, 1994) para determinar el tamaño de las áreas de campeo y el solapamiento entre los individuos. La familiaridad entre los individuos se estableció por el grado de solapamiento espacial entre sus áreas de campeo. Se consideraron como machos familiares aquellos cuyas áreas de campeo solaparon, y no familiares aquellos cuyas áreas de campeo no solaparon, y cuyos centros de las áreas estaban lo suficientemente
lejos (al menos 25 m), para asegurarnos que los individuos no estuvieran en contacto previo. Los individuos con áreas contiguas pero que no solapaban no fueron considerados operativamente como familiares.

I. RESPUESTA QUIMIOSENSORIAL DE LOS MACHOS RESIDENTES EN FUNCIÓN DE LA TALLA FRENTE A LOS EXCREMENTOS DE MACHOS CONESPECÍFICOS

MATERIAL Y MÉTODOS

Procedimiento experimental

En Junio de 1997, se capturaron en la parcela de estudios 23 machos sexualmente maduros de los cuales conocíamos las relaciones espaciales (familiar o no familiar) con otros individuos. Los machos fueron pesados y medidos (LCC: $\bar{X} \pm SE = 74.7 \pm 0.7$ mm, rango = 67-80 mm; Peso: $\bar{X} \pm SE = 8.1 \pm 0.2$ gr, rango = 6-10 gr). Para este experimento, los individuos con una LCC por debajo y por encima de la media en la población fueron clasificados como pequeños (LCC < 75 mm) y grandes (LCC > 75 mm) respectivamente. Esta separación nos permitió verificar la respuesta diferencial en presencia de las señales químicas ya que está generalmente asumido que la talla está correlacionada con la habilidad competitiva de los saurios (ej. Tokarz, 1985; Olsson, 1992; Zucker y Murray, 1996). Las lagartijas se mantuvieron individualmente en la Estación Biológica “El Ventorrillo” en terrarios (60 X 40 cm) al aire libre con arena como sustrato y piedras como refugio. Los terrarios fueron cubiertos con una red de
Discriminación de familiares y no familiares

metal para prevenir la posible, aunque improbable, entrada de depredadores (principalemente arrendajos). Sin embargo, ningún individuo fue atacado por los pájaros durante este experimento. La comida (gusanos de la harina) y el agua se suministró ad libitum. Las lagartijas se mantuvieron en sus terrarios durante una semana antes de comenzar las pruebas para que se familiarizasen con las condiciones de laboratorio. Todos los individuos se mantuvieron saludables durante las pruebas y, al final del experimento, fueron soltados en el lugar inicial de captura.

Se recolectaron excrementos de los individuos inmediatamente después de su captura para usarlos como estímulo químico. Se utilizó una pinza de metal para recolectar los excrementos la cual fue lavada con etanol al 96% cada vez para evitar que se contaminase. Los excrementos se colocaron en eppendorfs etiquetados y luego se congelaron (JAEGGER ET AL., 1986). Se descongelaron a temperatura ambiente durante 30 min. antes de usarlos y se usaron guantes de látex nuevos para manipular cada excremento evitando contaminarlos con olor humano (OVASKA y DAVIS, 1992).

Con el fin de examinar la hipótesis de que los machos pueden distinguir entre excrementos de machos familiares y no familiares a partir de señales químicas únicamente, se comparó el número de extrusiones linguales emitidas por 23 machos en sus propios terrarios en repuesta al estímulo procedente de algodones impregnados con (1) excremento de un macho coenespecífico familiar, (2) excremento de un macho coenespecífico no familiar, (3) agua desionizada (control no oloroso) (COOPER y BURGHARDT, 1990). En un estudio previo con L. monticola se demostró que los machos pueden discriminar entre olores de sus propios excrementos, los de otros machos no familiares, el control no oloroso y el control oloroso (LÓPEZ ET AL., 1998). Por lo tanto, en este experimento, que realmente examina la capacidad para discriminar entre conespecíficos familiares y no familiares, se consideró que no era necesario incluir de
Discriminación de familiares y no familiares

nuevo ni el estímulo procedente de los propios excrementos ni el del control oloroso.

Se prepararon los estímulos sumergiendo la varilla con el algodón (1 cm) sujeta a un aplicador de madera (50 cm) en agua desionizada. Luego se añadió el estímulo correspondiente restregando el algodón con los excrementos salvo en el caso del control. En cada prueba se utilizó un estímulo nuevo. Todas las lagartijas respondieron una vez a cada estímulo en una sucesión balanceada, el orden de presentación fue al azar y ningún individuo fue testado más de una vez por día. Las pruebas se realizaron al aire libre entre 0900-1200 h (hora solar), cuando las lagartijas estaban completamente activas. A cada individuo se le permitió asolearse durante al menos dos horas antes de comenzar con las pruebas. En experimentos previos se midió la temperatura de esta especie demostrándose que las lagartijas son capaces de alcanzar la temperatura óptima para la actividad después de dos horas de asoleamiento (MARTÍN y SALVADOR, 1993b). Posteriormente, el experimentador se aproximó lentamente al terrario y suavemente colocó el algodón a 2 cm del rostro del animal. Se tomó nota del número total de extrusiones linguales, de las extrusiones linguales dirigidas al algodón, y de las no dirigidas durante 60 s desde la primera extrusión. También se anotó la latencia desde la presentación del estímulo hasta la primera extrusión.

Análisis de los datos

Para examinar las diferencias en el número de extrusiones linguales entre las condiciones, se utilizaron ANOVAs de dos vías de medidas repetidas (SOKAL y ROHLF, 1995) con el tipo de tratamiento como “within factor”, y las dos categorías de talla (pequeño vs. grande) como el “between subjects factor”. La interacción entre el tipo de tratamiento y la talla se incluyó para determinar si la respuesta a los excrementos
Discriminación de familiares y no familiares

dependía de la talla. Previamente se verificó la normalidad de las variables dependientes con el test de Kolmogorov-Smirnov y la homogeneidad de sus varianzas con el test de Hartley. La latencia hasta la primera extrusión tuvo varianzas significativamente heterogéneas, por lo tanto, estos datos se analizaron usando ANOVAs de Friedman (SIEGEL y CASTELLAN, 1988). Las comparaciones a posteriori de los pares de medias se hicieron usando el test de Tukey de la diferencia significativa honesta para los análisis paramétricos y procedimientos de comparación múltiple no paramétrica para análisis no paramétricos (SOKAL y ROHLF, 1995). Se calculó el coeficiente de correlación de rangos de Spearman entre las tasas de extrusiones linguales emitidas en respuesta al estímulo del excremento de otro macho y la diferencia entre la LCC de cada macho experimental y la LCC del macho donante del estímulo. El promedio de las diferencias de talla entre los machos experimentales pequeños y donantes no fue significativamente diferente para el caso de machos familiares y no familiares (test de la U de Mann-Whitney: $Z = -1.26, P = 0.20$), tampoco se encontraron diferencias en el caso de los machos experimentales grandes ($Z = 0.57, P = 0.56$).

RESULTADOS

En el experimento de laboratorio, todos los individuos emitieron extrusiones linguales en todas las condiciones. Se encontraron diferencias significativas entre las condiciones en la tasa total de extrusiones linguales (ANOVA de medias repetidas: within factor, $F_{2,42} = 24.95, P < 0.0001$; Fig. 2.1a) pero no hubo diferencias significativas entre las dos categorías de talla (between factor: $F_{1,21} = 1.29, P = 0.27$). Sin embargo, se encontró una interacción significativa entre las condiciones y las categorías de talla ($F_{2,42} = 3.27, P < 0.05$). En ambas categorías de talla, la tasa total de extrusiones linguales fue significativamente más alta en presencia de los estímulos
Discriminación de familiares y no familiares

Figura 2.1 - Tasa de extrusiones linguales ($\overline{X} \pm 1$ SE) emitidas por machos pequeños (LCC<75mm) y grandes (LCC>75 mm) de *L. monticola* en respuesta al agua desionizada (control no oloroso) (C) y de los estímulos químicos procedentes de los excrementos de machos familiares (F) o no familiares (NF).
Discriminación de familiares y no familiares

familiar y no familiar que en el control (test de Tukey: \(P < 0.03 \) en todos los casos). En los machos pequeños (N = 13), no hubo diferencias significativas entre las respuestas al estímulo familiar y no familiar (\(P = 0.99 \)). Mientras que en los machos grandes (N = 10), las respuestas al estímulo familiar y no familiar se aproximaron a ser significativamente diferentes (\(P = 0.076 \)). Los machos grandes mostraron una tasa de extrusiones linguales en presencia del estímulo no familiar que fue significativamente más alta que la de los machos pequeños (\(P = 0.021 \)).

Las tasa de extrusiones linguales dirigidas a los algodones fue significativamente diferente entre las condiciones (ANOVA de medidas repetidas: \(F_{2,42} = 21.87, P < 0.0001 \); Fig. 2.1b) pero no se encontraron diferencias entre las dos categorías de tamaño (\(F_{1,21} = 1.02, P = 0.32 \), ni en la interacción entre las condiciones y las categorías de tamaño (\(F_{2,42} = 0.61, P = 0.54 \)). La tasa de extrusiones linguales dirigidas al algodón fue significativamente más alta en respuesta al estímulo familiar (test de Tukey: \(P < 0.001 \)) y no familiar (\(P < 0.0001 \)) que en respuesta al estímulo control, pero no hubo diferencias significativas entre el estímulo familiar y no familiar (\(P = 0.16 \)).

Se encontraron diferencias significativas entre las condiciones en la tasa de extrusiones linguales no dirigidas al algodón (ANOVA de medias repetidas \(F_{2,42} = 8.41, P = 0.0008 \); Fig. 2.1c). No hubo diferencias significativas entre las categorías de talla (\(F_{1,21} = 0.01, P = 0.91 \)), sin embargo hubo una interacción significativa entre las condiciones y las categorías de talla (\(F_{2,42} = 3.46, P = 0.04 \)). En los machos pequeños, la tasa de extrusiones no dirigidas no difirió entre las condiciones (test de Tukey: \(P > 0.70 \) en todos los casos). Para los machos grandes no hubo diferencias significativas entre el control y el estímulo familiar (\(P > 0.70 \)). Sin embargo, la respuesta al control y al estímulo no familiar difirió significativamente (\(P < 0.001 \)), mientras que la respuesta al estímulo familiar y no familiar fue marginalmente diferente (\(P = 0.056 \)).
Discriminación de familiares y no familiares

Las varianzas de la latencia hasta la primera extrusión fueron significativamente heterogéneas (test de Hartley: $F_{\text{max}} = 75.18$, gl = 3, 22, $P < 0.0001$). La latencia difirió significativamente entre las condiciones (ANOVA de Friedman: $\chi^2 = 9.02$, $P = 0.011$; Fig. 2.2). Sin embargo, al analizarlo por las clases de tamaño, solo las latencias de los machos grandes fueron significativamente diferentes entre las condiciones ($\chi^2 = 6.86$, $P = 0.03$), mientras que no se encontraron diferencias significativas en los machos pequeños ($\chi^2 = 2.94$, $P = 0.23$). En los machos grandes, la latencia en respuesta al agua desionizada fue significativamente más larga que en el estímulo no familiar ($P = 0.04$), y en el familiar ($P = 0.036$), pero las latencias en el estímulo familiar y no familiar no fueron significativamente diferentes ($P = 0.29$).

En los machos pequeños, hubo una correlación significativa negativa entre la tasa de extrusiones dirigidas en respuesta al estímulo familiar y la diferencia entre la LCC de cada macho experimental y la LCC de su correspondiente macho familiar (correlación de rangos de Spearman: $r_s = -0.60$, $P = 0.038$). Así, los machos pequeños emitieron más extrusiones a los olores de los machos relativamente más grandes. Sin embargo, no se encontró una correlación significativa entre la tasa de extrusiones dirigidas en respuesta al estímulo de los machos no familiares y las diferencias de LCC (correlación de rangos de Spearman: $r_s = -0.10$, $P = 0.75$). En los machos grandes no hubo correlaciones significativas entre la respuesta a los estímulos familiares o no familiares y las diferencias de LCC ($P > 0.50$ en todos los casos).
Figura 2.2 - Latencia hasta la primera extrusión al presentar agua desionizada (control no oloroso) (C) y los estímulos químicos procedentes de los excrementos de machos familiares (F) o no familiares (NF) a los machos pequeños (LCC<75mm) y grandes (LCC>75 mm) de L. monticola.
II. RESPUESTA DE LOS MACHOS INTRUSOS FRENTE A LAS SEÑALES QUIMICAS DE LOS CONESPECIFICOS

MATERIAL Y METODOS

Procedimiento experimental

En este experimento se utilizaron 19 machos adultos de *L. monticola* de los que ya conocíamos la relación espacial (familiar o no familiar) con otros individuos en el campo. Los machos fueron pesados y se les midió la longitud cabeza-cuerpo (LCC) (LCC: $\bar{X} \pm SE = 75.5 \pm 0.5$ mm, rango = 72-80 mm; Peso: $\bar{X} \pm SE = 8.3 \pm 0.2$ gr, rango = 6.5-10 gr). Fueron mantenidos individualmente en terrarios al aire libre (60 x 40 cm) en la estación de campo “El Ventorrillo”. Los terrarios fueron cubiertos con una red de metal. La comida y el agua se proporcionaron diariamente *ad libitum*. Las lagartijas ingirieron los gusanos rápidamente y los que no fueron comidos se retiraron rápidamente para evitar la influencia de algún resto de comida en las pruebas.

En el comienzo de cada prueba, se cogió a un macho de su terrario, se situó suavemente en el medio del terrario previamente ocupado por el macho familiar, el macho no familiar o en un terrario limpio como control en orden aleatorio. En estudios previos se demostró que los machos son capaces de discriminar entre sus propios olores, los procedentes de los machos no familiares, el control no oloroso y el control oloroso (*LÓPEZ ET AL. 1998; ARAGÓN ET AL., en prensa*). Por lo tanto, en el presente experimento, que se centra en la discriminación de familiares y no familiares
Discriminación de familiares y no familiares

conespecíficos, no fue considerado necesario incluir el control oloroso. Por otro lado, en un estudio previo, cuando las lenguas de las lagartijas tomaban contacto con el control oloroso (algodón impregnado con colonia), los individuos frecuentemente mostraron una respuesta dependiente (incremento de la acción de lamerse el labio y de frotamiento de las mejillas). Esto podría afectar a una comparación real entre los tratamientos en este diseño experimental ya que las lagartijas a veces exhiben lenguetazos contra el sustrato o las rocas que contienen el estímulo oloroso.

Se realizaron 57 pruebas (19 individuos X 3 tratamientos). En cada prueba el macho donante fue sustraído del terrario pocos segundos antes del comienzo de ésta y fue devuelto de nuevo al concluir la prueba. Para asegurarnos que los olores de los machos (excrementos, secreciones femorales, etc.) estuviesen presentes en cada terrario experimental, las pruebas comenzaron una semana después de cautividad. Después de cada prueba los terrarios fueron lavados cuidadosamente con agua durante 20 minutos y secados a temperatura ambiente, se reemplazaron la arena y las piedras para evitar contaminación olorosa en las pruebas sucesivas. Se esperó otra semana con el macho donante dentro del terrario antes de realizar otra prueba con ese terrario. Todas las pruebas se realizaron al aire libre durante Junio y principios de Julio de 1997 en días soleados entre las 0900-1200 horas (hora solar). Se les permitió a los machos asolearse durante al menos 2 h antes de cada prueba. Ningún macho fue testado más de una vez por día.

