Codificación de la información dependiente de la frecuencia en las neuronas asociadas a vibrisas del complejo sensorial del trigémino de la rata

MEMORIA PARA OPTAR AL GRADO DE DOCTOR
PRESENTADA POR

Abel Sánchez Jiménez

DIRECTORES:

Fivos Panetos Petrova
Alberto Pérez de Vargas Luque

Madrid, 2015
CODIFICACIÓN DE LA INFORMACIÓN DEPENDIENTE DE LA FRECUENCIA EN LAS NEURONAS ASOCIADAS A VIBRISAS DEL COMPLEJO SENSORIAL DEL TRIGÉMINO DE LA RATA

Abel Sánchez Jiménez

Memoria que se presenta
para optar al título de Doctor

Vºº de los Directores de la Tesis

Fdo. Fivos Panetos Petrova Fdo. Alberto Pérez de Vargas Luque

Madrid, 2008
A mi familia y amigos

Lo que no me mata, me hace más fuerte

Friedrich Nietzsche
<table>
<thead>
<tr>
<th>Índice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introducción</td>
</tr>
<tr>
<td>1.1 El sistema somatosensorial de las víbrias</td>
</tr>
<tr>
<td>1.2 El órgano sensorial de las víbrias</td>
</tr>
<tr>
<td>1.3 El complejo sensorial del trigémino</td>
</tr>
<tr>
<td>1.3.1 El Núcleo Principal</td>
</tr>
<tr>
<td>1.3.2 El Núcleo Espinal Oral</td>
</tr>
<tr>
<td>1.3.3 El Núcleo Espinal Interpolar</td>
</tr>
<tr>
<td>1.3.4 El Núcleo Espinal Caudal</td>
</tr>
<tr>
<td>1.4 Núcleos talámicos de la vía somatosensorial de las víbrias</td>
</tr>
<tr>
<td>1.4.1 Anatomía</td>
</tr>
<tr>
<td>1.4.2 Electrofisiología</td>
</tr>
<tr>
<td>1.4.3 Filtrado dependiente de frecuencia</td>
</tr>
<tr>
<td>1.4.4 Proyecciones</td>
</tr>
<tr>
<td>1.5 Corteza somatosensorial</td>
</tr>
<tr>
<td>1.6 Influencia de la corteza sobre los núcleos del CST</td>
</tr>
<tr>
<td>2. Hipótesis de trabajo y objetivos</td>
</tr>
<tr>
<td>3. Materiales y métodos</td>
</tr>
<tr>
<td>3.1 Animales de experimentación</td>
</tr>
<tr>
<td>3.2 Procedimientos quirúrgicos</td>
</tr>
<tr>
<td>3.3 Registros electrofisiológicos</td>
</tr>
<tr>
<td>3.4 Estimulación de las víbrias</td>
</tr>
<tr>
<td>3.5 Procesamiento histológico</td>
</tr>
<tr>
<td>3.6 Análisis de datos</td>
</tr>
<tr>
<td>4. Resultados</td>
</tr>
<tr>
<td>4.1 Estudio de los núcleos del CST</td>
</tr>
<tr>
<td>4.1.1 Núcleo Principal</td>
</tr>
<tr>
<td>4.1.2 Núcleo Espinal Oral</td>
</tr>
<tr>
<td>4.1.3 Núcleo Espinal Interpolar</td>
</tr>
<tr>
<td>4.1.4 Núcleo Espinal Caudal</td>
</tr>
</tbody>
</table>
1. INTRODUCCIÓN
1.1 EL SISTEMA SOMATOSENSORIAL DE LAS VIBRISAS

El Sistema Nervioso Central recibe continuamente información, tanto del medio que rodea al animal (medio externo), como de diferentes regiones del organismo (medio interno). Esta información es captada gracias a unas estructuras llamadas receptores, cuya misión es transducir un determinado tipo de "energía" presente en el medio, externo o interno, al código neuronal. En animales superiores, la información obtenida por un determinado tipo de receptor se conduce hasta la corteza a través de una serie de haces de fibras y núcleos neuronales de relevo de forma más o menos directa y sin mezclarse con información de otra modalidad, formando lo que se conoce como vía o sistema sensorial. Una vez procesada a lo largo de la vía, se integra con información de modalidades sensoriales diferentes y/o con información almacenada previamente para producir una respuesta adecuada al contexto medioambiental.

Desafortunadamente, los mecanismos de procesamiento e integración de la información en el Sistema Nervioso Central nos son en gran medida desconocidos, constituyendo uno de los grandes enigmas de la neurociencia en general y de la neurofisiología en particular. En este trabajo nos centraremos en el estudio de la información de tipo somatosensorial epicrítica obtenida a partir del órgano sensorial de las vibras de rata.

Este órgano se encuentra en el hocico de los roedores (figura 1A) y está formado por una serie de bigotes o vibras que el animal mueve para localizar y reconocer objetos, diferenciar texturas (Guic-Robles, Valdivieso y col. 1989; Harvey, Bermejo y col. 2001), estimar una distancia (Hutson and Masterton 1986), buscar comida (Dehnhardt, Hyvarinen y col. 1999), etc., siendo un órgano equivalente a los dedos de los primates.

La información táctil obtenida por las vibras es transmitida a través del nervio trigémino (o V par craneal, nV) hasta los núcleos del Complejo Sensorial del
Introducción

Trigémino (CST) en el tronco encefálico (Waite and Tracey 1995), que constituye la primera estación de relevo de este tipo de información. De aquí, la información alcanza la corteza somatosensorial primaria (SI) por medio de dos vías, la lemniscal, que hace relevo en el núcleo ventral posteromedial del tálamo (VPm), y la paralemniscal, por el núcleo posterior medial del tálamo (Pom) (Diamond and Armstrong-James 1992).

En toda la vía existe una somatotopía muy precisa (figura 2), de manera que en todos los núcleos implicados (núcleos del CST, VPm y SI) las neuronas relacionadas con el procesamiento de la información táctil proveniente de las vibrisas forman unos agregados más o menos cilíndricos que se denominan barriletes en los núcleos del CST, barriloides en el VPm y barriles en SI (Bates and Killackey 1985; Belford and Killackey 1979; Van der Loos 1976) (Arvidsson 1982; Land and Simons 1985; Welker and Woolsey 1974; Woolsey and Van der Loos 1970). Estos agregados se ordenan dentro de cada núcleo representando fielmente el patrón de distribución de las vibrisas en el hocico (figura 2). Estudios anatómicos han demostrado una relación uno a uno entre las vibrisas individuales y los correspondientes agregados en el CST, VPm y SI (Chmielowska, Carveli y col. 1989; Veinante and Deschenes 1999; Williams, Zahm y col. 1994).

Introducción

1.2 EL ÓRGANO SENSORIAL DE LAS VIBRISAS

El órgano táctil de las vibrissas está formado por 26 grandes bigotes más cuatro grandes bigotes de mayor tamaño llamados straddlers. Los 26 bigotes se ordenan en cinco filas (A, B, C, D y E de más dorsal a más ventral), conteniendo cada de ellas diferente número de bigotes (4 bigotes las filas A y B, 5 la C, 6 la D y 7 la E) (figura 1). También se ordenan en columnas (de la 1 a la 7 de más caudal a más rostral), igualmente formadas por diferente número de bigotes (cuatro bigotes de la fila 1 a la 4, 3 la 5, 2 la 6 y 1 la 7). Existe un gradiente de tamaño de estos bigotes, de manera que cuanto más dorsal y más caudal es una vibrissa, mayor es su tamaño. Generalmente aparecen otros bigotes de menor tamaño, sobre todo al final de las filas D y E (Welker and Woolsey 1974; Woolsey and Van der Loos 1970).

Las straddlers se organizan en una columna, caudal a la columna 1, recibiendo cada uno el nombre de una letra del abecedario griego: α, β, γ y δ, desde la más dorsal a la más ventral respectivamente (Welker and Woolsey 1974; Woolsey and Van der Loos 1970). Se insertan entre dos filas de vibrissas, de manera que el straddler α se encuentra entre las filas A y B, el β entre las B y C, el γ entre las C y D y el δ entre las D y E.

Esta ordenación de los bigotes es muy consistente en roedores, estando el patrón de ordenación determinado genéticamente (Van der Loos, Dorfl y col. 1984). Dentro del nV, las fibras de la rama maxilar están fasciculadas en distintos haces claramente relacionados con la organización espacial de las vibrissas (Erzurumlu and Killackey 1983), de manera que cada fibra maxilar del nV inerva una sola vibrissa, aunque una vibrissa está inervada por multitud de fibras maxilares (Lee and Woolsey 1975).

Las ratas exploran el ambiente que las rodea moviendo sus vibrissas. Este movimiento está sometido a un control muy fino por parte de la corteza, variando sus propiedades en función de las características del medio ambiente que rodea al animal. En reposo o inactividad (cuando el animal no explora de forma activa su
Introducción

entorno) el animal no mueve sus vibrissas. El contacto inicial con un objeto provoca que éstas comiencen a moverse de forma rítmica a frecuencias muy bajas (<1 Hz). Por el contrario, cuando el animal está explorando de forma activa su entorno, las vibrissas se mueven de manera rítmica en dirección postero-anterior a unas frecuencias de 4 a 12 Hz (Carvell and Simons 1990; Welker 1964). A este movimiento se le denomina "whisking".

Cada vibrissa tiene asociada en su base lo que se conoce como complejo folicular de la vibrisa o foliculo vibrisal, que es una serie de mecanorreceptores que se activan por la vibración del bigote, transduciendo esta señal al código neuronal. Los foliculos presentan diferentes tipos de células receptoras: células de Merkel (mecanorreceptores de adaptación lenta), terminaciones lanceoladas, terminaciones reticulares de Ruffini (mecanorreceptores de adaptación lenta que responden a estrés tisular) y terminales nerviosas libres (nociceptores o termorreceptores) (Fundin, Rice y col. 2002; Renehan and Munger 1986). Estos receptores presentan gran inervación periférica, de manera que cada foliculo recibe de media 250 fibras nerviosas, un tercio de las cuales no están mielinizadas (Klein, Renehan y col. 1988; Waite and Li 1993).

En los foliculos de las vibrissas se han registrado tanto respuestas de adaptación lenta tipo 1 y 2, como respuestas de adaptación rápida. Las respuestas de adaptación lenta tipo 1 están asociadas a células de Merkel (Baumann, Chan y col. 1996; Senok and Baumann 1997), mientras que las de adaptación rápida están asociadas a terminaciones lanceoladas (Gottschaldt, Iggo y col. 1973; Lichtenstien, Carvell y col. 1990). También se han descrito inervaciones intervibrisales, con terminaciones lanceoladas transversales y longitudinales y varios tipos de terminaciones no mielinizadas (Fundin, Arvidsson y col. 1997).

Las fibras que inervan los foliculos de las vibrissas forman parte de la rama maxilar del nV y sus cuerpos celulares se sitúan en el ganglio trigeminal (Vg) o semilunar. Este ganglio se encuentra en la base del cráneo, en la fosa craneal media (Waite and Tracey 1995), conteniendo entre 35000 y 50000 células (Forbes and
Introducción

Welt 1981; Lagares and Avendaño 2000). Las células que inervan a las vibriscas son de tipo pseudounipolar y están envueltas por una serie de células satélite.

Estas células pseudounipolares poseen un único axón, el cual se divide en una rama periférica y en una rama central y pueden presentar somas grandes (células de tipo A) o pequeños (células de tipo B) (Kai-Kai 1989). En función de la velocidad de conducción de sus axones, las células ganglionares se clasifican en $A_\omega\beta$ (fibras mielinizadas gruesas), A_δ (fibras mielinizadas finas), que suelen corresponder a células medianas y grandes; o C (fibras no mielinizadas), que corresponder a células pequeñas y son nociceptivas (Dubner and Bennett 1983).

Dentro del Vg los cuerpos neuronales de las aferencias primarias muestran una clara organización somatotópica que refleja la localización periférica de los receptores. De este modo, los cuerpos celulares de la división oftálmica se sitúan medial y anteriormente, los que pertenecen a la división mandibular ocupan la zona caudal y lateral y los somas de la división maxilar se sitúan entre los anteriores (Barian-Smith 1973).

La mayoría de las células ganglionares que inervan vibriscas carecen de actividad espontánea, pero se activan ante la estimulación de una vibrissa, frecuentemente a umbrales muy bajos (Gibson and Welker 1983a; Gibson and Welker 1983b; Lichtenstien, Carvell y col. 1990; Shoykhet, Doherty y col. 2000; Zucker and Welker 1969). Entre el 60 y 75% de las respuestas a vibriscas, son de adaptación lenta o tónicas (T) y muchas son muy sensibles a la dirección del movimiento de la misma. El resto, que presentan respuestas de adaptación rápida o físisicas (F), muestran menor sensibilidad direccional. No se han encontrado diferencias en las respuestas de las células que inervan las zonas superficiales o profundas del folículo(Waite and Jacquin 1992). Por último, un pequeño porcentaje de células (<10%) que probablemente se corresponden con los terminales nerviosos libres que se han encontrado en los folículos, requieren para su activación movimientos de gran velocidad o estímulos de gran intensidad.
1.3 EL COMPLEJO SENSORIAL DEL TRIGÉMINO

El CST está formado por el núcleo principal (Pr5) y el núcleo espinal (Sp5), que a su vez, está subdividido en tres núcleos: oral (Sp5o), interpolar (Sp5i) y caudal (Sp5c) (Darian-Smith 1973).

Las fibras de las células ganglionares entran en el tronco encefálico por la raíz sensorial trigeminal, adyacente a la raíz motora del mismo nervio, y forman el tracto trigeminal (tc5) que se sitúa adyacente al CST. Todos los núcleos del CST reciben aferentes primarias de las vibrisas ipsilaterales, aunque el Pr5 es el que presenta mayor inervación de éstas (Hayashi 1980; Jacquin, Renehan y col. 1993; Voisin, Domejean-Orliaguet y col. 2002). Como ya se ha dicho, las aferencias primarias provenientes de las vibrisas suelen estar mielinizadas y ser del tipo Aβ. Sus terminales son glutamatérgicas y hacen sinapsis de tipo asimétrico sobre el soma y las dendritas de las neuronas de los núcleos del CST. Sobre estas aferencias se producen contactos axo-axónicos, de tipo simétrico, desde terminales GABAérgicas. Estos contactos son más frecuentes en el núcleo Pr5 (Bae, Ihn y col. 2000).

Una vez que entran en los núcleos del CST, las aferencias de las vibrisas hacen sinapsis en unos grupos neuronales ordenados fielmente al patrón de distribución de las vibrisas en la cara (salvo en el Sp5o donde tal distribución no es tan clara) (figura 2). Estos grupos neuronales tienen forma de cilindro y se denominan barriletes en el CST (Bates and Killackey 1985; Belford and Killackey 1979).
Introducción

1.3.1 El núcleo Principal

Organización general y cito-arquitectura

En la porción más rostral del CST se sitúa el núcleo Pr5, que tiene forma redondeada en su sección coronal y ovalada en la horizontal. Este núcleo está rodeado lateral y ventralmente por el tc5, limitado caudalmente con el núcleo Sp5o y unido a éste de forma oblicua (Bates and Killackey 1985; Fukushima and Kerr 1979). El volumen medio del núcleo ha sido estimado en $1.38 \pm 0.13 \text{ mm}^3$ y el número total de neuronas en 31.900 ± 2.200 (Avendaño, Machin y col. 2005), con una densidad celular de 23100 ± 2400 células/mm3.

Las células del Pr5 están fuertemente empaquetadas y uniformemente distribuidas por todo el núcleo. La mayoría de las células son de dos tipos: de tamaño medio (10-25μm) con somas esféricos u ovalados, y de tamaño pequeño (<10μm) con somas esféricos, presentando ambos tipos celulares un núcleo excéntrico grande (Smith 1975). Las neuronas forman agrupaciones y su árbol dendrítico, que está muy ramificado, se extiende a través de la mitad del núcleo (Darian-Smith 1973).

En la parte dorsal se pueden observar algunas neuronas de mayor tamaño (>25μm), con somas fusiformes, triangulares y esféricos (Bates and Killackey 1985). Aunque tanto en la zona ventral como en la dorsal predominan las neuronas de tamaño pequeño y medio, parece que existen diferencias en su distribución. Más del 50% de las células en la parte dorsal tienen un diámetro superior a 10μm, mientras el 70% de las neuronas en la parte ventral tienen un diámetro entre 6 y 9μm (Ma 1991).

En general, en este núcleo las neuronas no se orientan en una dirección en particular, aunque en su zona ventral las células se agrupan y organizan constituyendo formaciones cito-arquitectónicas muy definidas descritas anteriormente como barriletes (Belford and Killackey 1979)). Es en esta zona donde terminan las fibras que llevan la información táctil desde las vibriras.
Introducción

(Hayashi 1985). Los barriletes tienen forma más o menos cilíndrica, con una capa de alta densidad celular en la superficie del cilindro que rodea un espacio libre de células formando la luz del cilindro. Cada barrilete está separado de los adyacentes por un espacio estrecho libre de células (Ma 1991). Existen neuronas inter-barriletes, de tamaño grande y con árboles dendríticos muy extensos (Lo, Guido y col. 1999). Los barriletes en este núcleo se caracterizan por poseer gran número de neuronas con sus dendritas hacia el interior del barrilete. Las aferencias primarias hacen sinapsis con un sólo barrilete (Ma 1991).

Las neuronas de los barriletes de Pr5 responden a la estimulación de muy pocas vibras, generalmente sólo a una (entre el 67% y el 80% (Jacquin, Golden y col. 1988; Veinante and Deschenes 1999)). Cuando una de estas neuronas responde a la estimulación de varias vibras, siempre responde con un mayor número de espigas a una sola vibris (vibris principal (Minnery and Simons 2003)), evocando las demás vibras respuestas de menor magnitud (vibras accesorias). Todas las neuronas de un mismo barrilete presentan la misma vibris principal, de manera que se puede identificar cada barrilete con una determinada vibris. La disposición de los barriletes presenta una somatotopía muy precisa, reproduciendo la ordenación de las vibras del hocico del animal (figuras 2 y 3). De esta forma, los barriletes correspondientes a la fila A se sitúan mediales en el núcleo, mientras que los corresponden a la fila E se encuentran laterales. En la zona más ventral se localizan los barriletes de la fila de las straddlers (Ma 1991). El marcaje intracelular y la inyección de trazadores han determinado dos tipos principales de neuronas de proyección en el Pr5: neuronas pequeñas con árboles dendríticos dentro del espacio de un barrilete y células grandes con árboles dendríticos fuera del barrilete (Bennett-Clarke, Chiaia y col. 1992; Jacquin, Golden y col. 1988; Jacquin and Rhoades 1990).

El patrón de los barriletes en Pr5 se desarrolla antes del nacimiento (Chiaia, Bennett-Clarke y col. 1992) y es dependiente del nervio infraorbital, que inerva las vibras y pelos más pequeños. Las neuronas de proyección trigémino-talámicas
Introducción

(neuronas de los barriletes) del Pr5 comunican este patrón al VPm y este núcleo a su vez, determina el mismo patrón en los barriles de la corteza (Erzurumlu and Jhaveri 1990; Erzurumlu and Kind 2001).

Aferencias y eferencias

La mayoría de las aferencias del núcleo Pr5 son trigeminales. Existe una cierta organización de estos aferentes, de manera que la región dorsal está inervada por la rama mandibular del nV, mientras que la zona ventral lo está por las ramas maxilar y oftálmica del mismo (Bates and Killackey 1985). Bates y Killackey describen los terminales de las aferencias en forma arbórea, formando discretas agrupaciones a lo largo del eje rostro-caudal que se disponen en columnas longitudinales. Esto coincide con lo descrito anteriormente por Hayashi (1980), ya que la forma tridimensional del campo terminal asociado con una vibrissa es un cilindro orientado rostro-caudalmente. Posteriormente, Ma (1991) observó que los terminales de las aferencias primarias están confinados en el interior de los barriletes y es aquí donde hacen contacto con las neuronas que forman el barrilete. Estos contactos son principalmente entre los botones terminales de las aferencias y las dendritas de las neuronas de segundo orden.

El Pr5 recibe aferencias del resto de núcleos del CST pero, por el contrario, tiene una proyección muy débil hacia cada uno de los núcleos espinales (Jacquin, Chiaia y col. 1990a) (figuras 3 y 7). También posee entradas serotoninérgicas desde el núcleo del rafe dorsal (Kirifides, Simpson y col. 2001).