Los experimentos se grabaron en vídeo (formato Hi-8, 25 secuencias/seg.) con una cámara situada perpendicularmente encima del centro del terrario durante 15 min. El experimentador no estuvo presente durante la filmación para asegurarnos que el comportamiento de los animales no estaba afectado por la presencia humana. Las cintas de vídeo fueron visualizadas y se anotó el tiempo que los machos estuvieron
Discriminación de familiares y no familiares

moviéndose, y dentro de este intervalo, el tiempo intentando escapar del terrario. Debido a que presumiblemente las diferencias en las extrusiones lingüales indican reconocimiento en los saurios (COOPER y BURGHARDT, 1990), también se anotó el número total de extrusiones lingüales, dirigidas al sustrato y dirigidas a las rocas. Se calcularon las tasas de todas las variables para cada periodo consecutivo de 5 min. para analizar el cambio en la investigación quimiosensorial y en la respuesta comportamental a lo largo del tiempo.

Análisis de los datos

Se utilizaron ANOVAs de medidas repetidas para estimar la variación de las variables dependientes entre los tratamientos y los periodos de tiempo (within-subjects factors). Se incluyó la interacción entre los tratamientos y el tiempo para determinar si las respuestas a los diferentes tratamientos variaban con el tiempo transcurrido en el terrario. Las diferencias entre las condiciones se evaluaron a posteriori usando el test de Tukey de la diferencia significativa honesta (HSD). Previamente se verificó la normalidad de las variables dependientes con el test de Kolmogorov-Smirnov y la homogeneidad de sus varianzas con el test de Hartley. Se realizaron correlaciones de Pearson entre las tasas de las extrusiones lingüales y las diferencias de tamaño entre el macho experimental y su correspondiente macho familiar o no familiar (SOKAL y ROHLF, 1995). El promedio de las diferencias de talla entre los machos experimentales y donantes no fue significativamente diferente para el caso de machos familiares y no familiares ($F_{1,36} = 0.002, P < 0.96$). Cuando los datos no se distribuyeron normalmente y/o las varianzas no eran homogéneas después de las transformaciones correspondientes, éstos se analizaron usando ANOVAs de Friedman (SIEGEL y...
Discriminación de familiares y no familiares

CASTELLAN, 1988), y las comparaciones de los pares de medias se hicieron usando procedimientos de comparación múltiple no paramétrica *a posteriori* (SOKAL y ROHLF, 1995).

RESULTADOS

Todos los machos emitieron extrusiones linguales (TF) en todas las condiciones y hubo diferencias significativas entre las condiciones en la tasa total de TF (ANOVA de medidas repetidas: $F_{2,36} = 6.87$, $P = 0.0029$; Fig. 2.3), entre los periodos sucesivos de 5 min. ($F_{2,36} = 41.79$, $P < 0.0001$), y hubo una interacción significativa entre las condiciones y los periodos ($F_{4,72} = 2.7$, $P = 0.036$). La tasa total de TF en el primer periodo fue significativamente más alta que en los otros dos periodos en todas las condiciones (test de Tukey HSD: $P < 0.0001$ en todos los casos). Considerando solo el primer periodo, tanto los terrarios de los familiares como los no familiares provocaron una tasa total de TF significativamente más alta que en los terrarios control (control vs. familiar: $P < 0.001$; control vs. no familiar: $P = 0.02$), pero no hubo diferencias significativas entre los terrarios de machos familiares y no familiares ($P = 0.34$). En el segundo periodo, los terrarios de los machos familiares provocaron una tasa total de TF significativamente más alta que en los terrarios control ($P = 0.021$) y de los machos no familiares ($P < 0.05$) pero no hubo diferencias significativas entre los terrarios control y no familiar ($P > 0.99$). Considerando el tercer periodo, no hubo diferencias significativas entre los tratamientos ($P > 0.05$ en todos los casos).

En los primeros diez minutos, cuando las diferencias entre los tratamientos en las tasas de TF fueron más marcadas, hubo una correlación significativa entre la tasa total de TF en los terrarios de los machos no familiares y la diferencia entre la LCC de
Discriminación de familiares y no familiares
cada macho experimental y la LCC de su correspondiente macho no familiar
correlación de

Figura 2.3 - Tasa total de extrusiones lingüales ($\bar{X} \pm$ 1SE) emitidas por machos de *L. monticola* en el terrario control y en terrarios con olores procedentes de machos familiares o machos no familiares durante tres periodos sucesivos de 5 min.
Discriminación de familiares y no familiares

Pearson: $r = -0.49$, $F_{1,17} = 5.29$, $P = 0.03$; Fig. 2.4). En contraste, no se encontró una correlación significativa entre la tasa total de TF en el terrario del macho familiar y la diferencia entre la LCC de cada macho experimental y la LCC de su correspondiente macho familiar (correlación de Pearson: $r = -0.07$, $F_{1,17} = 0.09$, $P = 0.76$), pero hubo una correlación significativa en los primeros diez minutos entre la tasa total de TF en el terrario del macho familiar y el grado de solapamiento observado en el campo entre las áreas de campeo de cada macho experimental y las de su macho familiar correspondiente (correlación de Pearson: $r = -0.51$, $F_{1,17} = 6.00$, $P = 0.02$).

Se encontraron diferencias significativas entre las condiciones en la tasa de TF dirigidos a las rocas (ANOVA de medidas repetidas: $F_{2,36} = 5.51$, $P < 0.01$), y entre los sucesivos periodos de 5 min. ($F_{2,36} = 27.65$, $P < 0.0001$), mientras que la interacción no fue significativa ($F_{4,72} = 1.53$, $P = 0.20$). La tasa de TF dirigida a las rocas fue significativamente más alta en el terrario del macho familiar que en el resto de las condiciones (test de Tukey HSD: $P < 0.045$ en ambos casos), pero no hubo diferencias significativas entre el control y el tratamiento de macho no familiar ($P = 0.70$). En contraste, los TF dirigidos al suelo también difirieron a lo largo de los periodos (ANOVA de medidas repetidas: $F_{2,36} = 27.65$, $P < 0.0001$) pero no hubo diferencias significativas entre las condiciones ($F_{2,36} = 2.33$, $P = 0.11$), ni fue significativa la interacción entre las condiciones y los periodos ($F_{4,72} = 1.48$, $P = 0.21$).

Los machos estuvieron menos tiempo moviéndose por el terrario según transcurría el experimento (ANOVA de medidas repetidas: $F_{2,36} = 3.64$, $P = 0.036$; Fig. 2.5) pero este comportamiento no se vio afectado de forma significativa por las diferentes condiciones ($F_{2,36} = 1.53$, $P = 0.22$), ni tampoco fue significativa la
interacción entre las condiciones y los periodos \((F_{4,72} = 1.27, P = 0.28)\). Los machos disminuyeron su tasa de movimiento con el transcurso del tiempo, así, el tiempo moviéndose fue

Figura 2.4 - Relación entre la diferencia de LCC (macho experimental – macho donante) y la tasa total de extrusiones linguales emitidas durante los primeros diez minutos en los terrarios con olores procedentes de los machos no familiares.
Discriminación de familiares y no familiares

Figura 2.5 - Tiempo (seg.) ($\bar{X} \pm 1SE$) empleado moviéndose e intentando escapar por los machos de *L. monticola* durante tres períodos consecutivos de 5 min. en el terrario control y en el terrario con olores procedentes del macho familiar o del macho no familiar.
Discriminación de familiares y no familiares

significativamente mayor durante en el primer periodo que durante el tercero (test de Tukey: $P = 0.013$), y mayor durante el segundo periodo que durante el tercero ($P = 0.02$) pero no hubo diferencias significativas entre el primer periodo y el segundo ($P = 0.96$).

El tiempo intentando escapar no difirió entre los tratamientos en el primer (ANOVA de Friedman: $\chi^2 = 1.32$, $gl = 2$, $P > 0.50$; Fig. 2.5) ni en el tercer periodo ($\chi^2 = 1.32$, $gl = 2$, $P > 0.50$), pero si hubo diferencias significativas entre las condiciones en el segundo periodo ($\chi^2 = 7.38$, $gl = 2$, $P = 0.024$). En este periodo, el tiempo intentando escapar fue significativamente mayor en el terrario no familiar que en terrario familiar (comparaciones múltiples no paramétricas: $P = 0.03$) pero no difirió entre el control y las otras condiciones ($P > 0.10$ en ambos casos).

DISCUSION

En muchos saurios, la extrusión lingual permite a los individuos obtener información sobre sus conespecíficos (COOPER, 1994; HALPERN, 1992; MASON, 1992). De hecho, existen estudios sobre la respuesta de los saurios mediante extrusiones linguales que concluyen que son necesarios conductos vomeronasales funcionales (vs. sellados) para una discriminación precisa de las presas y las feromonas (GRAVES y HALPERN, 1990, COOPER y ALBERTS, 1991).

Nuestros resultados muestran que los machos de *L. monticola* pueden distinguir olores de sus conespecíficos del control. En un estudio previo, los machos de *L. monticola* discriminaron entre sus propios olores contenidos en los excrementos y los de otros machos conespecíficos y, además, la respuesta comportamental difirió entre los
Discriminación de familiares y no familiares

Los resultados de este capítulo y el anterior indican que los machos de *L. monticola* son capaces de discriminar entre olores de machos conespecíficos familiares y no familiares. La discriminación de familiares ha sido demostrada en otras especies de saurios. Los machos de iguana verde, *Iguana iguana*, son capaces de distinguir las secreciones femorales de los machos no familiares de los controles, sus propias secreciones, y las de los machos familiares (ALBERTS y WERNER, 1993). Un trabajo reciente muestra que ambos sexos del eslizón *Eumeces laticeps* pueden discriminar entre el estímulo químico de individuos familiares y no familiares del sexo opuesto y que los machos pueden distinguir los componentes químicos procedentes de su cloaca de la de los machos no familiares (COOPER, 1996). También los machos del geco *Eublepharis macularius* discriminan entre hembras familiares y no familiares (STEELE y COOPER, 1997)

Un resultado interesante de este capítulo es que la tasa total de extrusiones linguales en respuesta a los olores de los machos conespecíficos disminuyó con la diferencia de tamaño entre los individuos experimentales y los donantes (e.d. cuanto mayor es el tamaño del individuo con respecto del emisor de la señal, menor es la tasa de extrusiones linguales). Esto sugiere que los machos de *L. monticola* pueden estimar la talla de sus conespecíficos a partir de señales químicas únicamente, y que las asimetrías en la talla de los machos podrían ocurrir incluso en ausencia del emisor. Así, podría tratarse simplemente de una correlación entre la talla y las concentraciones relativas de los componentes químicos de los excrementos y las secreciones femorales. Por ejemplo, en *D. dorsalis*, los patrones electroforéticos de las proteínas de las glándulas femorales difieren consistentemente entre los individuos (ALBERTS, 1990). Esta diferencia en las concentraciones de los compuestos químicos podría ser usada para estimar la condición física y la habilidad competitiva del emisor. El coste que
Discriminación de familiares y no familiares

supondría encontrar a un macho que ha depositado la marca química va a depender tanto de la habilidad competitiva del emisor como del receptor (GOSLING ET AL., 1996a, b). De manera que cuando un macho grande detecta a un posible oponente de pequeño tamaño, no sería necesaria más información sobre el macho detectado ya que la probabilidad de éxito en una interacción agonística es mayor para el macho grande. En contraste, cuando un macho es de menor tamaño que el emisor, éste podría requerir más información sobre el otro macho, y por lo tanto una tasa de extrusiones linguales más alta, para decidir si evitar una posible interacción agonística con el oponente. Un estudio sobre las interacciones entre colonos juveniles de Anolis aeneus en condiciones naturales sugirió que los individuos menores eran capaces de evitar encuentros con individuos mayores con los cuales probablemente perderían la interacción (STAMPS, 1994) aunque no se mostró que esta capacidad dependiese de las señales químicas.

Los resultados de este capítulo muestran que los machos de L. monticola son capaces de discriminar entre marcas químicas procedentes de machos familiares y no familiares. Adicionalmente, en ausencia de los emisores, la respuesta comportamental depende del tamaño relativo de los machos conespecíficos o del grado de solapamiento espacial entre los individuos familiares. Estos resultados muestran que los machos de L. monticola discriminan al menos entre clases de individuos, lo cual es compatible con la posibilidad de reconocimiento individual. Gosling (1982, 1986) sugirió que el reconocimiento individual está combinado con la capacidad de aprender el estatus de los individuos conespecíficos a través de repetidos encuentros. En sistemas territoriales y jerarquías de dominancia, el reconocimiento individual puede ayudar a reducir la intensidad y la frecuencia de los encuentros agonísticos. Por lo tanto, la capacidad de los machos de L. monticola para discriminar entre individuos vecinos y no vecinos puede contribuir a reducir los costes de la agresión (MARLER y MOORE, 1988; 1989) y puede jugar un papel importante en la organización de su sistema social.
Discriminación de familiares y no familiares

Respuesta de los machos residentes frente a los excrementos de otros machos

En el presente experimento, la tasa total y la de extrusiones lingüales no dirigidas de los machos grandes a los excrementos de los machos no familiares fue más alta (aunque solo marginalmente significativa) que a los excrementos de los machos familiares. Estos resultados sugieren que al menos los machos grandes de *L. monticola* también pueden discriminar entre olores procedentes de los excrementos de conospecíficos familiares y no familiares.

Este experimento sugiere que, además de las secreciones femorales, los saurios pueden también ser capaces de discriminar entre individuos familiares y no familiares a partir de compuestos químicos de los excrementos. Sin embargo, la información procedente de los excrementos en este experimento podría ser incompleta. Así, en una situación natural los excrementos podrían actuar conjuntamente con otros estímulos químicos o con el estímulo visual natural (LÓPEZ *et al.*, 1998) que es perturbado al usar los algodones impregnados con los excrementos. Posiblemente por una de estas razones o por ambas las diferencias encontradas en este estudio no presentan una significación alta.

Los resultados de este estudio y el anterior son compatibles con la teoría del reconocimiento del “dear enemy” cuando los machos actúan como residentes (JAEGGER, 1981; QUALLS y JAEGGER, 1991). El estímulo químico de los olores de los machos no familiares podría provocar una mayor agresividad que el de los machos familiares. Tal comportamiento puede minimizar la energía gastada en el comportamiento agresivo y reducir la frecuencia de las interacciones entre vecinos. Otros estudios mostraron que los machos territoriales de la iguana del desierto, *Dipsosaurus dorsalis*, rápidamente
reaccionaron de forma agresiva hacia los machos no familiares, mientras que los vecinos fueron ignorados (GLINSKI y KREKORIAN, 1985). Además, cuanto mayor era la distancia entre dos machos, la probabilidad de despliegues agresivos mutuos aumenta y la latencia disminuye (GLINSKI y KREKORIAN, 1985). Un estudio de campo con individuos juveniles de *Anolis aeneus* demostró que los recién llegados eran atacados más rápidamente que los que ya eran residentes (STAMPS, 1987).

En este experimento, la latencia hasta la primera extrusión lingual en respuesta al estímulo control fue significativamente más larga que en respuesta al estímulo no familiar y marginalmente más larga que al estímulo familiar. Así, cuando el olor de un conespecífico estaba presente, los machos comenzaron con un comportamiento exploratorio antes que en presencia del agua. Este comportamiento podría permitir a los machos obtener información sobre otros individuos tan pronto como sea posible a partir de señales químicas. Por ejemplo, si un individuo está en desventaja en cuanto a la talla con respecto al donante de la señal debería retirarse del lugar rápidamente para evitar una posible lesión.

Las diferencias significativas entre las dos categorías de talla en la tasa total de extrusiones linguales en presencia del estímulo no familiar sugieren que la respuesta a las señales químicas puede depender de la talla absoluta (MATHIS y SIMONS, 1994). Este resultado concuerda con un estudio previo con *L. monticola* en el cual la talla absoluta influyó en la investigación quimiosensorial de los machos experimentales (LÓPEZ ET AL., 1998).