En cuanto a las eferencias, la principal proyección del Pr5 es contralateral hacia el tálamo (a los núcleos VPm y Pom. Figura 3) y es de naturaleza excitatoria, ya que surge desde neuronas glutamatérgicas que son de tamaño pequeño o mediano (Magnusson, Clements y col. 1987). Esta proyección sale preferentemente de la zona ventral (que es la región asociada a vibrissas) donde el 70% de las neuronas se activan anteródricamente por estimulación eléctrica desde el tálamo (Jacquin,
Golden y col. 1988). Hay también una pequeña proyección ipsilateral desde la zona más rostral de la parte dorsal del núcleo (Fukushima and Kerr 1979). La proyección desde Pr5 representa el 60-70% de las aferencias trigeminales que recibe el talámo.

El marcaje de axones trigémino-talámicos en la zona de los barriletes (zona ventral del núcleo) ha permitido distinguir dos tipos de proyecciones (Veinante and Deschenes 1999): la mayoría (68%) proviene de neuronas activadas por una única vibrissa y proyecta al VPM, donde hace sinapsis con un único barriloide talámico. También existe cierta somatotopía en esta proyección, de manera que las proyecciones que salen de la parte ventral del Pr5 terminan en la parte dorsal del VPM, y las que salen de la parte dorsal terminan en la zona ventral del VPM(Peschanski 1984). El resto (32%), corresponde a axones de neuronas con...
Introducción

árboles dendríticos grandes que se expanden por múltiples barriletes y, por lo tanto, llevan información multivibrisa. Estos axones se dirigen al Pom y al tectum.

Además de la proyección al tálamo, el Pr5 proyecta a la "zona incerta" (Shammah-Lagnado, Negrao y col. 1985), al colículo superior (Bruce, McHaffie y col. 1987), al cerebelo (Bennett-Clarke, Chiaia y col. 1992) y al núcleo mesencefálico del trigémino (Me5) de forma ipsilateral (Buisseret-Delmas, Pinganaud y col. 1997) (figura 3).

Neuroquímica

Las neuronas que proyectan a VPm son de naturaleza glutamatérgica y lo hacen desde la zona de las vibrisas (figura 3). Estas neuronas constituyen la mayoría (70-90%) de todas las células del núcleo (Magnusson, Clements y col. 1987; Minnery and Simons 2003; Veinante and Deschenes 1999). En la parte dorsal existen neuronas glutamatérgicas pero de tamaño grande (Clements and Beitz 1991), mientras que las neuronas glutamatérgicas de la región ventral son más pequeñas y se extienden a lo largo del eje rostro-caudal.

Se han descrito interneuronas GABAérgicas que se sitúan en la zona de los barriletes, dentro y entre éstos. Son las células más pequeñas del núcleo y se encuentran distribuidas por todo el Pr5. También se han descrito neuronas positivas para GAD(Haring, Henderson y col. 1990; Lo, Guido y col. 1999) y Gly (Avendaño, Machín y col. 2005; Pourcho, Goebel y col. 1992).

El Pr5 recibe conexiones intersubnucleares desde la zona más caudal, es decir, desde los subnúcleos del Sp5 (Sp5o, Sp5i y Sp5c) (figura 3). Aunque no se ha determinado con exactitud su naturaleza, se sabe que no son GABAérgicas, ni de tipo GAD(Haring, Henderson y col. 1990).

Con respecto a las proteínas fijadoras de calcio, se han descrito dos importantes moléculas como son la parvalbumina (PA) y calbindina (CA) asociadas a
Introducción

dos tipos distintos de neuronas. En el Pr5 se han distinguido neuronas grandes CA positivas situadas dorsalmente y que no proyectan ni al tálamo, ni al colículo, ni al cerebelo. En la zona ventral se localizan neuronas pequeñas PA positivas, formando el patrón de ordenación de los barriletes. Estas neuronas proyectan al tálamo y/o al colículo superior (Bennett-Clarke, Chiaia y col. 1992).

Electrofisiología

En general, Pr5 presenta muy poca o ninguna actividad en ausencia de estimulación periférica (Jacquin, Golden y col. 1988; Veinante and Deschenes 1999), si bien, en un trabajo reciente de Minnery y Simons (2003), en contraste con los estudios anteriores, se ha descrito una frecuencia media de disparo en espontánea de 11,9 ± 12,6 espigas/s. Según sus autores estas discrepancias se deben a diferencias metodológicas, como el tipo de anestesia utilizado o si la vibrissa se encuentra en una posición natural o el aparataje dispuesto para su estimulación produce una cierta torsión en la misma (ref. Minnery and Simons. J.Neurophysiol 89:40-56.2003).

De las neuronas que se encuentran en la zona de los barriletes en Pr5, el 69% presenta una respuesta excitadora clara a la estimulación de las vibrissas (Jacquin, Golden y col. 1988). Esta respuesta es muy dependiente de las características del estímulo, tales como la intensidad o la velocidad, así como de su naturaleza, es decir, mecánico o estimulación con aire. La estimulación mecánica (producida por un instrumento que fija la vibrissa y es capaz de moverla de forma precisa) puede producir respuestas de latencia de alrededor 4 ms (Minnery and Simons 2003) y la estimulación mediante chorros de aire (más parecida a la estimulación natural y que permite vibrar libremente a la vibrissa), produce respuestas en torno a los 7 ms (Sosnik, Haidarliu y col. 2001). El 29% de las neuronas que responden a la estimulación de las vibrissas lo hacen mientras dura la misma (neuronas de adaptación lenta o tónicas), mientras que el 71% restante sólo
Introducción

responde al comienzo de la estimulación (neuronas de adaptación rápida o fásicas) (Jacquin, Golden y col. 1988). Podría haber también en este caso diferencias entre las respuestas provocadas por estímulos mecánicos o por estímulos de aire, de manera que en determinados trabajos bajo estimulación de aire sólo han encontrado neuronas de tipo tónico (Sosnik, Haidarliu y col. 2001). En otros estudios se ha determinado que entre las neuronas cuyo campo receptivo se limita a una sola vibrissa, el 38% presenta una respuesta tónica, mientras que casi la totalidad de las neuronas cuyo campo receptivo incluye varias vibrissas tiene respuestas de tipo fásico (Veinante and Deschenes 1999). Por otro lado, de las neuronas que proyectan al núcleo VPm del tálamo, más del 90% responden de manera tónica (Minnery and Simons 2003).
1.3.2 El núcleo Espinal Oral

Organización general y cito-arquitectura

El núcleo Sp5o está localizado caudalmente al núcleo Pr5 (figura 8). Se une en su zona caudal al núcleo Sp5i y está bordeado lateralmente por el tc5. Se diferencia del Pr5 por grandes haces de axones mielinizados que lo atraviesan en su extensión rostro-caudal. Tiene un volumen estimado en 1.59 ± 0.06 mm³ y un número de neuronas en 21.100 ± 3.300 (Avendaño, Machin y col. 2005).

En este núcleo la densidad celular es muy baja (13300 ± 2200 células/mm³). En la parte rostral hay células de tamaño pequeño (<10 µm) y mediano (10-20 µm), mientras que en la parte más caudal predominan neuronas grandes multipolares (mayores que las de cualquier otro núcleo del CST) y con grandes árboles dendríticos (Bates and Killackey 1985; Ma 1991).

Se puede subdividir el núcleo Sp5o en tres regiones según la cito-arquitectura de sus neuronas y su conectividad. Estas tres regiones son la parte dorso-medial (DM), una zona que haría de límite (BZ) y la parte ventro-lateral (VL). Cada subdivisión se extiende a lo largo del eje rostro-caudal del Sp5o, siendo la división VL la más grande. Esta subdivisión contiene al menos tres categorías de células que incluyen trigémino-espinales, tres tipos de neuronas de proyección descendentes a Sp5c, y neuronas de tipo II de Golgi. Dentro de la subdivisión DM son numerosas las neuronas de proyección trigémino-cerebelares que inervan una o más regiones de la porción orofacial de las cuatro principales áreas táctiles del cerebelo (crura I y II, el lóbulo paramedial y úvula). La zona BZ incluye entre sus células un grupo que proyecta a cerebelo y otro que proyecta a Sp5c. Sin embargo, un gran número de las neuronas que forman estos dos grupos corresponde a células pequeñas. En general, las neuronas situadas en cada subdivisión tienen sus árboles dendríticos limitados en su región y situados para recibir las aferencias primarias trigeminales (Falls 1983; Falls 1984c; Falls 1984a; Falls 1984b; Falls 1986).
Introducción

Aunque el núcleo Sp5o recibe aferencias primarias desde las vibrísas, no hay evidencia alguna de un patrón claro de relación entre vibrísas y agregados celulares (Belford and Killackey 1979; Darian-Smith 1973; Ma 1991), no habiéndose observado ninguna estructura similar a los barriletes como la descrita en el núcleo Pr5 (figuras 2 y 4).

Aferencias y eferencias

El núcleo Sp5o recibe menos fibras asociadas a vibrísas, y de forma más dispersa, que el Pr5 y el Sp5i (figura 7), aunque el número de colaterales que dejan las fibras aferentes es mayor (Hayashi 1980). Los terminales están orientados radialmente y son similares a los de las otras subdivisiones, formando también columnas rostro-caudales (Bates and Killackey 1985).

Se ha demostrado que en el Sp5o terminan axones de neuronas trigeminales que inervan los folículos de las vibrísas de tres poblaciones diferentes. En el núcleo, estas tres poblaciones de axones son similares en sus terminales y derivan de fibras de tipo Aβ las cuales están restringidas a la zona BZ. Además, la zona VL recibe aferencias primarias de tipo Aδ derivados de mecanorreceptores de alto umbral (Hayashi 1982).

El Sp5o se caracteriza por la presencia de largos haces de fibras dentro del propio núcleo. Comparado con el Pr5, los terminales de los aferentes son más finos, más extensos y se presentan en menor número. En general, las colaterales evitan los largos haces de fibras, sin embargo algunas de las fibras pueden verse invadidas por estos haces y algunos incluso, forman botones terminales en su interior (Ma 1991).

La entrada más importante al Sp5o es de tipo nociceptivo, desde neuronas trigeminales primarias que inervan las encías y con zonas localizadas en la cavidad oral y en la cara (Dallel, Raboisson y col. 1990; Takemura, Sugimoto y col. 1991).

Neuroquímica

El núcleo Sp5o contiene interneuronas GABAérgicas y algunas células de tipo glutamatérgico. Hay neuronas pequeñas positivas para PA, que procesan...
Introducción

información de una sola vibrissa y son neuronas de circuito local. Un pequeño porcentaje de neuronas grandes son positivas para CA y procesan información multivibrissa. Estas neuronas proyectan al tálamo y/o al colículo superior (Bennett-Clarke, Chiaia y col. 1992). También hay neuronas positivas para NADPH-d (Munekawa, Sugiyo y col. 2002).

Electrofisiología

Sobre el núcleo Sp5o apenas existen trabajos sobre la respuesta de sus neuronas a la estimulación de las vibrissas y de los que hay, la mayoría está relacionada con dolor.

Gibson (1987) estudió 50 neuronas del núcleo Sp5o, observando que más del 90% de las neuronas presentaban alguna sensibilidad direccional y alrededor de la mitad de las neuronas tenía campos receptivos que incluían más de una vibrissa, con más del 20% de ellas con campo receptivo de 10 o más vibrissas.

La actividad espontánea de las neuronas que responden a la estimulación de las vibrissas es, en conjunto, baja (Dallel, Raboisson y col. 1990), de manera que en reposo la mayoría de las neuronas (66%) no tienen ninguna actividad y sólo un 5% disparan una espiga o más por segundo. La latencia de las respuestas provocadas por la estimulación de las vibrissas estaba entre 2 y 8ms (Gibson 1987).

Aún se desconoce la proporción de neuronas del Sp5o que responden a la estimulación de las vibrissas, pero se sabe que de las neuronas que responden a estímulos orofaciales, el 18% lo hace ante la estimulación de los bigotes (Dallel, Raboisson y col. 1990). Hay autores que describen este núcleo como semejante al Sp5i por las extensivas ramas dendríticas, la convergencia y la diversidad funcional de sus neuronas (Jacquin and Rhoades 1990).
1.3.3 El núcleo Espinal Interpolar

Organización general y cito-arquitectura

Caudal al Sp5o (figura 8), el núcleo Sp5i se extiende hasta el nivel de la sustancia gelatinosa del núcleo Sp5c. Tiene un volumen estimado de 2.63 ± 0.34 mm3, con 61.600 ± 8.300 neuronas y una densidad celular de 23500 ± 2800 células/mm3 (Avendaño, Machin y col. 2005). Está limitado lateralmente por el tc5 y medialmente por el núcleo reticular parvicelular (Bates and Killackey 1985).

Con neuronas densamente empaquetadas, presenta igual número de neuronas pequeñas (<10µm) y medianas (10-20µm), de forma ovoide o poligonal, y un menor número de neuronas grandes (20-30µm), distribuidas de manera homogénea por todo el núcleo (Bates and Killackey 1985). Se han descrito tres tipos de neuronas en este núcleo: a) células multipolares de tamaño medio-grande orientadas radialmente, b) un grupo similar orientadas dorso-medialmente y c) neuronas mucho más pequeñas con somas redondos y con el árbol dendrítico compacto situadas por todo el núcleo (Darian-Smith 1973).

Este núcleo se caracteriza por tener un número muy alto de neuronas que responden a las vibras, pudiéndose observar barriletes (figuras 2 y 5), que ocupan dos tercios de la parte ventral y dos tercios de la parte lateral (Ma 1991). De hecho, comparado con el núcleo Pr5, los barriletes de Sp5i disponen de un gran volumen de tejido neuronal. Existe una gran variabilidad en cuanto a la disposición de las células en el barrilete, de manera que podemos encontrar neuronas con su árbol dendrítico limitado al barrilete, neuronas con el soma en un barrilete y sus dendritas dirigidas a otros barriletes y neuronas interbarriletes.

La organización somatotópica en el núcleo Sp5i es diferente a la del Pr5. En el Sp5i, la fila A de vibras está representada en la parte ventral y la fila E dorsalmente, mientras las straddlers están situadas en la zona lateral (Ma 1991) (figuras 2 y 5).

Introducción

Aferencias y eferencias

Los axones del tc5 que inervan la parte más rostral del núcleo Sp5i terminan medialmente y aquellos que inervan la zona caudal terminan lateralmente. Esta inversión topográfica se extiende a través del eje rostro-caudal del Sp5i (Jacquin, Stennett y col. 1988).

Las colaterales de las aferencias primarias de las vibrisas entran de forma perpendicular al eje largo del núcleo y forman agrupaciones longitudinales de forma rostro-caudal que coinciden con los barriletes. Las agrupaciones de estas fibras terminan a través de la extensión medio-lateral del núcleo (Jacquin, Woerner y col. 1986). Parecida disposición se produce con las colaterales de los aferentes de estructuras como la mucosa de la lengua o los dientes. Todos los axones envían colaterales orientados transversalmente hacia Sp5i. Las colaterales están topográficamente organizadas; los axones que inervan la parte más rostral (el hocico) y la cara, terminan medialmente y aquellos que inervan la parte caudal, envían sus colaterales en la zona lateral del núcleo. La parte dorsal de la cara y las vibrisas están representadas en la parte ventral del Sp5i, mientras la parte ventral del rostro está representada más dorsalmente (Jacquin, Stennett y col. 1988).

La principal proyección que parte del Sp5i lo hace desde la zona ventral de este núcleo hacia el tálamo contralateral (figura 5), con dos tipos de axones ambos portando información multivibrisal: a) fibras gruesas de 2-4 μm que terminan en el núcleo Pom y el mesencéfalo y b) fibras finas de 1-2 μm que terminan en la zona ventral-lateral del VPm. Estos axones terminan formando estrechos puntos de contacto sobre las neuronas de los barriloides (Pierret, Lavallee y col. 2000; Veinante, Jacquin y col. 2000).

También se han descrito proyecciones al cerebelo, al colículo superior, la cliva inferior y ciertas áreas sensorial-motoras (Huerta, Frankfurter y col. 1983). Una alta proyección ipsilateral y en menor medida, contralateral, se produce hacia el núcleo Me5 desde las zonas dorsal y ventral del núcleo (Buisseret-Delmas,
Introducción

Figura 5. Esquema de aferentes y eferentes del Sp5i. La información multivibrissa proyectada a la parte ventral lateral del VPM se produce desde neuronas pequeñas CA positivas glutamatérgicas. El resto de la proyección de la información multivibrissa se inicia en neuronas grandes glutamatérgicas y sinaptan en la zona incerta, tectum y colículo superior. Neuronas pequeñas PA positivas de circuito local proyectan a Pr5 desde la zona de los barriletes. Recibe aferentes tanto desde Sp5o como desde las capas III y IV del SP5c.

Neuroquímica

La proyección desde Sp5i hacia el tálamo y más concretamente hacia el núcleo VPm, es de tipo glutamatérgico (Magnusson, Clements y col. 1987). Las neuronas glutamatérgicas que se han descrito tienen un tamaño medio de 17,4 μm y se encuentran distribuidas por todo el núcleo de forma uniforme (Magnusson, Larson y col. 1986). Hay neuronas GABAérgicas en toda la extensión del núcleo, aunque se localizan mayoritariamente en la parte dorsal. El Sp5i recibe conexiones intersubnucleares desde la zona más caudal, el núcleo Sp5c, de naturaleza no GABAérgica (Haring, Henderson y col. 1990).
Introducción

La glicina también ha sido descrita en el Sp5i, en baja proporción (Pourcho, Goebel y col. 1992). Con respecto a las proteínas fijadoras de calcio PA y CA, este núcleo tiene un gran número de neuronas de ambos tipos. Las células PA son pequeñas y en la parte ventral se distribuyen siguiendo la topografía de las vibriscas. Ninguna de ellas proyecta a centros superiores, pero se marcan retrógradamente desde el Pr5. Algunas neuronas grandes son CA positivas y proyectan al tálamo y/o al cólículo superior, pudiéndose también marcar algunas retrógradamente desde el Pr5 (Bennett-Clarke, Chiaia y col. 1992).

Electrofisiología

En general, las neuronas de este núcleo presentan una actividad espontánea muy baja, de manera que más del 50% disparan a menos de 1 Hz (Gibson 1987) y además, las que proyectan al tálamo parecen ser casi silentes (Jacquin, Barcia y col. 1989).

El campo receptivo de las neuronas que responden a la estimulación de las vibriscas oscila entre 4 y 19 vibriscas (Jacquin, Mooney y col. 1986), siendo más grande el campo receptivo de las neuronas de proyección talámica (11,6 ± 5,7 vibriscas de media) que el de las de proyección a cerebelo (2,7 ± 1,9 vibriscas de media) (Jacquin, Barcia y col. 1989).

La latencia de las neuronas de Sp5i a una estimulación eléctrica aplicada en el Vg es de 1,34 ± 0,28 ms (Jacquin, Golden y col. 1989). Esta latencia varía en función del tipo de neurona de manera que las neuronas que proyectan al tálamo tienen una latencia de 1,32 ± 0,22 ms, mientras que las que proyectan a cerebelo o a la oliva responden a los 1,54 ± 0,34 ms y a los 1,1 ms, respectivamente (Jacquin, Barcia y col. 1989).

El 85% de las neuronas de Sp5i presenta una respuesta de adaptación lenta al estímulo (Jacquin, Golden y col. 1989), encontrándose diferencias en esta
proporción en función de la naturaleza de las neuronas. Así, las neuronas de proyección talámica suelen ser de tipo fásico al igual que las colículo-olivares. El 75% de las neuronas de proyección a cerebelo son fásicas, y las de tipo tónico presentan una respuesta muy irregular (Jacquin, Barcia y col. 1989).