La tasa de extrusiones linguales dirigidas a los excrementos disminuyó con la diferencia entre la talla de los machos en presencia del estímulo familiar, pero no del no familiar. A partir de estos resultados nos encontramos con dos mecanismos posibles a través de los cuales la respuesta comportamental depende de la talla relativa. Un posible
Discriminación de familiares y no familiares

mecanismo es que los machos podrían usar información memorizada sobre la habilidad competitiva de los individuos familiares a partir de la experiencia previa (GOSLING ET AL., 1996b; JOHNSTON, 1993). Por otro lado, algunos estudios con ratones indican un mecanismo alternativo en el cual los intrusos podrían estimar su habilidad competitiva de forma innata si son mantenidos aislados y por lo tanto, sin experiencia previa con los competidores (GOSLING ET AL., 1996a, b).

Los excrementos podrían ser usados para marcar las áreas de campeo o los territorios. Además, los excrementos de *L. monticola* actúan como señales compuestas, presentan una distribución espacial agregada y están situados en sitios determinados. Esto puede conferir una ventaja porque estas características permiten que los excrementos sean localizados visualmente por los conespecíficos a una mayor distancia que si sólo actuase la señal química (LÓPEZ ET AL., 1998). Teniendo en cuenta el conjunto de los resultados de este experimento y de un estudio previo, la cuestión que surge es en que parte del área de campeo se encuentran los excrementos. La distribución espacial agregada de los excrementos (LÓPEZ ET AL., 1998) podría indicar que están localizados en el borde, tal y como se ha comprobado en algunos mamíferos (JOHNSON, 1973; KRUUK ET AL., 1984; MILLS y GORMAN, 1987; ALLEN ET AL., 1999), o que los machos marcarían más sus “core areas” que el resto del área de campeo.

Respuesta de los machos intrusos frente a los olores de machos conespecíficos

Los resultados de este experimento mostraron que la respuesta más fuerte (e.d. una tasa más alta de extrusiones linguales) fue dirigida al estímulo familiar. Este resultado concuerda con otro estudio en el que los individuos de *Podarcis hispanica*, que se introdujeron en un terrario que no era el suyo, emitieron un número
Discriminación de familiares y no familiares

significativamente mayor de extrusiones linguales ante estímulos químicos de individuos familiares (FONT y DESFILIS, 2000). También se observó una respuesta más agresiva hacia los machos familiares por parte de los machos no residentes del topillo Microtus pennsylvanicus (FERKIN, 1988). Sin embargo, como hemos visto en los experimentos anteriores, los machos residentes de L. monticola mostraron una tasa de extrusiones linguales mayor en presencia del estímulo no familiar (ARAGÓN ET AL., 2000; en prensa). Muchos estudios en los que los individuos son residentes, replican la relación entre los costes y los beneficios que favorece la defensa territorial (FOX y BAIRD, 1992). Sin embargo, son escasos los estudios que examinan la respuesta de los individuos experimentales como intrusos frente a olores de conespecíficos familiares y no familiares residentes tal y como se ha realizado en el presente estudio. Nuestros resultados sugieren que el balance entre los costes y los beneficios podrían diferir entre residentes e intrusos ya que los intrusos no tienen recursos que defender durante las pruebas. Estos resultados apuntan la necesidad de nuevos estudios para examinar la interacción en la respuesta de individuos residentes e intrusos frente a conespecíficos familiares y no familiares.

En el segundo periodo del experimento, el tiempo que los machos estuvieron intentando escapar fue significativamente mayor en los terrarios de los machos no familiares que en el de los familiares. Cuando un macho entra en un área desconocida y detecta el olor de un macho no familiar mediante señales químicas, posiblemente intentará escapar porque la probabilidad de éxito en un encuentro agonístico con el macho residente es baja. Si un individuo está en desventaja con el emisor de la señal debería retirarse de esa área rápidamente para evitar una posible lesión. De igual manera, cuando las salamandras terrestres (Plethodon cinereus) fueron colocadas en sustratos desconocidos, la disminución de la investigación química (“nose-tapping”) en presencia de feromonas puede haber sido el resultado del correspondiente incremento
Discriminación de familiares y no familiares

de la cantidad de tiempo empleado en escaparse (Tristram, 1977).

El hecho de que tanto la tasa total de extrusiones lingüales como la tasa de
movimiento decrecieron con el tiempo, indica que el comportamiento exploratorio de
los machos fue mayor durante los primeros diez minutos aproximadamente, tiempo que
probablemente es suficiente para que los individuos obtengan una parte importante de la
información a través de las señales químicas. Se obtuvieron resultados similares con el
eslizón ocelado, Chalcides ocellatus, cuya respuesta exploratoria en un terrario
desconocido se estabilizó a los diez minutos (Graves y Halpern, 1990).

Además, el hecho de que hubiese diferencias significativas entre las condiciones
en las extrusiones emitidas a las rocas, pero no al suelo, sugiere que los individuos
obtuvieron la información química a partir de los excrementos y/o las secreciones
femorales. Los excrementos de L. monticola son depositados en las rocas en sitios
específicos (ej. posiciones relativas elevadas en las rocas) (López et al., 1998), y las
observaciones de campo sugieren que los machos también depositan las secreciones
femorales en las rocas tal y como lo hacen otras especies (Alberts, 1989). Una
evidencia indirecta la encontramos en el caso de especies de los géneros Aporosaurus y
Tacydromus que viven en dunas o en la hierba respectivamente y cuyos poros femorales
están reducidos. Sin embargo, estos poros femorales están presentes en especies muy
próximas en ambos géneros y que viven en un sustrato sólido (Sound y Veith, 2000).

El hecho de que la respuesta al estímulo no familiar dependa de la talla relativa
corrobra la existencia de un mecanismo a través del cual los machos podrían estimar la
habilidad competitiva relativa de forma innata sin una experiencia previa con los
competidores (Gosling et al., 1996a, b). Sin embargo, cuando el residente es un macho
familiar el factor determinante podría ser probablemente otro tal como el grado de
familiaridad (e.d. experiencia previa) entre los individuos, pudiendo depender entonces
del porcentaje de solapamiento entre sus áreas de campeo. Por lo tanto, no podemos
Discriminación de familiares y no familiares

descartar el otro mecanismo posible en el cual los machos podrían usar información memorizada a partir de repetidos encuentros. Así pues, podrían ocurrir ambos mecanismos.

Estos resultados señalan la necesidad de nuevos estudios sobre el reconocimiento individual quimiosensorial teniendo en cuenta el grado de solapamiento espacial y temporal entre los individuos en condiciones naturales.
Capítulo 3.

EL PAPEL DE LA COLORACION INTRASEXUAL DICROMATICA EN LAS RELACIONES SOCIALES Y ESPACIALES

RESUMEN

En muchas especies los machos presentan una coloración llamativa que puede actuar en la competición intrasexual. La hipótesis de señalización del estatus predice que la coloración actúa como una señal que realiza la habilidad para la lucha del macho haciendo que su estatus sea fácilmente identificable. Así, los machos jóvenes subordinados normalmente retrasan el desarrollo de la coloración nupcial hasta una estación reproductora posterior y adoptan estrategias reproductoras alternativas. En los machos maduros de la lagartija serrana encontramos dos tipos de coloración, siendo los machos verdes mayores y de mayor edad que los machos marrones. Se realizó un trabajo de campo para estudiar el papel de la coloración de los machos en las relaciones espaciales y sociales. Se examinó el grado de solapamiento y el número de machos que solapan con el área de campeo y el “core area” de las lagartijas. También se analizó el resultado de las interacciones sociales. Nuestros resultados muestran que, aunque el tamaño de las áreas de campeo no varíe entre los machos de los dos tipos de coloración, los machos verdes presentan un área más exclusiva. Además, los machos verdes solaparon más extensivamente con las áreas de parejas potenciales, las cuales fueron custodiadas más intensamente por éstos. Por otro lado, los machos verdes, participaron y ganaron en más interacciones agonísticas lo que sugiere que son más competitivos.
Discriminación de familiares y no familiares

Estos resultados sugieren que la coloración verde puede actuar como una señal de estatus alto determinando las relaciones sociales y espaciales lo que podría contribuir a reducir la frecuencia e intensidad de los encuentros agresivos.

INTRODUCCIÓN

Los machos de muchas especies presentan una coloración llamativa que puede tener una función en la elección de pareja o en la competición intrasexual (ROHWER y EWALD, 1981; HARVEY y PARTRIDGE, 1982; BUTCHER y ROHWER, 1989). También los saurios tienen visión en color y producen señales cromáticas que actúan en un contexto social principalmente en el cortejo y en encuentros agresivos (revisado en COOPER y GREENBERG, 1992). Sin embargo, en muchas especies los machos jóvenes, aunque sexualmente maduros, retrasan el desarrollo de la coloración de cortejo hasta la siguiente estación reproductora (MARTÍN y FORSMAN, 1999). La hipótesis de la señalización de estatus predice que estos colores actuarían como una señal fiable que realza la habilidad competitiva de los machos y hace que su estatus sea fácilmente identificable para otros individuos (ROHWER, 1982; WHITFIELD, 1987). Esto ha sido sugerido en el lacértido Lacerta agilis (OLSSON 1994a, b) y en el iguánido Urosaurus ornatus (THOMPSON y MOORE, 1991; ZUCKER, 1994). Cuando dos machos están envueltos en un encuentro agonístico, una señal honesta de la habilidad para la lucha va a ser beneficiosa para ambos contrincantes porque cuando el resultado de unas interacciones costosas es predecible estas pueden ser evitadas modificando el propio comportamiento, por ejemplo mediante la huida antes de que la lucha tenga lugar (PARKER, 1974; MAYNARD SMITH, 1982; ENQUIST y LEIMAR, 1983). Los machos maduros pequeños de muchas especies adoptan estrategias alternativas diferentes a las
Discriminación de familiares y no familiares

de los machos grandes (ej. CARO y BATESON, 1986; KOPROWSKI, 1993). Así, los machos jóvenes no presentan una coloración llamativa indicando su estatus de subordinado. Estos machos pueden adoptar un comportamiento menos conspicuo y presentar una estrategia de apareamiento furtiva actuando como satélites.

Por otro lado, en experimentos que estudiaron la modificación del comportamiento y sus consecuencias ecológicas se ha encontrado que es más probable que los individuos de estatus social alto defiendan sus áreas de campeo frente a residentes o extraños que los individuos de estatus bajo (ej. STAMPS y EASON, 1989). Cuando se da un alto grado de solapamiento entre las áreas de campeo de los conospecíficos, esto debería suponer un coste. Es decir, la disminución de la exclusividad del área de campeo debería dar lugar a una disminución de la tasa de acumulación de recursos (ver BROWN, 1982; SCHOENER, 1983 para modelos teóricos, y STAMPS, 1984 para una demostración experimental). Sin embargo, las implicaciones de las diferencias intrasexuales en la coloración en las relaciones espaciales son bastante desconocidas.

Lacerta monticola es una especie excelente para estudiar el papel de la coloración como señal social ya que dentro de los machos sexualmente maduros de *L. monticola* se pueden encontrar dos fases de coloración diferente. Los machos pueden presentar coloración verde o marrón en toda la parte visible de su cuerpo, pero particularmente en la región dorsal, que también presenta contornos irregulares de manchas negras con una mayor densidad en los flancos (cf. PÉREZ-MELLADO, 1997). En contraste, la mayoría de las hembras son marrones, aunque unos pocos individuos pueden mostrar un tono verde, pero más claro en comparación con el de los machos. Los machos verdes tienden a ser más grandes que los marrones (ver resultados) y de mayor edad, sin embargo hay evidencias, basadas en la actividad espermatogénica, de
Discriminación de familiares y no familiares

que hay machos marrones son sexualmente maduros (Elvira y Vigal, 1985), como así lo apoya también el comportamiento de cortejo y los intentos de cópula (ver resultados). Si los machos pueden señalar su habilidad para la lucha a través de la coloración, este sería un mecanismo ventajoso para reducir la frecuencia de los encuentros agresivos.

En este capítulo se estudia el papel de la coloración dicromática en las relaciones sociales y espaciales entre los individuos de L. monticola. Se determinó el área de campeo, el “core area” y el grado de solapamiento entre las áreas de los machos marrones y verdes y hembras para estudiar la exclusividad en el uso del espacio de los machos frente a otros machos y su potencial de acceso a parejas potenciales. También se tomaron datos de los encuentros agonísticos entre machos y de las interacciones sexuales entre machos y hembras. De esta forma, se aborda un marco general de la organización social que incluye elementos de la ecología y el comportamiento lo que puede ser esencial para entender la socioecología de los saurios.

Bajo la asunción de que los machos verdes presentan una mejor habilidad para la lucha (los machos verdes son de mayor tamaño que los marrones), se esperaría que ganasen un mayor número de interacciones agonísticas, particularmente si la coloración verde realza la talla del rival. Se predice que si la coloración de los machos está involucrada en la señalización de estatus, los machos verdes presentarán un estatus social más alto. Los individuos con un estatus alto deberían tener un área más exclusiva. También los machos verdes deberían tener un mayor solapamiento con las áreas de las hembras y por lo tanto un mayor acceso a las parejas potenciales.

MATERIAL Y METODOS
Discriminación de familiares y no familiares

El trabajo de campo para este estudio se realizó en los meses de Mayo y Junio de 1998 en el Alto del Telégrafo. Se delimitó una parcela de 0.2 ha (50 X 40) la cual fue dividida en 20 cuadrantes de 100 m² cada una formando una cuadrícula. El tamaño de esta parcela nos permitió diferenciar entre residentes y transeúntes supervisando la actividad de las lagartijas más exhaustivamente (Rose, 1982). Se capturaron en total 58 machos y 44 hembras (Mayo, Junio y Julio) con un lazo corredizo de hilo, se pesaron con una pesola (machos: $\bar{X} + SE = 8.2 \pm 0.2$ g, rango = 5.7-10.0 g; hembras: 7.9 ± 0.2 g, rango = 6.5-9.5 g) y se midió la longitud de la cabeza a la cloaca (LCC) con una regla (machos: 70.0 ± 0.7 mm, rango = 61-79 mm; hembras: 72.3 ± 0.9 mm, rango = 67-81 mm). La madurez sexual de los individuos se estimó a partir de la LCC y sólo se marcaron los individuos maduros (LCC > 61 mm para los machos y > 67 mm para las hembras; Elvira y Vigal, 1985). Las lagartijas fueron sexadas mediante la extracción de los hemipenes cuando estaban presentes. Cada macho se asignó fácilmente a la categoría de “verde” o “marrón”. Las lagartijas fueron marcadas individualmente con marcas de pintura acrílica en el dorso y posteriormente fueron soltadas en el lugar de captura en menos de cinco minutos. Estas marcas tenían aproximadamente un diámetro de 5 mm para evitar que fuesen demasiado vistosas y no pareció afectar al comportamiento de los individuos (ver también Simon y Bissing, 1981). Las lagartijas se remarcaron cuando fue necesario y siempre antes de que las marcas desapareciesen. Durante los censos, se usaron prismáticos para observar a los individuos a distancia. Durante la primera semana de junio de 1999 se tomaron datos adicionales para estudiar si se dan cambios de coloración cuando las lagartijas crecen y para completar las observaciones de las interacciones sociales de 1998.
Discriminación de familiares y no familiares

Tamaño del área de campeo

Con el fin de determinar las áreas de campeo de las lagartijas, se tomó nota de la posición de cada individuo capturado o localizado con respecto a las marcas de la parcela en un sistema de coordenadas. Los censos se realizaron cada día, siempre que las condiciones atmosféricas permitiesen la actividad de las lagartijas, desde las 0800 hasta las 1600 h (hora solar). Para maximizar la independencia de los datos el intervalo de tiempo entre las localizaciones fue de una hora como mínimo. Durante los censos, se realizaron series de transectos paralelos pero no contiguos seleccionados al azar y la parcela fue cubierta totalmente varias veces cada día. El área de campeo de cada individuo fue definido por el polígono convexo que rodea los puntos en el mapa (ROSE 1982; CHRISTIAN y WALDSCHMIDT, 1984), que ha sido ampliamente utilizado como un método adecuado para medir el tamaño de las áreas de campeo (ROSE, 1982). Se incluyó un área de 100 m² en el borde de la parcela para obtener información sobre aquellos individuos con parte del área de campeo fuera ésta, reduciendo de esta manera un posible sesgo de debido al efecto borde. Se utilizó el programa Ranges V (LARKIN y HALKIN, 1994) para determinar el tamaño de las áreas y el grado de solapamiento entre los individuos.