Las neuronas del Sp5i son muy sensibles a las características del estímulo. Presentan una fuerte preferencia direccional y un umbral de respuesta muy bajo (0,4° de desplazamiento) (Gibson 1987). Las neuronas de proyección talámica tienen un umbral de respuesta menor que las de proyección a cerebelo (0,29° y 10° respectivamente) y una sensibilidad direccional más marcada (Woolston, La Londe y col. 1982).
1.3.4 El núcleo Espinal Caudal

Organización general y cito-arquitectura

Separado rostralmente del Sp5i por la extensión de la sustancia gelatinosa, el núcleo Sp5c está flanqueado medialmente por el núcleo reticular de la médula y lateralmente por el tc5. Caudalmente, continúa hasta la médula espinal (Bates and Killackey 1985). El volumen calculado de su tamaño es de $3,73 \pm 0,11\text{mm}^3$ y el número de neuronas es de $159,100 \pm 25,300$ (Avendaño, Machin y col. 2005), con una densidad celular de 42600 ± 6300 células/mm3.

Este núcleo es homólogo al asta dorsal de la médula espinal y presenta una disposición similar a las láminas I-VI de Rexed (Gobel 1978) (figura 6). Tiene una estructura laminar típica con neuronas grandes ($20\mu\text{m}$) en su borde medial al núcleo reticular lateral de la médula (Ma 1991). Con marcaje de Nissl, se pueden distinguir tres láminas: zona marginal (lámina I), sustancia gelatinosa (lámina II) y capa magnocelular (lámina III y IV). Algunos autores describen una lámina V, en la que se pueden encontrar neuronas con dendritas largas que se extienden dentro de la lámina magnocelular y que correspondería a la formación reticular (Voisin, Domejean-Orliaguet y col. 2002). La zona marginal y la sustancia gelatinosa están dedicadas al procesamiento de dolor, mientras que la capa magnocelular procesa información táctil proveniente de las vibrasas (figura 6).

La zona marginal contiene células mayoritariamente pequeñas o medianas ($<20\mu\text{m}$), con formas ovoides (45%) o fusiformes (55%). Medialmente a esta lámina, se encuentra la sustancia gelatinosa, con neuronas pequeñas ($10\mu\text{m}$) de forma ovoide o fusiforme y en menor proporción, células de tamaño medio ($15\mu\text{m}$). Por último, aunque en la capa magnocelular la densidad celular es menor que en la lámina 2, presenta una mayor diversidad de tipos celulares, pudiéndose encontrar desde neuronas pequeñas a muy grandes ($>20\mu\text{m}$), incluyendo neuronas piramidales. Una minoría de neuronas posee dendritas que se extienden hacia la superficie laminar (Voisin, Domejean-Orliaguet y col. 2002). En la lámina magnocelular, se encuentran
neuronas que reciben aferencias provenientes de las vibrisas (Bates and Killackey 1985; Renehan, Jacquin y col. 1986). De los tres núcleos que poseen la organización en barriletes, es en el Sp5c donde son más obvios (figura 2). Individualmente, los barriletes son muy grandes, aunque no parece que se extiendan a lo largo de todo el núcleo y ocupan dos tercios del área total en su mayor extensión (Ma 1991).

Las neuronas con campos receptivos de la porción de la cara que inerva la rama mandibular ocupan la parte dorso-medial del núcleo; neuronas con campos receptivos oftálmicos ocupan la región ventro-lateral y las neuronas de la rama maxilar, ocupan la zona intermedia. Estos datos sugieren que existe una topografía tanto interdivisional como intradivisional (Renehan, Jacquin y col. 1986).

Aferencias y eferencias

Mientras que la mayoría de los axones de diámetro grande de las células del Vg lleva información táctil hacia Pr5 y Sp5i, los axones pequeños mielinizados y no mielinizados hacen sinapsis en el núcleo Sp5c (Crissman, Sodeman y col. 1996) (figuras 6 y 7). El Sp5c contiene numerosas neuronas nociceptivas, muchas de las cuales proyectan directamente a niveles superiores involucrados en procesos de dolor (Bereiter, Hirata y col. 2000).

Generalmente se ha considerado este núcleo implicado únicamente en el procesamiento de información nociceptiva. En este contexto hay neuronas en las capas superficiales que son activadas con estímulos nociceptivos y que proyectan al núcleo submedial del tálamo (Sm) (Yoshida, Dostrovsky y col. 1991). Pero existe una cierta controversia con respecto a la posible información que pueda procesar y transmitir el Sp5c. Lund y Webster (1967) (Lund and Webster 1967) describieron fibras eferentes del núcleo Sp5c que terminaban en el complejo ventrobasal del tálamo (VPm y Pom), el principal centro de recepción de la información somatosensorial, y estudios más recientes han corroborado la existencia de
proyecciones desde Sp5c hacia los núcleos VPM y Pom (Bennett-Clarke, Chiaia y col. 1992; Fukushima and Kerr 1979; Jacquin and Rhoades 1990; Peschanski 1984).

El Sp5c está inervado por fibras trigeminales provenientes de las vibrasas. Las neuronas del Sp5c que responden a vibrasas se localizan formando barriletes muy cerca del límite con Sp5i y sus axones son de diámetro pequeño (Ma 1991). Parece que estas neuronas proyectan muy poco al tálamo. Los eferentes hacia tálamo de este núcleo conectan con la parte ventral del VPM, aunque un pequeño número de fibras parece proyectar tanto al VPM como al Pom (Veinante, Jacquin y col. 2000). Un trabajo reciente confirma la proyección del Sp5c a los núcleos VPM y Pom, determinando que dicha proyección, de naturaleza contra-lateral, parte de zonas específicas de las láminas I, III y V y se distribuye en los núcleos talámicos, de manera que las fibras que parten de la zona dorso-medial del Sp5c alcanzan la zona medial del VPM, las que parten de la región ventrolateral proyectan a la zona lateral del mismo núcleo y las que provienen de la región intermedia, inervan la zona intermedia del VPM (Guy, Chalus y col. 2005).

Figura 6. Esquema de aferentes y eferentes del Sp5C. Las capas I y II son ricas en células PA positivas pero son las neuronas grandes CA positivas de la capa I las que proyectan a tálamo transmitiendo información de dolor. Las neuronas pequeñas PA positivas de las capas III y IV son de circuito local y envían proyecciones al Pr5 con información de vibrasas individuales. Las neuronas CA positivas de la capa V envían sus proyecciones a tálamo y/o colículo superior. Esta proyección es de tipo glutamatérgica y transmite información multivibrissa.
Introducción

Además de la proyección talámica, se ha demostrado la existencia de neuronas en la mitad medial del Sp5c que proyectan al núcleo Me5. Este núcleo se caracteriza por poseer cuerpos celulares de neuronas sensoriales primarias somáticas que inervan regiones faciales (Buisseret-Delmas, Pinganaud y col. 1997). También se han encontrado proyecciones ipsilaterales y contralaterales hacia la parte lateral y dorso-lateral del núcleo facial motor (nVII) y una proyección contralateral muy débil hacia el núcleo abductor accesorio (nVIacc) (Dauvergne, Zerari-Mailly y col. 2002). Estos datos sugieren un papel de las neuronas del Sp5c en la coordinación de la musculatura.

Estudios anatómicos anterógrados y retrógrados han demostrado que el núcleo Sp5c envía proyecciones a los núcleos más rostrales del complejo trigeminal, Sp5i y Sp5o, así como al Pr5 (figura 7). (Jacquin, Chiaia y col. 1990a; Nasution and Shigenaga 1987).

Las conexiones intersubnucleares están identificadas por su origen desde neuronas mecano-sensitivas de circuito local de bajo y alto umbral en todos los núcleos del CST, así como desde células de proyección talámica y/o colículo de bajo umbral en cada uno de los subnúcleos del Sp5. La mayoría de estas células tienen campos receptivos sencillos (Jacquin 1989; Jacquin, Barcia y col. 1989; Jacquin, Golden y col. 1989).

De especial relevancia parece la conexión desde el Sp5c al Sp5o. Esta conexión se realiza desde las láminas III, IV y V y en menor grado, desde la lámina I, lo que sugiere que la información que se envía al Sp5o es tanto de naturaleza nociceptiva como no nociceptiva. Las conexiones entre estos dos núcleos conservan la distribución somatotópica de las aferencias primarias, pudiendo suministrar un substrato anatómico para la activación indirecta del núcleo Sp5o por estímulos somatosensoriales a través del núcleo Sp5c (Voisin, Domejean-Orliaguet y col. 2002).
Introducción

Se ha demostrado que la formación de los campos receptivos de neuronas sensitiva a vibrissa en el núcleo del tálamo VPM, tiene su origen a través de las conexiones intersubnucleares entre Sp5 y Pr5 (Timofeeva, Lavallée y col. 2004).

Neuroquímica

En el Sp5c se ha encontrado el mayor número de neuronas que contienen glutamato; la mayoría se localiza en la capa magnocelular y muchas de estas neuronas son de proyección al VPM (Magnusson, Clements y col. 1987; Magnusson, Larson y col. 1986). Se ha estudiado también el glutamato en los terminales axónicos, presentándose en todas las láminas. Estos terminales son morfológicamente muy heterogéneos (Clements and Beitz 1991).

Se han descrito neuronas que contienen GAD en las láminas I y II, y GABA en neuronas de las láminas II y III (Haring, Henderson y col. 1990). La densidad más alta de receptores de AMPA, NMDA, aspartato y kainato es en las capas superficiales (I y II), una región conocida por estar densamente inervada por aferencias primarias nociceptivas (Tallaksen-Greene, Young y col. 1992).

Se han detectado proteínas fijadoras de calcio en este núcleo. Así, la PA se localiza en la lámina II y es menos frecuente en la lámina I. Menor número de neuronas se describieron en la capa magnocelular, formando parte del agregado celular de las vibrisas. Ninguna de estas neuronas poseen proyecciones hacia tálamo, cerebelo o colículo superior. Las células reactivas CA están localizadas en la lámina II y en menor número fueron también visibles en las láminas I y III-IV. Un pequeño porcentaje de células positivas CA de la lámina I y de la capa magnocelular proyectan a tálamo (Bennett-Clarke, Chiaia y col. 1992).

En Sp5c hay también fibras inmunoreactivas al neuropéptido galanina en las láminas I y II. Estas fibras son de gran tamaño y un cierto número tiene su origen en el locus coeruleus (Simpson, Waterhouse y col. 1999).
Introducción

Electrofisiología

El Sp5c posee neuronas específicas nociceptivas con pequeños campos receptivos localizadas en la lámina I (Price, Greenspan y col. 2003). Las células que responden mejor a los estímulos dolorosos se encuentran localizadas principalmente en las láminas I, II y en la parte superficial de la lámina V. Se han descrito neuronas que responden sólo al movimiento de una o más vibrisas (entre 2 y más de 5). En menor número, se han descrito neuronas activadas por el movimiento de pelos pequeños, neuronas que respondían al movimiento de pelos pequeños o vibrisa (entre 1 y más de 5) y células activadas por un estímulo nocivo sobre la piel de la cara. Las neuronas activadas con movimiento de las vibrisas y/o pelos pequeños están localizadas en las láminas III-IV y la parte superficial de la lámina V. Los árboles dendríticos de las neuronas de bajo umbral son, en su mayor parte, más densos que los de las neuronas nociceptivas. Las neuronas sensitivas a las vibrisas dorsales y a pelos pequeños están localizadas ventralmente (Renehan, Jacquin y col. 1986).

Se han encontrado tipos de campos receptivos en los cuales convergen diferentes tipos de aferentes primarios trigeminales: vibrisas múltiples, vibrisas junto con pelos pequeños y neuronas nociceptivas de amplio umbral (WDR) (Renehan, Jacquin y col. 1986).
Figura 7. Esquema de las interconexiones entre el núcleo Pr5 y Sp5. La mayor proyección se produce desde Sp5c hacia cada uno de los núcleos más rostrales. Es muy débil la proyección que existe desde el Pr5 hacia el resto de los núcleos más caudales.
Figura 8. Localización histológica del trayecto y punto de registro del electrodo en los cuatro núcleos de estudio en este trabajo. Las imágenes de Pr5, Sp5a, Sp5i pertenecen a cortes coronales del lado izquierdo, mientras que la imagen del Sp5c pertenece al lado derecho. Utilización de la tinción de Nissl, realizando cortes coronales (50 μm).
1.4 NÚCLEOS TALÁMICOS DE LA VÍA SOMATOSENSORIAL DE LAS VIBRISAS

Como ya hemos dicho, la información somatosensorial proveniente de las vibrissas alcanza la corteza por dos vías paralelas principales, la lemniscal y la paralemniscal. En cada vía está implicada una región talámica diferente: el VPM en la primera y el Pom en la segunda.

1.4.1 Anatomía

VPM

El VPM contiene una población homogénea de neuronas multipolares de tamaño medio, todas las cuales son células de relevo tálamo-corticales excitatorias que principalmente proyectan a la capa IV de SI. Al igual que en Pr5, estas células forman agregados celulares que, en este núcleo, se denominan barriloides. Existe una correspondencia clara entre cada barriloide y una única vibrisa, al igual que entre cada barriloide y el barrilete correspondiente en Pr5, de manera que en este núcleo existe una somatotopía muy precisa: la fila más dorsal de los vibrissas (fila A), está representada en la porción más caudal del VPM, mientras la fila más ventral de vibrissas (fila E), está representada rostralmente (Rhoades, Belford y col. 1987). No se han descrito interneuronas o neuronas GABAérgicas en el núcleo VPM (Barbaresi, Spreatfico y col. 1986; Harris 1986). Las neuronas de proyección del VPM emiten colaterales hacia el núcleo reticular del tálamo (RT) en su recorrido hacia la corteza. El RT sólo contiene neuronas inhibitorias GABAérgicas que, a su vez, envían sus axones hacia los barriloides del VPM (Pinault and Deschenes 1995).

La principal vía de fibras ascendentes desde el CST es de los núcleos Pr5 y Sp5i. Técnicas de marcaje han determinado que el 68% de las neuronas de proyección del Pr5 tiene un campo receptivo limitado a una sola vibrisa y proyectan
a la parte dorsal del VPM, terminado en forma matosa en un solo barrilóide (Veinante, Jacquin y col. 2000). El resto, el 32% tiene un campo receptivo que incluye varias vibriscas y proyecta a Pom, la zona incerta, tectum y muy poco a VPM (Veinante and Deschenes 1999). Desde el Sp5i, parten fibras finas (tipo II) que terminan en el VPM y, de forma más dispersa, en el tectum. Estas fibras parten de la zona que recibe información de las vibriscas del núcleo Sp5i, con neuronas de tamaño pequeño e inervan de forma selectiva el VPMvl (Pierret, Lavallee y col. 2000). Parece que estos axones de tipo II envían información multi-vibrissas a un único barrilóide talámico (Veinante, Jacquin y col. 2000). Según Chiaia y colaboradores (1991) (Chiaia, Rhoades y col. 1991a) más del 90% de las neuronas del VPM pueden ser activadas eléctricamente desde ambos núcleos trigéminales (Chiaia, Rhoades y col. 1991b).

El VPM proyecta topográficamente a la corteza SI, tercera estación de relevo de la información somatosensorial, terminando principalmente en la capa IV y dejando colaterales en las capas supragranular e infragranular (Herkenham 1980). Los marcajes anterógrados de los axones tálamo-corticalese demuestran que la mayoría de las células que forman los barriloides (VPMdm) proyectan a una única columna de barril, mientras que las neuronas que forman la cola del barrilóide (VPMvl), emiten sus axones hacia el área secundaria somatosensorial y al zona disgranular del campo del barril (Pierret, Lavallee y col. 2000).

Pom

El núcleo Po rodea al VPM y su parte más dorso-medial (Pom) recibe aferencias de todo el cuerpo y está topográficamente organizado (Diamond, Armstrong-James y col. 1992; Fabri and Burton 1991).

Las neuronas asociadas a la estimulación de las vibriscas tienen árboles dendríticos más grandes que las neuronas del VPM y su morfología es mucho más variable. Los parámetros relacionados con el tamaño del árbol dendrítico de las
neuronas Pom tienen una correlación significativa con el número de vibrisas en el campo receptivo (Chiaia, Rhoades y col. 1991b).

Con estimulación eléctrica se ha demostrado la existencia de proyecciones desde los núcleos trigeminales Pr5 y Sp5i hacia el núcleo Pom, de neuronas relacionadas con información de las vibrisas, aunque esta proyección es menor que la que recibe el VPm (Chiaia, Rhoades y col. 1991b). Se ha descrito que el 32% de la proyección del Pr5 es desde células sensitivas a varias vibrisas y que hacen sinapsis en Pom, zona incerta, tectum y VPm (Veinante and Deschenes 1999). Estudios de marcaje han demostrado que son muy pocas las neuronas relacionadas con las vibrisas que proyectan desde el núcleo Sp5o hacia Pom, inervando su parte caudal. Desde el Sp5i llegan axones gruesos (tipo I) que se distribuyen por el Pom y un pequeño número de axones finos proyectan al Pom desde la parte dorsal del Sp5c (Veinante, Jacquin y col. 2000).
1.4.2. Electrofisiología

VPM

En general, el VPm no presenta neuronas que respondan a una única vibrissa (Chiaia, Rhoades y col. 1991a; Chiaia, Rhoades y col. 1991b). Los campos receptivos de las neuronas tónicas contienen de 1 a 5 vibrissas, mientras que los campos receptivos de las fásicas tienden a ser mayores (entre 1 y 12 vibrissas)(Ito 1988). La generación de los campos receptivos en VPm está mediada por las conexiones intersubnucleares en el CST (Timofeeva, Lavallée y col. 2004).

Como otras neuronas talámicas, las del VPm tienen dos modos de disparo: tónico, que son simples potenciales de acción y de “ráfagas” que produce explosiones rítmicas de 2-10 potenciales de acción a 300-500 Hz. La producción de ráfagas suele estar relacionados con estados sueño y anestesia, mientras que la producción de una respuesta tónica suele aparecer en los estados de vigilia (Nicolelis and Fanselow 2002).

El 62% de las neuronas del VPm asociadas a vibrissas responden de manera fásica. Las neuronas tónicas presentan latencias de 7 ms de media, más cortas que las fásicas que promedian 8 ms de latencia. Las neuronas tónicas son, en general, más dependientes de la amplitud del movimiento de la vibrissa que de la velocidad, mientras que las neuronas fásicas dependen más de la velocidad(Ito 1988).

Se ha descrito que las dendritas distales de las neuronas de los barriloides se extienden hasta los barriloides vecinos haciendo sinapsis con los axones que llegan desde las neuronas del núcleo RT (Desilets-Roy, Varga y col. 2002). Lavellée y Deschenes (2004)(Lavallée and Deschenes 2004) mostraron que la neuronas que procesan la información de las vibrissas adyacentes, suprimen la actividad de las células de los barriloides, sugiriendo que la inhibición se produce sobre los barriloides vecinos, contribuyendo de este modo a favorecer y precisar la detección de un estímulo (Aguilar and Castro-Alamancos 2005).
Introducción

Pom

El Pom forma parte de la vía paralemniscal, la cual se inicia principalmente en el núcleo Sp5i y termina en la corteza SI (Diamond and Armstrong-James 1992). Los campos receptivos de las neuronas sensitivas a vibrisa son mayores que los de las neuronas del VPm, con un promedio de 4 vibrisas y solo el 32% tiene un campo receptivo asociado a una sola vibrisa (Chiaia, Rhoades y col. 1991b).
1.4.3. Filtrado dependiente de frecuencia

Las teorías sobre codificación neuronal de las entradas sensoriales suelen centrarse tanto en la tasa de disparo de potenciales de acción (esto es, número de espigas evocadas por el estímulo (Romo, Hernandez y cols. 2002), como en la precisión temporal de la actividad neuronal (Mountcastle, Talbot y cols. 1969). Estudios recientes han descrito modulación de ambas medidas dependiente de frecuencia, tanto en el núcleo ventral posteromedial del tálamo (VPM), el principal núcleo de relevo talámico de las señales provenientes de las vibras, como en corteza somatosensorial primaria (SI). Dependiendo del tipo de medida utilizada, las neuronas del VPM y de SI muestran una gran variedad de características de filtrado dependientes de frecuencia, incluyendo filtrado "low-pass" (esto es, mayores valores relativos para frecuencias bajas de estimulación), "high-pass" (esto es, mayores valores relativos para frecuencias altas de estimulación) y "band-pass" (valores relativos mayores para frecuencias intermedias de estimulación).