Un estudio previo con la misma población mostró que aproximadamente diez localizaciones para los machos y seis para las hembras describen el 80% del área de campeo estimada con todas las localizaciones, y se consideró este como el número mínimo de localizaciones necesario para representar adecuadamente el tamaño del área de campeo en esta población (MARTÍN y SALVADOR, 1997). Así, en este trabajo, se utilizaron solo las áreas de campeo que cumplieron estos requisitos (número de localizaciones; machos: $\bar{X} \pm SE = 13.2 \pm 1.9$, rango = 10-54, $n = 28$; hembras: 7.5 ±
Discriminación de familiares y no familiares

1.1, rango = 6-28 \(n = 24 \). Además, los individuos con menos de tres localizaciones en días diferentes se consideraron transeúntes.

Para decidir el porcentaje de localizaciones que mejor definen el “core area” de un área de campeo, se examinaron las gráficas de utilización (FORD y KRUMME, 1979). Estas gráficas representan la media y el error estándar del tamaño de las áreas en función del porcentaje de las localizaciones que excluyen al resto más externo respecto del centro del área. Los centros de las áreas de campeo fueron determinados con el “kernel fix estimator” incluido en el programa RANGES V, que es equivalente al “Gaussian Kernel estimator” (WORTON, 1989) y es más robusto que la simple media aritmética. De esta manera, la varianza en el tamaño del área de campeo tiende a ser mínima en el porcentaje de localizaciones que excluye la mayoría de la actividad excursiva y, por otro lado, la discontinuidad de la pendiente de la gráfica es un indicador de cuántas localizaciones constituyen el “core area” volviéndose más suave cuando solo permanecen las localizaciones del “core area” (KENWARD y HODDER, 1996). Los resultados mostraron que las varianzas del tamaño de las áreas a intervalos del 10% fueron significativamente heterogéneas en machos \(F_{\text{max}} = 13057.06, P < 0.0001 \) y hembras \(F_{\text{max}} = 12967.13, P < 0.0001 \). Las gráficas de utilización tanto de los machos como de las hembras mostraron que la varianza en el área tiende a ser mínima con el 60% de las localizaciones (Fig. 3.1), siendo no homogénea al compararla con el área total (machos: \(F_{\text{max}} = 81.22, P < 0.0001 \); hembras: \(F_{\text{max}} = 38.95, P < 0.0001 \)). Por lo tanto, se definió operativamente el “core area” al área con el 60% de las localizaciones para los análisis posteriores.
Figura 3.1 - Gráfica de utilización de los machos (superior) y hembras (inferior) de *L. monticola* mostrando la media y el error estándar del tamaño del área en función del porcentaje de localizaciones que excluyen el resto de las localizaciones más alejadas del centro del área.
Discriminación de familiares y no familiares

Solapamiento entre áreas de campeo y “core areas”

Se determinó el grado de solapamiento entre individuos como el porcentaje del área de campeo o del “core area” de cada macho que solapaba con sus vecinos. Con el objeto de examinar si el grado de solapamiento con vecinos del mismo sexo varía entre machos verdes y marrones, se utilizaron ANOVAs de una vía comparando las diferencias entre el porcentaje medio de solapamiento en las áreas (áreas de campeo o “core areas”) pertenecientes a los machos verdes o marrones.

Para estimar el acceso a parejas potenciales, se usaron ANOVAs de una vía examinando la variación en el porcentaje medio de área solapada por los machos verdes y marrones con el área de campeo de cada hembra. Se llevó a cabo el mismo procedimiento para comparar el número de machos verdes y marrones que solaparon con el área de campeo de cada hembra. Los niveles de confianza para cada conjunto de tests fueron calculados utilizando el ajuste secuencial de Bonferroni propuesto por Rice (1995) para comparaciones múltiples (Chandler, 1995).

Exclusividad del área

Se predice que las “core areas” de los machos verdes deberían ser más exclusivas con respecto a sus correspondientes áreas de campeo totales que las de los machos marrones y las hembras. Se examinó indirectamente la exclusividad del “core area” relativa al área de campeo verificando el porcentaje medio de solapamiento con las áreas de los individuos del mismo sexo. El análisis de los datos se realizó utilizando ANOVAs de una vía.
Discriminación de familiares y no familiares

Actividad excursiva

Las lagartijas con una baja densidad de localizaciones fuera del “core area” mostrarían una disminución en el uso de ese espacio, lo que denota una actividad excursiva más allá del centro del área de campeo. Además, la discontinuidad de la pendiente de la gráfica de utilización podría corroborar los resultados. Se comparó la densidad de localizaciones del “core area” (número de localizaciones / tamaño del “core area”) con la densidad en el área del borde ((nº total de localizaciones – nº de localizaciones del “core area”) / (tamaño del área total – tamaño del “core area”)). Las diferencias entre la densidad del área del borde y el “core area” de los machos y las hembras se analizaron usando tests de Wilcoxon, y las diferencias entre la densidad del área del borde de los machos y las hembras se analizaron con el test de la U de Mann-Whitney (SIEGEL y CASTELLAN, 1988).

Interacciones agonísticas

Cuando se realizaban los transectos, se anotaron las interacciones agonísticas entre machos (persecuciones y luchas) y se identificaron los individuos que participaron en ellas siempre que fue posible. Las persecuciones fueron definidas como aquellas interacciones entre dos machos en las que un individuo corrió rápidamente hacia el otro con un despliegue agresivo provocando la huida del otro sin que se diese contacto físico, o tocando ligeramente los flancos del oponente. En cada caso, se consideró como ganador al perseguidor, y como perdedor al perseguido y expulsado. Las luchas (ataques con contacto físico) fueron observadas raramente. Se comparó el número total
Discriminación de familiares y no familiares

de interacciones agonísticas y el número de interacciones ganadas y perdidas por cada categoría de macho con lo esperado por una distribución binomial asumiendo que las frecuencias eran equiprobables para cada categoría de macho. Para verificar el efecto de la residencia o la familiaridad con el hábitat en el resultado de las interacciones agonísticas (STAMPS, 1987; 1994), se midieron las distancias entre la localización del encuentro agresivo y el centro de Kernel del área de campeo de cada macho. Para evitar un posible sesgo debido al efecto borde, se excluyeron aquellos individuos cuyo centro del área de campeo estaba más cerca del límite de la parcela que del lugar de la interacción. Se utilizó un test de la U de Mann-Whitney (SIEGEL y CASTELLAN, 1988) para examinar las diferencias entre los machos que ganaron y perdieron las interacciones. Se predice que los machos que ganaron las interacciones deberían estar más cerca del centro de su área de campeo que los que perdieron.

Interacciones intersexuales y custodia de hembras

Las interacciones intersexuales se definieron como las interacciones entre machos y hembras en las que el macho se aproximó lentamente a la hembra y comenzó a proyectar la lengua hacia su cola o al sustrato de alrededor. Posteriormente, el macho agarra y sacude la cola de la hembra con un suave mordisco cerca de la cloaca, y si la hembra está receptiva se produce la cópula. Para comparar el número de interacciones con las hembras por parte de los machos verdes y marrones se utilizó el test de la binomial de dos colas asumiendo frecuencias equiprobables para cada categoría de macho (SIEGEL y CASTELLAN, 1988). Además se anotó cuando los machos fueron vistos cerca de una hembra (a menos de 0.1 m y durante más de un minuto) lo que fue considerado operativamente como comportamiento de custodia de la hembra (“mate guarding”) (OLSSON y SHINE, 1998).
RESULTADOS

Resultados generales

La proporción de sexos que se encontró en la parcela de estudio no difirió de lo esperado para una distribución 1:1 asumiendo frecuencias equiprobables en cada sexo (58 machos vs 44 hembras; $\chi^2 = 1.92$, gl = 1, $P = 0.16$). Tampoco hubo diferencias en la proporción de las categorías de machos (30 verdes vs. 28 marrones; $\chi^2 = 0.06$, gl = 1, $P = 0.79$), ni tampoco al considerar solamente aquellos machos con el área bien representada (e.d. residentes; 16 verdes vs. 12 marrones; $\chi^2 = 0.57$, gl = 1, $P = 0.44$).

Aunque los rangos de la LCC de ambas categorías de machos solaparon (Fig. 3.2), los machos verdes tuvieron un promedio significativamente más alto en cuanto a LCC ($\bar{X} \pm SE = 73 \pm 1$ mm, rango = 67-78 mm; N = 30) que los machos marrones (67 ± 1 mm, rango = 61-79, N = 28; ANOVA de una vía: $F_{1.56} = 29.67$, $P < 0.0001$). Este resultado es similar considerando solo los individuos con el área representada adecuadamente ($F_{1.26} = 29.70$, $P < 0.0001$).

En el periodo reproductor del año siguiente, se volvieron a capturar 14 machos marcados el año anterior. De estos machos recapturados, todos los individuos asignados como machos verdes en 1998 permanecieron verdes en 1999 y todos los individuos asignados como machos marrones en 1998 habían pasado a presentar una coloración verde en 1999.
Figura 3.2 - Distribución de la frecuencia de tamaños (longitud de la cabeza a la cloaca) de los machos marrones y verdes de *L. monticola* capturados en el campo.
Discriminación de familiares y no familiares

Areas de campeo

El área de campeo de los machos fue significativamente mayor que el de las hembras (Mann-Whitney U test: \(Z = 3.80, P = 0.00014 \)), pero no hubo diferencias significativas entre el tamaño de las áreas de campeo de los machos verdes y los marrones \((Z = 0.88, P = 0.37) \) (Fig. 3.3a). De forma similar, el tamaño del “core area” de los machos fue significativamente mayor que el de las hembras \((Z = 3.59, P = 0.0003) \), pero no hubo diferencias significativas entre los machos verdes y marrones \((Z = 0.27, P = 0.78) \) (Fig. 3.3a). No se encontró una correlación significativa entre el tamaño del área de campeo y la LCC de cada hembra (correlación de rangos de Spearman: \(N = 24, r_s = 0.18, P = 0.39 \)) ni tampoco en el caso de los machos \((N = 28, r_s = 0.32, P = 0.41) \). Este resultado fue similar en los machos verdes \((N = 16, r_s = 0.14, P = 0.58) \) y marrones \((N = 12, r_s = -0.01, P = 0.98) \).

Solapamiento del área de campeo y del “core area” entre machos

El porcentaje medio de solapamiento por parte de los machos vecinos fue significativamente más alto en las áreas de campeo pertenecientes a los machos marrones que en las áreas de campeo pertenecientes a los machos verdes (ANOVA de una vía: \(F_{1,26} = 10.96, P = 0.0027 \); Fig. 3.3b). De forma similar, el grado de solapamiento fue significativamente mayor en las “core areas” pertenecientes a los machos marrones que en las pertenecientes a los machos verdes (ANOVA unifactorial: \(F_{1,26} = 4.81, P = 0.037 \)).
Discriminación de familiares y no familiares

a)

Figura 3.3 - a) Tamaño del área de campeo (100% de las localizaciones) y del “core area” (incluyendo el 60% de las localizaciones desde el centro) ($\bar{X} + 1SE$) de todos los machos, las hembras y de los machos verdes y marrones de *L. monticola*; b) Porcentaje de solapamiento ($\bar{X} + 1SE$) por parte de los vecinos del mismo sexo en las áreas de...
Discriminación de familiares y no familiares

campeo y “core areas” de las hembras y de los machos verdes y marrones de *L. monticola*.

Solapamiento del área de campeo entre machos y hembras

El porcentaje medio de solapamiento con las áreas de campeo de las hembras por parte de los machos verdes ($\bar{X} \pm SE = 53.4 \pm 4.8 \%$) fue significativamente mayor que el porcentaje de solapamiento por parte de los machos marrones ($\bar{X} \pm SE = 41.7 \pm 5.6 \%$; ANOVA de una vía de medidas repetidas: $F_{1,23} = 6.95, P = 0.014$). Además, el número de machos verdes que solaparon con cada hembra ($\bar{X} \pm SE = 5.9 \pm 0.5$) fue significativamente mayor que el número de machos marrones ($\bar{X} \pm SE = 4.2 \pm 0.4$; ANOVA de una vía de medidas repetidas: $F_{1,23} = 8.34, P = 0.008$).

Exclusividad del área

El porcentaje medio de solapamiento con el área de campeo de los machos verdes por parte de los machos vecinos fue significativamente más alto que con su correspondiente “core area” (ANOVA de una vía de medidas repetidas: $F_{1,15} = 6.96, P = 0.018$; Fig. 3.3b), mientras que no hubo diferencias significativas en el caso de los machos marrones ($F_{1,11} = 2.66, P = 0.13$). Tampoco hubo diferencias significativas en el grado de solapamiento entre hembras al comparar las áreas de campeo con sus correspondientes “core areas” ($F_{1,23} = 0.81, P = 0.37$).

Actividad excursiva

En los machos, la densidad de localizaciones fue significativamente más alta en
Discriminación de familiares y no familiares

el “core area” (1.14 ± 0.33 localizaciones/m²) que en el área del borde (0.11 ± 0.26 localizaciones/m²; test de Wilcoxon: \(Z = 4.6, P < 0.0001 \)). Este resultado fue similar en las hembras (“core area”: 2.92 ± 0.67 localizaciones/m²; área borde: 0.23 ± 0.05 localizaciones/m²; \(Z = 4.28, P < 0.0001 \)). Comparando la densidad en el área borde entre los sexos, ésta fue significativamente más alta en hembras que en machos (test de la U de Mann-Whitney: \(Z = 2.14, P = 0.03 \)). En concordancia con estos resultados, en los machos, la pendiente de la gráfica de utilización es más abrupta con las áreas borde que en el caso de las hembras (Fig. 3.1).

Interacciones agonísticas

El número de machos verdes que participaron en interacciones con otros machos en el campo fue significativamente mayor que el número de machos marrones (37 verdes vs. 21 marrones; test Binomial de dos colas: \(P < 0.05 \)). En once ocasiones los dos machos que participaron en las interacciones agonísticas fueron ambos verdes, en quince ocasiones uno era verde y el otro marrón, y solo en tres ocasiones ambos machos fueron marrones. Considerando solo las interacciones entre un macho verde y otro marrón, el número de machos verdes perseguidores (ganadores) fue significativamente mayor que el número de machos marrones (12 verdes vs. 3 marrones; test Binomial de dos colas, \(P = 0.035 \)).

La distancia desde el lugar de la interacción hasta el centro del área de campeo fue menor en los ganadores que en los perdedores (test de la U de Mann-Whitney: ganadores = 17, perdedores = 9, \(Z = -1.86, P = 0.06 \); Fig. 3.4). Además, la varianza de la distancia fue significativamente menor en los ganadores que en los perdedores (\(F_{\text{max}} = 7.53, P = 0.0004 \)).
Figura 3.4 - Distancia ($\bar{X} + 1SE$) desde el lugar de la interacción agonística hasta el centro del área de campeo de los machos de *L. monticola* de los ganadores y perdedores en las interacciones agonísticas.
Discriminación de familiares y no familiares

Interacciones intersexuales y custodia de hembras

Se observaron 16 cópulas o intentos de cópula; siendo el número de machos verdes que fueron vistos interaccionando con hembras marginalmente mayor que el número de machos marrones (12 verdes vs. 4 marrones; test Binomial de dos colas, \(P = 0.07 \)). Sin embargo, los resultados sugieren que los machos verdes y marrones podrían no tener el mismo éxito en la obtención de parejas porque de las seis cópulas con éxito (aquellas con introducción del hemipene y con una duración suficiente que presumiblemente permite la eyaculación), cinco fueron realizadas por machos verdes y solo una por un macho marrón. Aunque esta diferencia no fue significativa (test Binomial de dos colas, \(P = 0.22 \)). Por otro lado, el número de machos verdes observados custodiando a las hembras fue significativamente mayor que el número de machos marrones (16 verdes vs. 4 marrones; test Binomial de dos colas, \(P = 0.011 \)).