VPM

Cuando el efecto de la frecuencia de estimulación de la vibrissa sobre la tasa de disparo se mide como el número de espigas evocadas en una pequeña ventana tras la desviación de la vibrissa (por ejemplo entre 0 y 15 ms, o "tasa de disparo fásica" (PSR)), las neuronas del VPM muestran una adaptación significativa a las frecuencias de estimulación más altas (Ahissar, Sosnik y cols. 2000; Castro-Alamancos 2002c; Castro-Alamancos 2002a; Chung, Li y cols. 2002; Deschenes, Timofeeva y cols. 2003; Diamond, Armstrong-James y cols. 1992; Fanselow and Nicolelis 1999; Hartings, Temereanca y cols. 2003; Sosnik, Haidarliu y cols. 2001). La frecuencia más baja a la cual se observa esta adaptación en el VPM y su fuerza relativa varían entre los distintos estudios. Se han descrito valores desde 2 a 5 Hz (Ahissar, Sosnik y cols. 2000; Castro-Alamancos 2002b; Castro-Alamancos
Introducción

2002a; Diamond, Armstrong-James y col. 1992; Sosnik, Haidarliu y col. 2001) hasta
mayores de 30 Hz (Castro-Alamancos 2002a; Castro-Alamancos 2002b). Este
perfil de adaptación puede ser modulado por varios factores, incluyendo la
estimulación de la formación reticular del tronco encefálico (RF), la aplicación
directa de neuromoduladores, la depolarización relativa de las neuronas del VPm y
la amplitud de la desviación de la vibrissa (Castro-Alamancos 2002b; Castro-
Alamancos 2002a; Sosnik, Haidarliu y col. 2001) (Deschenes, Timofeeva y col.
2003).

Sin embargo, el factor que tiene una mayor influencia sobre la adaptación
del VPm es el estado comportamental del animal. Fanselow y Nicolelis (1999)
(Fanselow and Nicolelis 1999) encontraron que la estimulación eléctrica del nervio
infraorbital evocaba una respuesta de menor magnitud en el VPm mientras la rata
estaba en estado de "whisking" comparada con cuando estaba en estado de reposo
(quiescente o de inactividad). Una posible explicación para este efecto es que el
whisking genera una retroalimentación sensorial a la frecuencia del movimiento de
la vibrissa, incluso cuando las ratas mueven las vibrissas en el aire, sin contactar con
ninguna superficie (Fee, Mitra y col. 1997). Como consecuencia, las neuronas del
VPm están preparadas en un estado adaptado durante el whisking que provoca una
respuesta evocada inicial más pequeña. Estos autores también observaron que la
estimulación con pares de pulsos causaba una supresión relativa mayor del segundo
estímulo en el estado quiescente, pero no en el estado de whisking (Fanselow and
Nicolelis 1999); dado que el primer pulso en el estado de no whisking (el estado
putativamente no adaptado) es mucho mayor, este hallazgo es consistente con la
idea de que el VPm está realmente previamente adaptado a niveles basales por el
whisking, disminuyendo la capacidad relativa de adaptaciones posteriores.

Como señaló recientemente Castro-Alamancos, la adaptación de la función
PSR en el VPm depende de la depresión sináptica de los EPSPs de la
retroalimentación del tronco encefálico (Castro-Alamancos 2002a; Castro-
Alamancos 2002b; Deschenes, Timofeeva y col. 2003). Muchas neuronas
Introducción

somatosensoriales del tronco encefálico siguen estimulaciones de las vibrasas de alta frecuencia (Ahissar, Sosnik y col. 2000; Deschenes, Timofeeva y col. 2003; Hartings, Temereanca y col. 2003; Sosnik, Haidarliu y col. 2001), generando grandes EPSPs en las neuronas del VPm a frecuencias hasta varios cientos de hercios (Castro-Alamancos 2002a; Castro-Alamancos 2002b; Deschenes, Timofeeva y col. 2003). La depresión sináptica puede prevenir estos EPSPs durante la estimulación repetitiva (Castro-Alamancos 2002a; Castro-Alamancos 2002b; Deschenes, Timofeeva y col. 2003). El aumento de la depolarización talámica puede reducir la depresión sináptica en estas sinapsis (Castro-Alamancos 2002b), lo que sugiere que los diferentes perfiles de la adaptación de la función PSR reseñados en diferentes estudios reflejan, en parte, el grado de depolarización postsináptica bajo las diferentes condiciones de registro. El nivel de depolarización del VPm se puede modular por acetilcolina y noradrenalina y por entradas inhibitorias procedentes del núcleo reticular vecino (Castro-Alamancos 2002a; Lee, Friedberg y col. 1994).

En contraste con la adaptación low-pass de la función PSR, cuando la tasa de disparo se calcula como el número total de espigas evocadas sobre un periodo extenso de estimulación (tasa de disparo total (TSR)), se observan características de filtrado high-pass en el rango de 1 a 40 Hz. Hartings y col. (2003) (Hartings, Temereanca y col. 2003) encontraron que el número total de espigas que aparecían durante trenes de pulsos de 1 a 4 segundos aumentaba con cada aumento en la frecuencia de estimulación. El resultado en sí parece obvio: aunque las respuestas a una sola desviación de las vibrasas puede evocar menos potenciales de acción a frecuencias altas (PSR), a lo largo de una ventana de tiempo mayor la función TSR aumenta con la frecuencia ya que el número de deflexiones de la vibrasas en dicha ventana temporal también aumenta. Este tipo de integración con la función TSR sobre múltiples estímulos parece crucial en la discriminación de frecuencias en primates (Romo, Hernandez y col. 2002).
Introducción

La modulación relativa (RM) del tiempo de disparo en el VPm, esto es, la potencia de la componente de Fourier a una frecuencia de estimulación normalizada por el número total de espigas evocadas por el tren, aumenta rápidamente entre 1 y 12 Hz, mostrando aumentos más modestos a estimulaciones de mayor frecuencia (Hartings, Temereanca y col. 2003). Según se aumenta la frecuencia de estimulación, la entrada de retroalimentación desde el tálamo mantendrá una alta sincronía en el tiempo de llegada de los potenciales de acción a la corteza. Otros estudios han demostrado que el comienzo de la sincronía de la entrada talámica a SI es crucial en la conducción de la actividad excitatoria evocada (Pinto, Brumberg y col. 2000; Swadlow 2003; Swadlow, Beloozerova y col. 1998; Temereanca and Simons 2003). La alta fidelidad temporal observada en VPm preservaría la eficacia de la entrada retroalimentativa a SI a frecuencias muy altas (mayores incluso de 40 Hz).

Pom

Las neuronas paralemniscales del núcleo postero medial del tálamo (Pom) tienen campos receptivos más difusos y propiedades temporales más lentas que los del VPm (Diamond, Armstrong-James y col. 1992; Sosnik, Haidarliu y col. 2001). En consistencia con estas propiedades de los campos receptivos, las neuronas de Pom muestran adaptación de la función PSR low-pas, con una frecuencia de corte más baja y una adaptación más compleja de la respuesta que las neuronas de VPm (Ahissar, Sosnik y col. 2000; Diamond, Armstrong-James y col. 1992; Sosnik, Haidarliu y col. 2001). Esta adaptación más robusta correlaciona con una latencia aumentada del comienzo de la respuesta en Pom, que sucede sin un aumento similar de la latencia del final de la respuesta, ofreciendo una ventana temporal más pequeña para la generación de potenciales de acción (Ahissar, Sosnik y col. 2000; Ahissar, Sosnik y col. 2001; Sosnik, Haidarliu y col. 2001). En la capa V de SI, la cual provee retroalimentación al Pom, se han observado propiedades similares de adaptación y de retraso de la latencia (Ahissar, Sosnik y col. 2000; Ahissar, Sosnik
La función TSR y la fidelidad del tiempo de disparo no han sido aún analizadas en las respuestas paralemniscales.
Proyecciones

VPM

Las neuronas de proyección del VPM, en su recorrido hacia la corteza emiten colaterales hacia el núcleo RT. Está bien establecido que neuronas del núcleo RT y VPM tienen campos receptivos compuestos por una vibrissa principal y sus circundantes (Armstrong-James and Callahan 1991; Simons and Carvell 1989). Se ha demostrado la inervación por parte de un grupo de células del núcleo RT de la zona más dorsal de los barriloides de VPM, representado por el campo receptivo de la vibrissa principal, sugiriendo una especialización funcional de esta región (Desilets-Roy, Varga y col. 2002). Esta región recibe proyecciones trigeminales desde grandes neuronas que tienen su origen en el núcleo Pr5 con campos receptivos multi-vibrissa (Veinante and Deschenes 1999).

Pom

Pom proyecta también a SI, pero a regiones complementarias a las que proyecta VPM (Lu and Lin 1993). De este modo Pom proyecta al septum entre los barriles y a la corteza disgranular que los rodea, así como a SII (Carvell and Simons 1987).
1.5 CORTEZA SOMATOSENSORIAL

Anatomía

La región de SI que recibe y procesa la información somatosensorial iniciada en el órgano de las vibrissas está caracterizada por poseer unos agregados celulares que se extienden a lo largo de la capa IV. Estos grupos de neuronas son los denominados barriles. Existe un espacio característico entre los barriles, que tiene su propia estructura y recibe el nombre de *septum* (Woolsey and Van der Loos 1970) (Welker and Woolsey 1974). La disposición de los barriles coincide con la organización de los bigotes del lado opuesto de la cara. Las neuronas de cada uno de los barriles responden de forma efectiva al movimiento de la vibrisa que le corresponde (Ito 1985; Simons 1978; Simons and Woolsey 1979). El dominio neuronal del barril se extiende en columnas a través de todas las capas corticales (Durham and Woolsey 1977; Simons 1978; Simons and Woolsey 1979).

Cada barril tiene aproximadamente un diámetro de 200-400 μm y está formado por células situadas en el interior y células que forman los laterales del barril. El interior es rico en aferencias talámicas y sinapsis. Los barriles contienen células de tipo estrellado que están más densamente situadas en la periferia que en el interior (Welker and Woolsey 1974). Las células de la periferia normalmente tienen dendritas restringidas a un barril, dirigidas hacia su centro. Sin embargo, un pequeño porcentaje proyecta hacia el *septum* y los barriles vecinos (Petersen and Sakmann 2000). Menos conocida es la organización de los septum, con dendritas orientadas verticalmente y fibras intra-corticales con algunos somas descritos (White 1976).