DISCUSION

Los resultados de la diferencia de tamaño entre ambas categorías de machos junto con los resultados del cambio de coloración indican que los machos de *L. monticola* presentan dos fases de coloración a lo largo de su ontogenia. Estos resultados concuerdan con los obtenidos en un estudio de campo con los machos del lacértido *Psammodromus algirus* (Díaz, 1993). De esta manera, los machos marrones de *L. monticola* de madurez sexual reciente adoptan cuando crecen una coloración verde que ya es permanente en los siguientes periodos reproductores.
Discriminación de familiares y no familiares

Solapamiento y defensa del área de campeo

No se encontraron diferencias en las áreas de campeo y las “core areas” de los machos verdes y marrones, sin embargo, los resultados del grado de solapamiento en el área de campeo y el “core area” mostraron que los machos verdes tienen áreas más exclusivas que los machos marrones. Estos resultados sugieren que la coloración en esta especie puede actuar como una señal social jugando un papel importante en las relaciones espaciales. La coloración puede jugar un papel importante a larga distancia ya que el tamaño podría ser difícil de estimar con precisión a distancia (MARTÍN y FORSMAN, 1999). El lagarto ágil, *L. agilis*, es bastante sensible al color de la región amarillo-verde, lo que corresponde a la coloración de su cuerpo (SWIEZAWSKA, 1949), por lo tanto esta sensibilidad puede también ocurrir en otras especies de lacértidos. Así, los machos grandes verdes pueden ser fácilmente percibidos en la distancia y serían capaces de expulsar a sus competidores evitando un encuentro agonístico potencialmente costoso para ambos competidores (MARTÍN y FORSMAN, 1999). Además, la habilidad para reconocer machos verdes puede permitir a los machos marrones (competitivamente inferiores) retirarse antes de ser localizados (COOPER y VITT, 1987). De forma similar, las “insignias” dorsales de los machos de *Urosaurus ornatus* pueden actuar señalando su estatus a larga distancia (ZUCKER, 1994).

Por otro lado, las “core areas” de los machos verdes son más exclusivas en relación con las áreas totales, mientras que esta diferencia no se encontró en el caso de los machos marrones ni en las hembras. Estos resultados junto con los del solapamiento del área de campeo y el “core area” sugieren que los machos verdes compiten por los recursos (alimento, refugios, parejas) excluyendo competidores potenciales de su área más utilizada (donde la densidad de localizaciones es más alta). Siendo el grado de
Discriminación de familiares y no familiares

solapamiento más bajo en el área de alta densidad donde la probabilidad de acceder a los recursos es mayor. Por otro lado, la densidad de localizaciones de los machos en el área borde es menor que la de las hembras sugiriendo una actividad excursiva esporádica que podría permitir a los machos incrementar su éxito reproductor al interaccionar con hembras adicionales.

El grado de solapamiento por parte de los machos verdes en las áreas de campeo de las hembras fue más alto que con los machos marrones. Además el número de machos verdes que solaparon con cada hembra fue mayor que el de machos marrones. En los saurios las hembras generalmente se aparean con los machos cuyo territorio solapa con el suyo (STAMPS, 1983), y es bastante probable que los machos que solapan con hembras más extensamente también se apareen con ellas más frecuentemente.

Interacciones sociales

De todas las interacciones agonísticas sólo dos fueron luchas y el resto fueron persecuciones sin contacto físico. Estudios previos han mostrado que las interacciones costosas tales como las luchas ocurren cuando se da una baja asimetría entre los dos oponentes respecto a su habilidad competitiva (MAYNARD SMITH, 1982; HUNTINGFORD y TURNER, 1987; STAMPS y KRISHNAN, 1994a). En un estudio de campo con *Anolis aeneus* se demostró que las diadas en las que se daban luchas durante el periodo de colonización daban lugar a áreas de campeo que no solapaban (STAMPS y KRISHNAN, 1997) y raramente derivaban en interacciones posteriores, mientras que aquellas que habían comenzado con persecuciones daban lugar a muchas interacciones posteriormente (STAMPS y KRISHNAN, 1998). En este estudio las observaciones provienen de una población natural donde las relaciones espaciales y sociales eran
Discriminación de familiares y no familiares

presumiblemente estables y previamente establecidas y, por lo tanto, luchas adicionales entre la misma pareja de machos deberían ser en la mayoría de los casos innecesarias y costosas.

Los resultados de las interacciones agonísticas entre machos indican que los machos verdes están mejor capacitados para la lucha que los machos marrones, lo que puede afectar a las relaciones espaciales. Otros estudios con saurios mostraron que los encuentros con un claro ganador y perdedor establecían relaciones de dominante-subordinado que eran raramente reversible posteriormente (STAMPS y KRISHNAN, 1994b). Además, los machos verdes participaron en más interacciones agonísticas que los marrones. Las observaciones del comportamiento en el campo de los juveniles de *A. aeneus* revelaron que aquellos individuos envueltos en luchas durante el periodo de colonización tenían más posibilidades de adquirir un estatus social alto y un área más exclusiva al final del periodo de colonización que los machos que no intervinieron en luchas (STAMPS y KRISHNAN, 1994b). Se puede aplicar una explicación similar en *L. monticola* sugiriendo que las persecuciones pueden actuar para mantener (no solo durante la colonización) un estatus social alto y un área exclusiva.

El análisis de las distancias entre el lugar de las persecuciones y el centro de Kernel del área de campeo mostraron que existe una tendencia a ganar las interacciones cuando los machos están cerca del centro de su área de campeo, sin embargo también influirían en el resultado de las interacciones otros factores tales como el estatus social y la habilidad competitiva. De hecho, la variabilidad de estas distancias fue mayor en los perdedores que en los ganadores. El efecto de la residencia podría ser importante para ganar las interacciones mientras que las interacciones perdidas no estaban influídas solamente por la distancia sino también por el estatus social. Así, la variabilidad en las interacciones perdidas reflejan que cuando un macho pierde una interacción, puede ser
Discriminación de familiares y no familiares

porque está lejos del centro de su área de campeo independientemente del estatus social o porque estaba cerca del centro de su área de campeo pero era un macho subordinado. Esto tiene sentido ya que el número de machos verdes ganadores fue mayor que el número de machos marrones. Un sistema similar de territorialidad estructurada en la dominancia también ha sido encontrado en peces (RUBESTEIN, 1981; FERNÁ, 1987), algunas aves (GIBSON, 1992) y otros saurios (STAMPS, 1978; 1983).

En conjunto, los resultados de este estudio demuestran que los machos verdes presentan un estatus social más alto y una mayor habilidad competitiva. La coloración brillante que señala la habilidad para la lucha de forma fiable debería ser costosa para ser evolutivamente estable tal y como se demostró con otros lacértidos (OLSSON, 1994a, b; MARTÍN y FORSMA, 1999). Los machos grandes de Lacerta agilis presentan en los flancos un área más grande de coloración verde brillante que los machos pequeños de madurez reciente, los cuales invierten menos energía en la producción de este tipo de pigmentos y en la participación de interacciones costosas. Sería demasiado costoso para los machos pequeños invertir la misma cantidad de energía y nutrientes en la coloración y en las interacciones agonísticas que para los machos grandes ya que los primeros también tienen que invertir energía en el crecimiento somático (OLSSON, 1994b). Los machos marrones de L. monticola son más pequeños y participan en menos interacciones costosas, por lo tanto, es muy probable que se de la misma situación en esta especie previniendo en los machos pequeños maduros el desarrollo de señales deshonestas.

Los resultados de las interacciones agonísticas de este y otros estudios previos sugieren que los machos verdes lucharon entre ellos para establecer un sistema de jerarquías de dominancia, porque tiene una clara relación con el éxito reproductor (MARTÍN y SALVADOR, 1993a). Sin embargo, el número de interacciones agonísticas
Discriminación de familiares y no familiares

entre machos verdes y marrones también fue alto, lo que sugiere una intensa competición entre ellos para acceder a las hembras. Normalmente estas interacciones eran iniciadas por los machos verdes que persiguieron a los marrones. Por otro lado, el número de machos verdes que fueron vistos interaccionando con hembras fue mayor, aunque sólo marginalmente significativo, que el número de machos marrones, lo que sugiere que, aunque los machos marrones también son sexualmente maduros, los machos verdes tienen un acceso mayor a las hembras. En otro estudio, también los machos de *Psammodromus algirus* con mayor área de coloración naranja en la cabeza fueron observados realizando más cortejos que los machos que tenían un área menor de coloración naranja (Díaz, 1993). Además, el número de machos verdes que fueron observados custodiando a las hembras fue significativamente mayor que el número de machos marrones. Aunque son necesarios nuevos estudios que analicen el resultado de las interacciones entre machos y hembras, los resultados señalan que los machos marrones subordinados podrían usar estrategias reproductoras alternativas tal y como ha sido sugerido en aves (Lyon y Montgomerie, 1986) y otros saurios (Olsson, 1994a; Baird y Timanus, 1998; Martín y Forsman, 1999). Las cópulas furtivas realizadas por fenotipos de individuos jóvenes o subordinados son típicamente una alternativa ontogénica a la de custodiar a las hembras. Sin embargo, los resultados de este y otros estudios sugieren que la oportunidad de cópulas exitosas por los machos marrones puede ser menor incluso en ausencia de los machos verdes ya que las hembras pueden rechazar los intentos de cópula por parte de los machos subordinados. Los machos marrones sólo tendrían éxito consiguiendo cópulas forzadas si fuesen capaces de anular la resistencia de la hembra (Martín y Salvador, 1993a; ver también Cooper y Vitt, 1987; Martín y Forsman, 1999 para otros saurios).
Capítulo 4.

ESTRATEGIA ESPACIAL Y TEMPORAL EN FUNCIÓN DE LA HABILIDAD COMPETITIVA

RESUMEN

En condiciones ambientales favorables los saurios no siempre están activos debido a que la actividad no solo supone un beneficio sino también un coste. El balance entre los costes y los beneficios debería cambiar en función de la habilidad competitiva o el estatus social de los machos. Se examinó en el campo la estrategia espacial y temporal de los machos machos maduros. Los machos verdes, que son de mayor tamaño, presentan un grado de solapamiento temporal mayor con las hembras y machos vecinos. Además los machos verdes tienen niveles de actividades conspicuas (moviéndose en espacios abiertos) más altos, actividades que son más costosas y arriesgadas, pero que maximizan el éxito reproductor. Por otro lado, los machos verdes presentan un tamaño del área de campeo, grado de solapamiento y número de vecinos mayor por la mañana que por la tarde. Estos resultados sugieren que los machos verdes acceden a los recursos en un periodo diario más corto lo que les permite reducir los costes derivados de actividades conspicuas. Sin embargo, en los machos marrones no se encontraron diferencias entre la mañana y la tarde. Esto sugirie que los machos marrones reducen los costes de los encuentros agonísticos evitando el solapamiento espacial y temporal con otros machos y realizando menos actividades conspicuas y teniendo que acceder a los recursos de una manera oportunista. Las estrategias alternativas pueden jugar un papel importante en las relaciones espaciales y podrían ayudar a estabilizar el sistema social.
INTRODUCCION

Generalmente se asume que la actividad de los saurios depende del ambiente térmico, el fotoperiodo y las características climáticas (SCHOENER, 1970; PORTER y TRACY, 1983; BEUCHAT, 1989; LABRA y ROSENMAN, 1992). Así, se asume que los saurios deberían estar activos siempre que las condiciones son favorables (PORTER ET AL., 1973), lo que les proporcionaría beneficios directos tales como la termorregulación, alimentación y apareamiento (HUEY, 1982) y beneficios indirectos como la defensa territorial y el establecimiento de relaciones sociales (ROSE, 1981). Sin embargo, existen estudios que defienden que la actividad también puede suponer un coste para los saurios, el cual podría ser reducido estando inactivo. La inactividad proporciona beneficios como son la disminución de la conspicuidad frente a los depredadores, una menor probabilidad de encuentros agonísticos al minimizar el solapamiento temporal entre los vecinos, y la conservación de energía y agua (SIMON y MIDDENDORF, 1976; ROSE, 1981; ADOLPH y PORTER, 1993; MARTÍN y SALVADOR, 1995). Por lo tanto, en contraste con lo que se apuntó en los primeros estudios (PORTER ET AL., 1973; SIMON y MIDDENDORF, 1976), los saurios no están siempre activos cuando las condiciones térmicas son favorables. Los patrones de actividad de un determinado individuo van a ser el resultado del balance entre los beneficios de la actividad versus la inactividad (MARTÍN y LÓPEZ, 2000a).

Por otro lado, la mayoría de los estudios han analizado sólo los patrones de actividad diarios y estacionales (SIMON y MIDDENDORF, 1976; ROSE, 1981; BEUCHAT, 1989; MARTÍN y SALVADOR, 1995; MARTÍN y LÓPEZ, 2000a), lo que puede explicar parte de la estrategia adaptativa de los saurios. Así, por ejemplo, los niveles de actividad de *L. monticola* dependen de la hora del día, pero los individuos subordinados disminuyen sus niveles potenciales de actividad para disminuir el coste de las actividades sociales (MARTÍN y LÓPEZ, 2000a). Sin embargo, queda por conocer cómo la hora del día afecta
las relaciones espaciales entre los vecinos del mismo sexo y del opuesto. El análisis de la variación temporal en el uso del espacio y el solapamiento espacial entre las áreas de campeo a lo largo del día puede ayudarnos a entender la estrategia adaptativa de los saurios con una mayor precisión. Se predice que la estrategia de actividad de los individuos va a depender de su habilidad competitiva, ya que el balance entre los costes y los beneficios debería variar en función de su estatus social. Así, los machos con un estatus bajo deberían tender a evitar un solapamiento temporal con los machos vecinos, mientras que los machos con un estatus alto podrían solapar temporalmente más con otros machos y hembras vecinas. Esta segregación del tipo de actividad o espacio-temporal entre machos sería un mecanismo ventajoso reducir la frecuencia de los encuentros agresivos.

En este capítulo, se examina en el campo el solapamiento temporal de los individuos con sus machos vecinos marrones y verdes (ver capítulo 3 para una descripción de la coloración). Además, se examinan las diferencias entre las actividades conspicuas y no conspicuas bajo la asunción de que la magnitud de los costes deberían ser diferentes para cada individuo. De esta manera, al estudiar las diferencias entre individuos activos se evita un posible efecto de confusión entre la actividad y la detectabilidad de los individuos. Por otro lado, se determinó la variación temporal a lo largo del día de las áreas de campeo y del grado de solapamiento entre las áreas de los machos verdes y marrones y de las hembras para estudiar la exclusividad de las áreas de los machos frente a otros machos y su acceso a parejas potenciales. Adicionalmente, partiendo de los datos de 1998 se llevaron a cabo seguimientos focales de los machos verdes y marrones y de las hembras en Junio del año 2000 para estudiar los cambios en los patrones de actividad locomotora a lo largo del día y entre estaciones.
MATERIAL Y MÉTODOS

Metodología general

Con el fin de determinar las áreas de campeo de las lagartijas y su solapamiento espacial y temporal, se tomó nota de la posición de cada individuo en la parcela previamente delimitada (ver capítulo 3 para más detalles). Los censos se realizaron cada día durante Mayo y Junio de 1998, desde las 0800 hasta las 1800 h (hora solar).

Solapamiento temporal

Una vez determinadas las relaciones espaciales entre los individuos se examinó la variación en el solapamiento temporal en días entre los vecinos (aquellos cuyas áreas de campeo solapaban). Se utilizó un ANOVA de una vía de medidas repetidas para comparar el número medio de días que coincidía cada macho con sus vecinos verdes y marrones. Además, con el objeto de estimar el acceso de los machos a las parejas potenciales se utilizó un ANOVA de una vía de medidas repetidas para comparar el número de días que cada hembra estaba activa simultáneamente con sus machos vecinos verdes y marrones. Los individuos con ausencia de una o las dos categorías de machos vecinos no fueron incluidos en el diseño de medidas repetidas.

Tipos de actividad

Cuando los individuos eran vistos se anotó también el tipo de actividad. Cada observación de la actividad fue incluida en una de estas dos categorías; actividades
conspicuas (AC) en las que los individuos estaban moviéndose (andando, cortejando, cazando o participando en persecuciones) en espacios abierto como rocas, hierba o sobre arbustos; las actividades no conspicuas (ANC) fueron aquellas realizadas a cubierto, principalmente bajo arbustos (en reposo o moviéndose despacio).

Para examinar si los niveles de actividad variaban entre las categorías de la coloración de los machos (verdes y marrones) y el tipo de actividad, se realizó una ANOVA de dos vías de medidas repetidas comparando las diferencias entre los niveles de actividad (“between-subjects factor”) y, por otro lado, las diferencias entre los niveles de AC y ANC para cada macho (“within-subjects factor”). Las diferencias entre las categorías de machos en los tipos de actividad se estimaron \textit{a posteriori} usando el test de Tukey de la diferencia significativa honesta (HSD). Se predice que los machos verdes deberían emplear más tiempo en AC, que son más costosas y arriesgadas, que los machos marrones. También se utilizó una ANOVA de una vía de medidas repetidas para comparar los niveles de AC y ANC en las hembras.

\textbf{Variación temporal en el tamaño y en el solapamiento de las áreas de campeo}

Las estimaciones de las áreas de campeo se dividieron en dos periodos diarios, por la mañana (entre las 0800 y las 1300 h GMT) y por la tarde (entre las 1300 y las 1800 h GMT), para estimar si hay diferencias en los patrones del uso del espacio a lo largo del día. Se llevó a cabo el mismo esfuerzo de muestreo en ambos periodos. Los individuos con menos de tres localizaciones en días diferentes se consideraron transeúntes y no se incluyeron en el análisis. Para examinar si el tamaño del área de campeo variaba entre los periodos de mañana y tarde en los machos verdes y marrones y en las hembras, se utilizó el test de Wilcoxon de muestras emparejadas.
Discriminación de familiares y no familiares

Se determinó el grado de solapamiento entre los individuos residentes como el porcentaje del área de campeo de cada individuo solapada por sus vecinos. Se usó el test de Wilcoxon de muestras emparejadas para comparar entre los periodos de mañana y tarde el porcentaje medio de área solapada en el área de campeo de cada individuo por los vecinos del mismo sexo y del opuesto. Se siguió el mismo procedimiento para analizar el número de individuos que solaparon con cada área de campeo.

Tiempo empleado desplazándose y distancia recorrida

Durante la primera semana de Junio del 2000 se realizaron observaciones focales de los machos verdes y marrones y de las hembras. Se siguieron los individuos que se iban encontrando al realizar transectos al azar. Dado el gran tamaño del área cubierta (más de 5 Km²), la alta densidad de lagartijas, y debido a que se evitaron las rutas tomadas previamente, la probabilidad de tomar una muestra del mismo individuo fue muy baja. Por lo tanto se tomaron las medidas como independientes. Cada lagartija fue seguida durante cinco minutos a una distancia aproximada de 5 m para evitar molestarlas y se usaron prismáticos cuando fue necesario. Se tomó nota del tiempo empleado desplazándose y de la distancia máxima recorrida por cada individuo. Los seguimientos fueron interrumpidos cuando la lagartija estaba fuera de la vista durante más de 30 segundos o el comportamiento estaba afectado por la presencia del observador. Los machos verdes y marrones y las hembras maduras fueron fácilmente identificables, sin embargo los individuos fueron capturados al final de la observación siempre que fue posible para determinar el sexo y medir su LCC. El sexo y el estatus reproductor de todos los individuos capturados coincidió con el que se había asignado a priori. Los datos fueron tomados en dos periodos (mañana y tarde) para examinar la variación a lo largo
Discriminación de familiares y no familiares

del día. Las observaciones del primer periodo fueron tomadas desde las 0900 hasta las 1100 h (hora solar) y las del segundo periodo desde las 1500 hasta las 1700 h (hora solar). Se utilizaron ANOVAs de dos vías (SOKAL y ROHLF, 1995) para comparar el tiempo empleado desplazándose y la distancia máxima recorrida entre los machos verdes, machos marrones y hembras y entre ambos periodos. Las diferencias se evaluaron usando el test de Tukey de la diferencia significativa honesta (HSD) para un tamaño de muestra desigual.

RESULTADOS

Solapamiento temporal

Los machos tuvieron un solapamiento temporal significativamente más alto con los machos vecinos verdes que con los marrones (ANOVA de una vía de medidas repetidas: $F_{1,24} = 28.76$, $P < 0.0001$; Fig. 4.1). Además, los machos verdes coincidieron con las hembras vecinas un número medio de días significativamente mayor que los machos marrones (ANOVA de una vía de medidas repetidas: $F_{1,18} = 11.30$, $P = 0.003$).

Tipos de actividad

Los machos verdes presentaron unos niveles de actividad significativamente superiores a los de los marrones (ANOVA de dos vías de medidas repetidas: between-subjects factor, $F_{1,36} = 5.12$, $P = 0.03$; Fig. 4.2), los niveles de AC fueron significativamente mayores que los de ANC (within-subjects factor, $F_{1,36} = 8.18$, $P = 0.007$), y la interacción fue significativa ($F_{1,36} = 5.09$, $P = 0.03$). Así, los niveles de AC
Figura 4.1 - Solapamiento temporal en días ($\bar{X} \pm 1SE$) de los machos y las hembras de *L. monticola* con los machos vecinos verdes (VV) y marrones (VM) correspondientes.
Figura 4.2 - Niveles de actividades conspicuas (AC) y no conspicuas (ANC) ($\bar{x} \pm 1SE$) en los machos verdes y marrones y en las hembras de *L. monticola*.
Discriminación de familiares y no familiares

de los machos verdes fueron significativamente más altos que los de los machos marrones ($P < 0.0001$) y no hubo diferencias significativas entre los niveles de ANC de ambas categorías de machos ($P = 0.58$). Los niveles de AC fueron significativamente más altos que los de ANC en los machos verdes (Tukey’s HSD test: $P < 0.005$), mientras que no hubo diferencias significativas en los machos marrones ($P = 0.97$). En contraste, los niveles de AC de las hembras fueron significativamente más bajos que los niveles de ANC (ANOVA de medidas repetidas de una vía: $F_{1,31} = 5.00, P = 0.03$; Fig 4.2).

Variación temporal en el tamaño del área de campeo

El tamaño del área de campeo de los machos verdes fue significativamente mayor en el periodo de mañana que en el de la tarde (test Wilcoxon de muestras emparejadas: $Z = 1.98, P < 0.05$; Fig. 4.3), pero no hubo diferencias significativas en los machos marrones ($Z = 0.66, P = 0.50$) ni en las hembras ($Z = 0.74, P = 0.45$).

Variación temporal en el solapamiento de las áreas de campeo

En los machos, hay una correlación significativa entre el porcentaje medio de solapamiento con las hembras y con los machos (correlación de Pearson: $r = 0.50, F_{1,23} = 7.74, P = 0.01$). Además, hay una correlación significativa entre el número de machos y hembras que solapan (correlación de Pearson: $r = 0.77, F_{1,23} = 33.14, P < 0.0001$). En las hembras, no hubo correlación entre el porcentaje medio de solapamiento con los machos y con las hembras (correlación de Pearson: $r = -0.27, F_{1,19} = 1.45, P = 0.24$) y la relación entre el número de machos y hembras que solapan es sólo marginalmente significativa (correlación de Pearson: $r = 0.45, F_{1,19} = 4.76, P = 0.04$).
Discriminación de familiares y no familiares

Figura 4.3 - Tamaño del área de campeo ($\overline{X} \pm 1SE$) de los machos verdes y marrones y de las hembras de *L. monticola* en los periodos de mañana (M) y tarde (T).
Discriminación de familiares y no familiares

El porcentaje de solapamiento por parte de los machos en las áreas de campeo de los machos verdes fue significativamente más alto en el periodo de mañana que en el de tarde (test Wilcoxon de muestras emparejadas: \(Z = 2.66, P = 0.007 \); Fig. 4.4a), aunque no hubo diferencias significativas en los machos marrones (\(Z = 0.15, P = 0.87 \)) ni tampoco en el grado de solapamiento de las hembras con hembras (\(Z = 0.92, P = 0.35 \)). Además, este grado de solapamiento en el periodo de tarde fue significativamente más alto en los machos marrones que en los verdes (test de la \(U \) de Mann-Whitney: \(Z = -2.66, P = 0.007 \)). También el número de machos que solaparon con los machos verdes fue significativamente mayor en el periodo de mañana que en el de tarde (test de Wilcoxon de muestras emparejadas: \(Z = 2.07, P = 0.038 \); Fig. 4.4b), pero no hubo diferencias significativas en los machos marrones (\(Z = 0.61, P = 0.54 \)), ni en el número de hembras que solaparon con cada hembra (\(Z = 0.51, P = 0.95 \)).

El número de hembras que solaparon con los machos verdes fue significativamente mayor en el periodo de mañana que en el de tarde (test de Wilcoxon de muestras emparejadas: \(Z = 1.95, P = 0.05 \); Fig. 4.5b), pero no hubo diferencias significativas en los machos marrones (\(Z = 0.59, P = 0.55 \)). De forma similar, en los machos verdes el porcentaje de solapamiento con las hembras tiende a ser más alto, pero no significativamente, en el periodo de mañana que en el de tarde (test de Wilcoxon de muestras emparejadas: \(Z = 1.41, P = 0.15 \); Fig. 4.5a), y no hubo diferencias significativas en los machos marrones (\(Z = 0.05, P = 0.95 \)).
Figura 4.4 - a) Porcentaje de solapamiento ($\bar{X} \pm 1SE$) en los periodos de mañana (M) y tarde (T) en las áreas de campeo de los machos verdes y marrones y de las hembras de *L. monticola* por parte de los vecinos del mismo sexo; b) Número de vecinos del mismo sexo de los machos verdes y marrones de *L. monticola* ($\bar{X} \pm 1SE$) en los periodos de mañana (M) y tarde (T).
Discriminación de familiares y no familiares

a)

Figura 4.5 - a) Porcentaje de solapamiento ($\overline{X} \pm 1SE$) en los periodos de mañana (M) y tarde (T) con los machos verdes y marrones de *L. monticola* por parte de las hembras vecinas; b) Número de hembras vecinas ($\overline{X} \pm 1SE$) de los machos verdes y marrones de *L. monticola* en los periodos de mañana (M) y tarde (T).
Discriminación de familiares y no familiares

Distancia recorrida y tiempo empleado desplazándose

El tiempo empleado desplazándose difirió entre las categorías de lagartijas (machos verdes y marrones y hembras) (ANOVA de dos vías: \(F_{2,117} = 45.69, P < 0.0001 \)), entre los periodos de mañana y tarde (\(F_{1,117} = 46.00, P < 0.0001 \)) y la interacción fue significativa (\(F_{2,117} = 24.03, P < 0.0001 \); Fig. 4.6a). En el primer periodo, el tiempo empleado desplazándose por los machos verdes (N = 23) fue significativamente mayor que el empleado por los machos marrones (N = 20), y por las hembras (N = 20) (test de Tukey HSD para N desiguales: \(P < 0.0001 \) en ambos casos). No hubo diferencias significativas entre las categorías de lagartijas en el segundo periodo (Machos verdes: N = 19; Machos marrones: N = 19; Hembras: N = 21) (\(P > 0.10 \) en todos los casos). El tiempo empleado desplazándose por los machos verdes fue significativamente mayor en el primer periodo que en el segundo (\(P = 0.0001 \)), pero no hubo diferencias significativas en los machos marrones ni en las hembras (\(P > 0.98 \) en ambos casos).

Por otro lado, la distancia máxima recorrida también difirió entre las categorías de lagartijas (ANOVA de dos vías: \(F_{2,117} = 46.00, P < 0.0001 \)), entre los periodos (\(F_{1,117} = 41.19, P < 0.0001 \)), y la interacción fue significativa (\(F_{2,117} = 19.19, P < 0.0001 \); Fig. 4.6b). En el primer periodo esta distancia fue significativamente mayor en los machos verdes que en los machos marrones y que en las hembras (test de Tukey HSD para N desiguales: \(P = 0.0001 \) en ambos casos). Además, también en el primer periodo, fue significativamente mayor en los machos marrones que en las hembras (\(P = 0.02 \)). No hubo diferencias significativas entre las categorías de lagartijas en el segundo periodo (\(P > 0.05 \) en todos los casos). En los machos verdes esta distancia fue significativamente mayor en el primer periodo que en el segundo (\(P < 0.0001 \)), sin embargo, no hubo diferencias significativas en los machos marrones ni en las hembras (\(P > 0.73 \) en ambos
Discriminación de familiares y no familiares

casos).

Figura 4.6 - a) Tiempo empleado desplazándose (\(\bar{X} \pm 1SE \)) durante observaciones focales de cinco minutos en los machos verdes y marrones y en las hembras de *L. monticola* en el primer (desde 0900 hasta 1100 (hora solar)) y segundo periodo (desde 1500 hasta 1700); b) Distancia máxima recorrida (\(\bar{X} \pm 1SE \)) durante observaciones focales de cinco minutos en los machos verdes y marrones y en las hembras de *L.*
Discriminación de familiares y no familiares

monticola en el primer y segundo periodo.

DISCUSION

Solapamiento temporal y tipos de actividad

El número medio de días que coincidió cada macho con sus machos vecinos verdes fue mayor que con sus machos vecinos marrones. Así, al estar inactivos o realizar actividades menos conspicuas los machos marrones pueden reducir la probabilidad de coincidir con otros machos vecinos e incurrir en interacciones agonísticas lo que supondría un riesgo de lesión. En contraste, los machos verdes son de mayor tamaño y la probabilidad de éxito en una interacción agonística es mayor, lo que les permite ser más activos y, por lo tanto, tener un solapamiento temporal mayor con los machos vecinos. Esta situación puede permitir a los machos verdes incrementar su éxito reproductor, porque el hecho de estar más activos también da lugar a un solapamiento temporal con las hembras mayor que en el caso de los marrones.

Comparando los tipos de actividad de los individuos se encontró que los machos verdes emplean más tiempo en AC que en ANC, y más tiempo en AC que los machos marrones. Para los machos verdes, los beneficios de los niveles altos de AC podrían ser la defensa territorial, mantenimiento del estatus social y el incremento del acceso a las parejas potenciales. Debido a que las hembras de *L. monticola* tienen tasas de movimiento más bajas y usan más la estrategia de forrajeo “sit-and-wait” (Martín y Salvador, 1997), los machos verdes podrían desplazarse del centro de actividad de una hembra al de otra tal y como ha sido sugerido en los machos de *Sceloporus virgatus* (Rose, 1981). Los beneficios del mantenimiento de la actividad reproductora excederían los costes para los machos verdes pero no para los machos marrones. Los machos de alta
calidad que son capaces de emplear más tiempo en AC, podrían ser también más eficientes evitando a los depredadores (Martín y López, 2000a). Los costes de AC pueden ser mayores para los machos marrones, previniendo así, unos niveles altos de AC ya que también tienen que distribuir la energía en el crecimiento somático (Olsson, 1994b). Unos niveles bajos de AC pueden ser ventajosos para los machos marrones porque así se reducen los costes de los encuentros agonísticos (Cooper y Vitt, 1987), el riesgo de depredación (Magnhagen, 1991) y el coste de mantenimiento de la actividad a altas temperaturas (Rose, 1981). De esta manera los machos marrones incrementan la probabilidad de supervivencia para aparearse en las estaciones reproductoras futuras cuando pasen a ser machos de un estatus más alto.

Es interesante, el hecho de que en las hembras los niveles de ANC son más altos que los de AC. Esto puede permitir a las hembras invertir más energía en el desarrollo de los huevos y en el crecimiento, el cual está correlacionado con el tamaño de la puesta (Andrews y Rand, 1974; Lister y Aguayo, 1992), y, por otro lado, reduciendo el riesgo de depredación, aumenta la probabilidad de reproducirse en el futuro. Esto podría ser también una estrategia favorable de elección pasiva de pareja porque esta distribución en la que se da una mayor proporción de tiempo en ANC y el hecho de que las distancias recorridas sean menores que en los machos, podría permitir a las hembras seleccionar pasivamente como parejas a los machos grandes y verdes que sean capaces de localizarlas. Si las hembras permanecen sin desplazarse grandes distancias en las áreas de marcadas por los machos de alta calidad (Martín y López, 2000b), la probabilidad de que los machos verdes las encuentren sería mayor que para los machos marrones, los cuales están más tiempo a cubierto, menos tiempo desplazándose y recorren menores distancias. Los machos verdes invierten más tiempo y energía desplazándose en espacios abiertos lo que les permite trasladarse de un arbusto a otro donde permanecen las
Discriminación de familiares y no familiares

hembras. Sin embargo si una hembra emplease más tiempo en desplazarse aumentaría la probabilidad de encontrarse con un macho marrón que permanece inmóvil pudiendo darse una cópula forzada.

Variación temporal en el tamaño y en el solapamiento de las áreas de campeo

Los resultados de este trabajo muestran que los beneficios de solapar con las hembras en términos de éxito reproductor (STAMPS, 1983) también supone el coste de solapar con los machos competidores. Si los costes son mayores para los machos marrones éstos podrían ser reducidos realizando menos AC, empleando menos tiempo en desplazarse y recorriendo distancias menores que los machos verdes. Sin embargo, tales mecanismos también resultan en una reducción de los beneficios (acceso a las hembras). En cualquier caso, los costes de AC y desplazamiento en los machos marrones excederían los beneficios porque las hembras podrían rechazar los intentos de cópula por parte de los machos marrones (MARTÍN y SALVADOR, 1993a, ver también COOPER y VITT, 1987, MARTÍN y FORSMAN, 1999 para otros saurios).

Por otro lado, aunque los machos verdes son capaces de hacer frente a las interacciones agonísticas, esto también supone un coste en tiempo, energía y riesgo de depredación, por lo tanto debería ser ventajoso una estrategia para reducir los costes pero no los beneficios.

Los machos verdes presentan un área de campeo de mayor tamaño, un grado de solapamiento mayor y un número mayor de machos que solapan con ellos en el periodo de mañana que en el de tarde. Esto puede ser debido a que los machos verdes emplean más tiempo desplazándose y recorriendo mayores distancias en el periodo de mañana que en el de tarde. Sin embargo, no se encontraron diferencias entre ambos periodos en los
Discriminación de familiares y no familiares

máchos marrones ni en las hembras. De forma similar, gran parte de la actividad de los adultos de *S. jarrovi* ocurre por la mañana mientras la mayoría de la actividad de los juveniles ocurre por la tarde (Simon y Middendorf, 1976). Los resultados de este estudio sugieren que los machos verdes presentan una actividad excursiva alta por la mañana. Son capaces de asolearse, alimentarse y aparearse en un periodo corto porque tienen prioridad de acceso a los recursos frente a los machos marrones. En contraste, los machos marrones tienen que dispersar su actividad debido a que acceden a los recursos, especialmente a las parejas potenciales, sólo cuando tienen la oportunidad. Por ejemplo, en un estudio previo se sugirió que los machos subordinados de *L. monticola* podrían usar tácticas de reproducción alternativas (Martín y López, 2000a) tal y como se ha propuesto en otros saurios (Olsson, 1994a; Baird y Timanus, 1998; Martín y Forsman, 1999) y en aves (Lyon y Montgomerie, 1986). Así, los machos marrones podrían realizar cópulas furtivas con las hembras más cercanas forzándolas (Martín y Salvador, 1993a, Cooper y Vitt, 1987).

En resumen, este estudio muestra que los machos verdes y marrones tienen estrategias de actividad diferentes, lo que parece estar relacionado con sus habilidades competitivas relativas. Los machos verdes dominantes pueden optimizar estrategia de actividad para maximizar el éxito reproductor, mientras que los machos marrones podrían tener que reducir los costes de los encuentros agonísticos evitando el solapamiento temporal y espacial con otros machos y realizando menos actividades conspicuas. Estas tácticas alternativas de los machos marrones parece que podrían ser una estrategia evolutivamente estable donde los machos jóvenes subordinados hacen lo que se conoce como “making the best of a bad job”. El uso de estrategias alternativas pueden jugar un papel importante en las relaciones espaciales y podrían contribuir a estabilizar el sistema social.
Estrategias en función de la estacionalidad

Capítulo 5.

CAMBIOS ESTACIONALES EN LA ACTIVIDAD Y LAS RELACIONES ESPACIALES

RESUMEN

Se llevó a cabo un trabajo de dos años para estudiar el efecto de la estacionalidad y los beneficios netos en el comportamiento de las lagartijas. Se observó el comportamiento agresivo y de apareamiento, las relaciones espaciales y la actividad de individuos marcados durante los periodos reproductor y no reproductor. En los machos de esta especie, el número de hembras que solapan con ellos aumenta con el número de machos que solapan, lo que supone un beneficio en cuanto a oportunidades de apareamiento pero también el coste que suponen las interacciones agonísticas con otros machos. Las interacciones agonísticas, actividad, áreas de campeo y número de vecinos del mismo sexo disminuyeron según se acercaba la estación no reproductora en los machos pero no en las hembras. Además, el número de hembras que solaparon con las áreas de campeo de cada macho fue mayor en la estación reproductora que en la no reproductora. Las medidas de las temperaturas obtenidas en el área de estudio fueron favorables para la actividad de las lagartijas, por lo tanto, los cambios estacionales no son explicados por las temperaturas del ambiente. Estos resultados sugieren que el balance entre los beneficios y los costes cambia estacionalmente en los machos pero no en las hembras y que los encuentros agonísticos están relacionados con el éxito reproductor.
INTRODUCCION

Para un saurio estar activo supone beneficios (ver capítulo 4) pero también costes de depredación (MAGNHAGEN, 1991) o encuentros agonísticos (MARTÍN y LÓPEZ, 2000a). La inactividad puede ser adaptativa ya que si los saurios reducen su actividad, estos costes también se reducen (ROSE, 1981; MARTÍN y LÓPEZ, 2000a).

La mayoría de los estudios sobre la respuesta de los saurios a los cambios estacionales examinan las diferencias entre el periodo favorable y el no favorable después de cambios estacionales importantes que derivan en una climatología severa (ej. FLEMING y HOOKER, 1975; LISTER y AGUAYO, 1992; SOUND y VEITH 2000). Sin embargo, los cambios en el comportamiento en el paso de la época reproductora a la no reproductora dentro de un mismo periodo con condiciones favorables para la actividad han sido poco estudiados. Por otro lado, los cambios estacionales en el comportamiento de los lacértidos dependen, al menos en parte, del sistema circadiano endógeno (FOÀ ET AL., 1994; INNOCENTI ET AL., 1994). El estudio de los cambios estacionales en la agresividad que van ligados a cambios en el comportamiento reproductor puede ayudar a comprender el significado adaptativo de la agresión o la territorialidad.

En los saurios las hembras generalmente se aparean con los machos cuya área solapa con ellas (STAMPS, 1983). Así, los machos amplían sus áreas de campeo para incrementar el número de hembras que solapan y el grado de solapamiento con éstas, pero en L. monticola, esto conlleva también un incremento del grado de solapamiento y del número de machos competidores con los que solapan (ver resultados y capítulo 4). Cuando existe un número alto de machos que solapan y un grado de solapamiento alto entre las áreas de los machos conespecíficos, esto podría ser costoso ya que aumenta la probabilidad de incurrir en interacciones agonísticas. En este contexto, el balance entre los costes y los beneficios de un determinado tamaño del área de campeo debería ser
diferente en la estación reproductora y en la no reproductora. Por lo tanto, ya que en la estación no reproductora los costes excederían los beneficios sería ventajoso un mecanismo para reducir estos costes.

Este capítulo examina las diferencias estacionales de ambos sexos en las interacciones sociales, tamaño del área de campeo, relaciones espaciales y actividad. Las predicciones son (1) el comportamiento agonístico en *L. monticola* está relacionado con el éxito reproductor y (2) según decrece el comportamiento de apareamiento, la actividad y las relaciones espaciales también disminuyen en los machos.

MATERIALES Y METODOS

Relaciones espaciales y actividad

Para determinar las áreas de campeo de las lagartijas y el número de individuos que solaparon con sus áreas, se tomó nota de la fecha y la posición de cada individuo en la parcela previamente delimitada (ver capítulo 3 para más detalles) durante los meses de Junio y Julio de 1998 en el “Alto del Telégrafo”. Los censos se realizaron cada día desde las 0800 hasta las 1800 h (hora solar). Los individuos con menos de tres localizaciones en días diferentes fueron considerados como transeúntes.

Los datos fueron divididos en cinco periodos consecutivos de siete días de actividad cada uno. De esta forma, tenemos cinco estimas del área de campeo de cada individuo formadas por todas las localizaciones en cada periodo. Se realizó el mismo esfuerzo de búsqueda todos los días que fueron favorables para la actividad de las lagartijas. Los vecinos fueron definidos como los individuos cuyas áreas de campeo solaparon.

Con el fin de examinar los cambios del tamaño de las áreas y el número de
vecinos del mismo sexo a través de los periodos se utilizaron ANOVAs de Friedman para los machos y las hembras. El mismo análisis se llevó a cabo con los machos para examinar las diferencias entre los periodos en el número de hembras vecinas. Las comparaciones de los pares de medias se hicieron usando procedimientos de comparación múltiple no paramétrica a posteriori (SOKAL y ROHLF, 1995). Además, se comparó el tamaño del área de campeo de los machos y las hembras en cada periodo con el test de la U de Mann-Whitney (SIEGEL y CASTELLAN, 1988). Se realizaron correlaciones de Pearson (SOKAL y ROHLF, 1995) entre el número de visualizaciones o el número de individuos activos cada día y el transcurso de los días en ambos sexos.

Efecto de la temperatura en la actividad

Para estimar si se daban cambios en el ambiente durante el trabajo de campo, se tomaron medidas de la temperatura del aire, de la tierra y del suelo rocoso cada hora (desde las 0800 hasta las 1800 h (hora solar) con un termómetro digital (con una precisión de 0.1 ºC). La temperatura del aire se tomó a 10 cm del sustrato. Se midieron las temperaturas del suelo rocoso en lugar de rocas y piedras de diferentes tamaños las cuales podrían tener una mayor variabilidad en la estima de sus temperaturas, mientras que las temperaturas del suelo rocoso deberían ser más uniformes. Se utilizó una pantalla opaca en cada medida evitando la incidencia directa de los rayos solares en cada medida. Todas las temperaturas se tomaron después de 1 min. de situar el termómetro en cada sitio cuando la medida se estabilizaba. Las medidas de la temperatura se realizaron durante los diez primeros días de Junio y los diez últimos de Julio los cuales se consideraron como periodos de reproducción y no reproducción respectivamente. Para estimar si la temperatura ambiente fue óptima para las lagartijas durante el estudio se calcularon las medias de las temperaturas de cada día y se
utilizaron tests de la U de Mann Whitney comparando el periodo reproductor con el no reproductor.

Distancia recorrida y tiempo empleado desplazándose

Durante la primera semana de Junio (periodo reproductor) y la última de Julio (periodo no reproductor) del año 2000 se realizaron observaciones focales de los machos y las hembras (ver capítulo 4 para más detalles). Los datos fueron recogidos en dos periodos para examinar las diferencias entre el periodo reproductor y el no reproductor. Las observaciones en ambos periodos se realizaron desde las 0900 hasta las 1100h (hora solar). Se utilizaron ANOVAs de dos vías para comparar el tiempo empleado andando y la distancia máxima recorrida por machos y las hembras en ambos periodos (SOKAL y ROHLF, 1995). Las comparaciones entre los pares de medias se hicieron usando el test de Tukey de la diferencia significativa honesta para muestras desiguales.

Interacciones sociales

También se tomó nota de las interacciones agonísticas y de apareamiento (cortejos y/o cópulas), y de las observaciones de custodia de hembras mientras se realizaban los transectos (ver capítulo 3 para más detalles). Se utilizaron correlaciones de Pearson para examinar la relación entre el número de interacciones agonísticas entre los machos, de cortejos con las hembras o de custodia de hembras y el transcurso de los días (SOKAL y ROHLF, 1995). Por otro lado, también se comparó el número de interacciones agonísticas entre machos, cortejos con las hembras y custodia de hembras del año 2000 con lo esperado para una distribución binomial asumiendo frecuencias
Estrategias en función de la estacionalidad

equiprobables para cada periodo (reproductor y posreproductor).

RESULTADOS

Actividad y temperatura ambiente

Hubo una correlación negativa significativa entre el número de machos que estaban activos cada día y el transcurso de los días (correlación de Pearson: \(r = -0.54, F_{1,33} = 13.82, P < 0.001; \) Fig 5.1) mientras que no se encontró correlación significativa para las hembras (\(r = -0.19, F_{1,33} = 1.24, P = 0.27 \)). De igual forma, existe una correlación significativa entre el número total de visualizaciones y el transcurso de los días en machos (\(r = -0.58, F_{1,33} = 17.01, P = 0.0002; \) Fig 5.2) pero no en hembras (\(r = -0.15, F_{1,33} = 0.75, P = 0.39 \)).

Las temperaturas obtenidas en la tierra (Periodo reproductor: \(\overline{X} \pm SE = 25.6 \pm 1.2; \) rango = 19.9-32.6 ºC; periodo no reproductor: \(\overline{X} \pm SE = 27.7 \pm 1.6; \) rango = 19.2-33.9 ºC), en el suelo rocoso (Periodo reproductor: \(\overline{X} \pm SE = 23.6 \pm 0.7; \) rango = 21.2-26.7 ºC; periodo no reproductor: \(\overline{X} \pm SE = 25.5 \pm 1.2; \) rango = 17.7-29.5 ºC) y en el aire (Periodo reproductor: \(\overline{X} \pm SE = 19.2 \pm 0.7; \) rango = 15.0-22.4 ºC; periodo no reproductor: \(\overline{X} \pm SE = 22.7 \pm 1.2; \) rango = 16.0-27.1 ºC) fueron favorables para la actividad de las lagartijas en ambos periodos (ver Martín y Salvador, 1993b). No hubo diferencias significativas entre las temperaturas medidas en la tierra en el periodo reproductor y el no reproductor (test de la U de Mann-Whitney: \(Z = -1.28, P = 0.19 \)), ni tampoco en las obtenidas en el suelo rocoso (test de la U de Mann-Whitney: \(Z = -1.51, P = 0.13 \)), aunque fueron más altas en el periodo no reproductor. Sin embargo, si que
Estrategias en función de la estacionalidad

Figura 5.1 - Relación entre el número de individuos activos y el transcurso de los días para los machos (círculos llenos y línea continua) y las hembras (cuadrados vacíos y línea discontinua) adultos de *L. monticola*.
Figura 5.2 - Relación entre el número de visualizaciones y el transcurso de los días para los machos (círculos llenos y línea continua) y las hembras (cuadrados vacíos y línea discontinua) adultos de *L. monticola*.

<table>
<thead>
<tr>
<th>Días</th>
<th>Número de visualizaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>35</td>
<td>45</td>
</tr>
</tbody>
</table>
Estrategias en función de la estacionalidad

encontramos una diferencia significativa al comparar las temperaturas del aire del periodo reproductor con el no reproductor (test de la U de Mann-Whitney: $Z = -2.19$, $P = 0.028$).

Relaciones espaciales

El tamaño del área de campeo varió significativamente entre los periodos en ambos sexos (ANOVA de Friedman: Machos: $\chi^2 = 27.43$, df = 4, $P < 0.0001$; hembras: $\chi^2 = 11.7$, df = 4, $P = 0.02$) (Fig. 5.3). En los machos, el área de campeo en el primer periodo fue significativamente mayor que en el periodo cuarto y quinto (comparación múltiple no paramétrica: $P < 0.05$), y también fue mayor en el segundo periodo que en el quinto ($P < 0.05$). No hubo diferencias significativas en el resto de las comparaciones ($P > 0.05$ en todos los casos). En las hembras, solo en el quinto periodo el tamaño del área de campeo fue significativamente menor que en el tercero y el cuarto ($P < 0.05$). De hecho, tal y como se muestra en la figura 5.3 se puede observar una disminución gradual en los machos (correlación de Pearson: $r = -0.91$, $F = 15.31$, $P = 0.02$) pero no en las hembras ($r = -0.38$, $F = 0.49$, $P = 0.53$). Además, el tamaño del área de campeo de los machos fue significativamente mayor que el de las hembras solo en el primer periodo (test de la U de Mann-Whitney: $Z = 4.25$, $P < 0.0001$), pero no se encontraron diferencias significativas en el resto de los períodos ($P > 0.05$ en todos los casos).

Por otro lado, el número de vecinos del mismo sexo varió significativamente entre los cinco periodos en ambos sexos (ANOVA de Friedman: Machos: $\chi^2 = 45.41$, df = 4, $P < 0.0001$; hembras: $\chi^2 = 9.71$, df = 4, $P < 0.05$) (Fig. 5.4). En el primer periodo el número de machos que solaparon con el área de campeo de los machos fue significativamente mayor que en el resto de los períodos (comparación múltiple no
Figura 5.3 - Tamaño del área de campeo ($\overline{X} \pm 1SE$) de los machos y hembras adultos de *L. monticola* en cada periodo.
Figura 5.4 - Número de vecinos del mismo sexo ($\bar{X} \pm 1SE$) para machos y hembras adultos de *L. monticola* en cada periodo.
Estrategias en función de la estacionalidad

paramétrica: \(P < 0.05 \) en todos los casos). En el segundo periodo fue significativamente mayor que en el quinto \((P < 0.05) \), y en el tercero fue también significativamente mayor que en el cuarto \((P < 0.05) \). Sin embargo, no se encontraron diferencias significativas al comparar el número de hembras vecinas de las hembras \((P > 0.05 \) en todos los casos).

Se encontraron diferencias significativas entre los periodos en el número de hembras que solaparon con los machos (ANOVA de Friedman: \(\chi^2 = 36.71, \text{df} = 4, P < 0.0001 \)) (Fig. 5.5). El número de hembras vecinas fue significativamente mayor en el primer periodo que en el resto de los periodos \((P < 0.05 \) en todos los casos), pero no hubo diferencias significativas entre el resto de los periodos \((P > 0.05 \) en todos los casos).

Los resultados mostraron una correlación significativa entre el número de machos y hembras que solaparon con las áreas de campeo de cada macho en todos los periodos excepto en el quinto en el cual no hubo hembras vecinas (correlación de Pearson: \(0.56 < r < 0.87, P < 0.0001 \) en todos los casos, \(N = 32 \)). Es decir, cuanto mayor es el número de hembras vecinas mayor es el número de machos vecinos.

Distancia recorrida y tiempo empleado desplazándose

La distancia máxima recorrida difirió significativamente entre los periodos (ANOVA de dos vías: \(F_{1,84} = 23.10, P < 0.0001 \); Fig. 5.6a) entre los sexos \((F_{1,84} = 21.17, P < 0.0001) \) y la interacción también fue significativa \((F_{1,84} = 27.19, P < 0.0001) \). De forma similar, el tiempo empleado desplazándose difirió significativamente entre los periodos (ANOVA de dos vías: \(F_{1,84} = 23.95, P < 0.0001 \); Fig. 5.6b) entre sexos \((F_{1,84} = 31.06, P < 0.0001) \) y la interacción también fue significativa \((F_{1,84} = 27.35, P < 0.0001) \).
Figura 5.5 - Número de hembras que solapan con machos adultos de *L. monticola* ($\bar{X} \pm 1SE$) en cada periodo.
Figura 5.6 - a) Distancia máxima recorrida ($\bar{X} \pm 1$SE) y b) Tiempo empleado desplazándose ($\bar{X} \pm 1$SE) por los machos y las hembras en el periodo reproductor y no reproductor.

La distancia máxima recorrida por los machos fue significativamente mayor en
el periodo reproductor que en el no reproductor (test de Tukey HSD: \(P < 0.001 \); Fig. 5.6a), pero no hubo diferencias significativas en el caso de las hembras (\(P = 0.99 \)). En el periodo reproductor la distancia máxima recorrida por los machos fue significativamente mayor que la recorrida por las hembras (\(P < 0.001 \)), pero no hubo diferencias significativas en el periodo no reproductor (\(P = 0.98 \)). En cuanto al tiempo empleado desplazándose se obtuvieron resultados similares; en el caso de los machos fue significativamente mayor en el periodo reproductor que en el periodo no reproductor (test de Tukey HSD: \(P < 0.001 \); Fig. 5.6b), pero no hubo diferencias significativas en las hembras (\(P = 0.99 \)). También en el periodo reproductor el tiempo empleado desplazándose por los machos fue significativamente mayor que en las hembras (\(P < 0.001 \)), pero no hubo diferencias significativas en el periodo no reproductor (\(P = 0.99 \)).

Interacciones sociales

El número de interacciones agonísticas entre los machos disminuyó con el transcurso de los días (\(r = -0.46, F_{1,33} = 8.64, P = 0.005 \); Fig 5.7), esto también ocurrió con el número de interacciones de apareamiento (\(r = -0.49, F_{1,33} = 10.32, P = 0.002 \); Fig 5.8) y con las observaciones de custodia de hembras (\(r = -0.38, F_{1,33} = 5.46, P = 0.02 \); Fig 5.9). Los resultados de los datos del año 2000 apuntan en la misma dirección; el número de interacciones agonísticas (test Binomial de dos colas: \(P = 0.038 \)), el número de cortejos (\(P = 0.031 \)) y el número de observaciones de custodia de hembras (\(P = 0.031 \)) fueron significativamente mayores en el periodo reproductor (primera semana de Junio) que en el no reproductor (última semana de Julio).
Figura 5.7 - Relación entre el número de interacciones agonísticas entre machos adultos de *L. monticola* y el transcurso de los días.
Figura 5.8 - Relación entre el número de cortejos observados y el transcurso de los días.
Figura 5.9 - Relación entre el número de custodias observadas y el transcurso de los días.
DISCUSION

Los resultados muestran que el número de machos que estuvieron activos y el número de visualizaciones por día disminuyó con el paso de los días. Sin embargo no se encontró relación con el transcurso de los días en el caso de las hembras. Este pronunciado cambio en la actividad de los machos pero no en el de las hembras también se ha encontrado en otros saurios (ROSE, 1981; RUBY, 1978; LISTER y AGUAYO, 1992). Sin embargo, en este estudio, los cambios estacionales no son explicados por la temperatura del ambiente ya que la temperatura corporal de los individuos activos de *L. monticola* en este sistema montañoso oscila entre 29.0 y 37.5 ºC (PEREZ-MELLADO, 1982; MARTÍN y SALVADOR 1993b), y las temperaturas disponibles que se midieron en ambos periodos fueron óptimas para la actividad de las lagartijas. De hecho, la temperatura del aire fue incluso más favorable para la actividad de las lagartijas en el periodo no reproductor. Además, si estas variaciones dependiesen de la temperatura, los cambios estacionales deberían ocurrir en ambos sexos, pero no se encontraron cambios significativos en las hembras.

En los machos podría existir un conflicto de intereses entre acceder a parejas potenciales y evitar encuentros con otros machos ya que al aumentar el tamaño del área de campio para incrementar el número de hembras vecinas también aumenta el número de machos vecinos, lo que podría derivar en una alta probabilidad de interacciones agonísticas costosas. También, los machos del teido *Ameiva plei* solapan con las áreas de otros machos tanto como con las hembras (CENSKY, 1995). Sin embargo, cuando la actividad reproductora decrece los costes de las interacciones agonísticas deberían ser más altos que en la época reproductora. De hecho, tanto el número de las interacciones agonísticas como el número de las interacciones de apareamiento disminuyeron con el transcurso de los días en los machos de *L. monticola*. De forma similar, en otros saurios
la frecuencia y la intensidad de las agresiones intrasexuales son mayores en la época reproductora que en la no reproductora (STAMPS y CREWS, 1976; RUBY, 1978; LISTER y AGUAYO, 1992). Por otro lado, aunque esto podría ser debido a una disminución de la agresividad por sí misma, es improbable que ocurra en todos los individuos simultáneamente. Así, si un macho con un bajo nivel de agresividad se encuentra con otro macho con un nivel más alto, esto supondría un riesgo de lesión para el primero. Por lo tanto, estos resultados sugieren que existen otros mecanismos para reducir los encuentros agresivos. Los machos disminuyen el tamaño de sus áreas de campeo a través de los periodos pero no ocurre en el caso de las hembras. Además, el área de los machos es mayor que el de las hembras en el primer periodo, cuando se dan la mayoría de las interacciones con ambos sexos. También las áreas de campeo de los machos de Sceloporus jarrovi son mayores en la época reproductora que en la no reproductora (RUBY, 1978). El hecho de que los machos recorrian una mayor distancia y estuvieran más tiempo desplazándose en la primera semana de Junio del año 2000 sugiere que éstos presentan una mayor actividad excursiva en la época reproductora destinada a incrementar el número de parejas potenciales. De hecho, el número de hembras vecinas es mayor en el primer periodo de 1998.

El número de machos que solapan con el área de campeo de cada macho es mayor cuando la mayoría de las interacciones de apareamiento ocurren. En contraste, otros estudios han indicado que este patrón de solapamiento de las áreas pasó a ser no solapante en la época reproductora (FLEMING y HOOKER, 1975; RUBY, 1978), y las áreas fueron defendidas de las intrusiones de otros machos. El alto solapamiento entre los machos en la época reproductora podría ser un sistema estable en L. monticola porque los individuos subordinados o de bajo estatus social probablemente son expulsados por los machos dominantes o de estatus alto; incrementando así el éxito reproductor para estos últimos. Ya que los machos solapan con más hembras al incrementar sus áreas de
campeo pero probablemente no pueden prevenir que otros machos copulen con las hembras cuando no están presentes, una estrategia adaptativa podría ser custodiar a las hembras cuando están receptivas. Existen estrategias similares de custodia de parejas que son útiles para evitar cópulas extras y asegurar la paternidad (BIRKHEAD y MÖZLER, 1992; SHERMAN, 1989), las cuales han sido mostradas en Teiidae (CENSKY, 1995) y Lacertidae (OLSSON, 1993). De hecho se observó en el campo que cuando la actividad de apareamiento decreció, el número de observaciones en las que los machos estuvieron cerca de una hembra también decreció.

Teniendo en cuenta el conjunto de los resultados que se presentan en este capítulo se puede concluir que el balance entre los beneficios y los costes difiere estacionalmente en los machos pero fue aparentemente similar en las hembras. Así, el hecho de que el número de las interacciones agresivas se viera reducido en el periodo no reproductor sugiere que el significado adaptativo de estas interacciones es incrementar su éxito reproductor. Sin embargo, cuando el periodo reproductor termina los machos de esta especie reducen la probabilidad de los encuentros agresivos reduciendo su actividad y solapamiento espacial con otros machos.
CONCLUSIONES

1. Los machos de *L. monticola* son capaces de detectar y discriminar sus propias secreciones femorales de las de otros machos a partir de señales químicas exclusivamente. Este hecho indica la utilización de las secreciones femorales en la comunicación intraespecífica.

2. El uso del espacio y la exploración química de los machos de *L. monticola* en presencia de señales químicas procedentes de otros machos conespecíficos depende del tamaño relativo. Esto sugiere que son capaces de estimar la habilidad competitiva relativa de otros machos conespecíficos y en ausencia del emisor.

3. Los machos de *L. monticola* son capaces de discriminar entre machos conespecíficos familiares y no familiares utilizando únicamente información química procedente de las secreciones femorales o de los excrementos. Tal discriminación podría contribuir a reducir los costes de las interacciones agresivas.

4. El hecho de que los machos verdes sean de mayor tamaño, tengan mayor probabilidad de éxito en los encuentros agonísticos, tengan áreas más exclusivas frente a otros machos y un mayor grado de solapamiento con las hembras sugiere que la coloración verde podría actuar como señalizador de la habilidad competitiva.

5. Los machos verdes presentan un solapamiento temporal mayor con otros machos que los machos marrones. Los machos verdes tienen unos niveles de actividades conspicuas mayores que los machos marrones. A diferencia de los machos
Estrategias en función de la estacionalidad

marrones, los machos verdes concentran el acceso a los recursos por la mañana lo que les podría permitir reducir los costes que implican las actividades conspicuas. Por otro lado, los machos marrones podrían tener que dispersar el acceso a los recursos de una forma oportunista. Estos resultados sugieren que los machos podrían utilizar diferentes estrategias en función de la habilidad competitiva y por lo tanto de la magnitud del coste que supone para ellos los encuentros agonísticos.

6. Las interacciones agonísticas, los niveles de actividad, el tamaño del área de campeo y el número de vecinos del mismo sexo decrecieron según se iba aproximando el periodo no reproductor en los machos pero no en las hembras. Estos resultados sugieren que el balance entre los costes y los beneficios es diferente en el periodo reproductor y no reproductor en los machos pero no en las hembras. El cambio gradual que se aprecia en los machos podría ser un mecanismo para reducir la frecuencia de las interacciones agonísticas.
REFERENCIAS

GLIM. Oxford University Press.

---- (1990). Chemical properties of femoral gland secretions in desert iguana

---- (1993). Chemical and behavioral studies of femoral gland secretions in iguanid

46: 197-199.

55.

(Canis latrans) scent-marking and territoriality in yellowstone national park.

Estrategias en función de la estacionalidad

Estrategias en función de la estacionalidad

Estrategias en función de la estacionalidad

DUVALL, D. (1979). Western fence lizard (Sceloporus occidentalis) chemical signals. I.
Estrategias en función de la estacionalidad

Estrategias en función de la estacionalidad

1822.

Estrategias en función de la estacionalidad

Estrategias en función de la estacionalidad

Estrategias en función de la estacionalidad

Muñoz, A., López, P. y Martín J. (2000). ¿Está relacionada la habilidad para la lucha de los machos de lagartija serrana (*Lacerta monticola*) con su...
Estrategias en función de la estacionalidad

Estrategias en función de la estacionalidad

Behav. 43: 931-939.

Estrategias en función de la estacionalidad

Estrategias en función de la estacionalidad

Ecology 51:408-418.

Estrategias en función de la estacionalidad

---- y ---- (1998). Territory acquisition in lizards: IV. Obtaining high status and
estrategias en función de la estacionalidad.

Estrategias en función de la estacionalidad