La capa IV de SI donde se encuentran los barriles recibe la información táctil procedente de las neuronas talámicas excitatorias del VPM, mientras que la zona del *septum* recibe las proyecciones desde el Pom (Koralek, Jensen y col. 1988; Lu and Lin 1993). Para cerrar este circuito, existe una importante vía descendente originada en la capa VI de SI. Las dendritas distales de las neuronas del VPM están...
Introducción

densamente inervadas por estas proyecciones que son activadas por receptores glutamatérgicos. Estas proyecciones envían colaterales al núcleo RT (McCormick 1992). Este sistema neuronal representa el principal circuito que forma parte de todo el sistema CST-tálamo-SI.

Electrofisiología

La electrofisiología de SI es la mejor estudiada de esta vía, con un gran número de trabajos existentes. Las neuronas son sensitivas a los diferentes parámetros característicos del movimiento de una vibrisa, como su desplazamiento angular, velocidad, amplitud, patrones espaciales y temporales (Ito 1981; Simons 1978). La integración sensorial se produce dentro y entre los barriles, y los campos receptivos de las neuronas incluyen de dos a seis vibrisas (Armstrong-James and Callahan 1991; Ito 1985; Simons 1985). Sin embargo, se ha descrito que cada barril responde preferentemente a la vibrisa principal y de forma más débil, de una a cuatro vibrisas adyacentes (Armstrong-James and Fox 1987). Otros estudios de SI sugieren que los barriles individuales responden a entre 4 y 10 vibrisas (Keinfeld and Delaney 1996; Orbach, Cohen y col. 1985). La respuesta de la vibrisa principal está conducida directamente por las entradas tálamo-corticales hacia las neuronas de la capa IV (Armstrong-James, Callahan y col. 1991; Simons and Carvell 1989). Se ha demostrado que las respuestas de las neuronas a las vibrisas adyacentes también son determinadas por las proyecciones talámicas y no por interacciones intracorticales (Kwegyir-Afful, Bruno y col. 2005).

Estudios recientes han observado cierta modulación dependiente de frecuencia de la actividad evocada por las vibrisas en SI. Las neuronas excitatorias en los barriles de la capa IV de SI (un recipiente principal de entrada retroalimentativa de VPm) muestran adaptación low-pass de la función PSR en animales anestesiados (Ahissar, Sosnik y col. 2000; Ahissar, Sosnik y col. 2001; Chung, Li y col. 2002; Garabedian, Andermann y col. 2003). Varios estudios
Introducción

sugieren que esta adaptación está también presente en SI de ratas despiertas. Como en el VPM, en el animal despierto y libre, SI muestra una actividad evocada reducida ante un estimulo inicial en el estado de whisking y una supresión mayor ante pulsos pareados en el estado quiescente (Fanselow and Nicolelis 1999). Más aún, en la rata en ausencia de whisking con la cabeza fija se observa adaptación low-pass para el pico inicial de la tasa de disparo en las neuronas de SI (Kleinfeld, Sachdev y col. 2002). La estimulación de la formación reticular del tronco del encéfalo en la rata anestesiada, un paradigma que se cree emula la actividad neuronal del animal despierto, también conduce a la supresión de las respuestas sensoriales evocadas en SI, que es similar a la supresión observada durante la estimulación a alta frecuencia (Castro-Alamancos and Oldford 2002). La cantidad de adaptación de PSR en SI es significativamente mayor que la observada en el VPM, en gran medida a causa de una depresión sináptica adicional de la señal entrante en la sinapsis talamocortical (Chung, Li y col. 2002; Petersen and Sakmann 2001), y a frecuencias alrededor de 8-10 Hz parece estar aumentada por entradas GABAérgicas intracorticales (Garabedian, Andermann y col. 2003; Kyriazi, Carvell y col. 1996a; Kyriazi, Carvell y col. 1996b; Moore and Nelson 1998; Zhu and Connors 1999).

Mientras que el VPM muestra filtrado high-pass de la tasa de disparo (TSR) y del tiempo de disparo, SI muestra propiedades band-pass para estas medidas, centradas en el rango de frecuencia del whisking. Garabedian y col. (Garabedian, Andermann y col. 2003; Garabedian, Jones y col. 2003) estimularon las vibras a frecuencias desde 1 a 40 Hz y observaron que la función TSR en SI, medida durante el periodo de estabilidad tras la adaptación (entre 1 y 5 s tras el comienzo del estímulo) mostraba la tasa de disparo más alta en el rango comprendido entre 5 y 12 Hz. De igual manera, la fidelidad del tiempo de disparo, medido como vector strength, también mostraba un pico en este rango. Aunque las diferencias en la preparación experimental pueden contribuir a las diferencias observadas entre la respuesta de VPM y SI, el comportamiento band-pass de SI para estos parámetros en contraste con el comportamiento high-pass de VPM para los mismos implica que
Introducción

los mecanismos corticales son esenciales para estas transformaciones. Un modelo computacional de la circuitería de la capa IV de SI sugiere que el comportamiento band-pass de la función TSR depende de la fuerza de la depresión talamocortical. En contraste, este modelo sugiere que el comportamiento band-pass del tiempo de disparo no varía como una función de la depresión talamocortical, sino que depende de inhibiciones intracorticales muy duraderas, con un curso temporal similar a las evocadas por el reclutamiento GABAb. Esta inhibición duradera establece una periodicidad que coincide con el rango de frecuencias del whisking: a frecuencias por debajo de 8 Hz, esta inhibición suprime espigas "ruidosas" que no están estrictamente acopladas al estímulo, aumentando la consistencia general de las espigas durante el periodo de análisis; mientras que a frecuencias mayores de 8 Hz, esta inhibición dura lo suficiente para influir sobre la respuesta evocada, disminuyendo la fidelidad de la respuesta (Garabedian, Andermann y col. 2003; Garabedian, Jones y col. 2003).

La frecuencia de estimulación de la vibrissa no sólo modula el comportamiento del disparo de las neuronas de SI, sino también la extensión horizontal de corteza activada por la estimulación de la vibrissa (la función de extensión cortical a partir de un punto). En la rata anestesiada, la estimulación de una vibrissa a 1 Hz evoca la activación de una extensión significativamente mayor que la estimulación a 5 o 10 Hz (Sheth, Moore y col. 1998). Un efecto paralelo se observa también en animales despiertos, donde la estimulación del nervio in'raorbital recluta un área de SI significativamente más pequeña durante el whisking que durante estados de no whisking (Fanselow, Sameshima y col. 2001), y en ratas anestesiadas durante la estimulación de RF, donde la extensión que se activa es similar (Castro-Alamancos 2002c). Varios mecanismos parecen contribuir a esta restricción de activación espacial dependiente de frecuencia (Moore, Nelson y col. 1999), tales como mecanismos de retroalimentación que implican una adaptación diferencial de las entradas a SI lemniscales y paralemniscales: en la capa IV de SI, las neuronas de Pom proyectan a las regiones septales que sodean el barril, mientras que las neuronas de VPM proyectan a los barriles, lo que sugiere
Introducción

que la adaptación a frecuencias más bajas del Pom puede eliminar de forma selectiva la activación a frecuencias más altas de las zonas que rodean el barril. Otro mecanismo de retroalimentación es la depresión sináptica de las proyecciones talamocorticales que rodean al barril (Castro-Alamancos 2002c). Los mecanismos intracorticales que podrían suprimir la extensión lateral de la actividad incluyen la depresión sináptica intracortical (Markram and Tsodyks 1996; Petersen 2002; Thompson, Deuchars y col. 1993; Varela, Sen y col. 1997) y un reclutamiento más eficaz de neuronas inhibitorias al aumentar la frecuencia de estimulación (Simons 1978).
1.6 INFLUENCIA DE LA CORTEZA SOBRE LOS NÚCLEOS DEL CST

Proyecciones corticotrigeminales

En todas las especies de mamíferos estudiadas existe una proyección densa desde corteza somatosensorial hacia estructuras trigeminales subcorticales (Brodal, Szabo y col. 1956; Dunn and Tolbert 1982; Kawana 1969; Killackey, Koralek y col. 1989; Martin and West 1967; Mizuno, Sauerland y col. 1968; Tashiro 1982; Welker, Hoogland y col. 1988; Wise, Murray y col. 1979); si bien esta proyección es bastante modesta si se compara con la de otros sistemas, como los núcleos del córtex posterior (Wold and Brodal 1973).

La proyección corticotrigeminal se origina en neuronas piramidales grandes localizadas en la parte superior de la lámina Vb de la corteza somatosensorial desgranular, sobre todo SI y SII (Killackey, Koralek y col. 1989; Wise and Jones 1977). También parte un cierto número de fibras desde SIII, pero sobre todo al SIVc (Tashiro, Matsuyama y col. 1983). Existe una organización somatotópica precisa en esta proyección, de manera que no existe solapamiento entre las neuronas que proyectan a una región del CST y las que proyectan a otra región (Wise, Murray y col. 1979). Además hay una correlación clara entre aferencias y eferencias corticales ya que las neuronas de SI proyectan sólo a regiones que reciben la entrada sensorial de la misma zona periférica que la región cortical donde se origina la proyección corticotrigeminal (Wise, Murray y col. 1979).

La mayoría de estas fibras, si bien no todas, discurren por el tracto piramidal. Esta proyección es mayoritariamente contralateral (Dunn and Tolbert 1982; Tashiro, Matsuyama y col. 1983; Wise and Jones 1977; Wold and Brodal 1973), aunque en Pr5 existe un componente ipsilateral notable (Jacquin, Wiegand y col. 1990; Tashiro 1982; Wold and Brodal 1973). El cruce de la línea media de estas fibras se produce por la decusación piramidal (Jacquin, Wiegand y col. 1990; Welker, Hoogland y col. 1988), en el límite rostral del Sp5c. A éste núcleo acceden directamente tras decusar, mientras que para llegar a Sp5i, Sp5o y Pr5 ascienden

52
por la parte más medial del CST hasta alcanzar su objetivo (Welker, Hoogland y col. 1988). Las fibras dejan muy pocas o ninguna colateral a su paso por los distintos núcleos del CST (Welker, Hoogland y col. 1988). De hecho, solo el 14% de las neuronas corticales que proyectan a Pr5 y el 19% de las que proyectan a Sp5i lo hacen a los dos núcleos de manera conjunta (Killackey, Koralek y col. 1989). Pr5 recibe, además, fibras corticales que decusan a nivel de la salida del nervio facial (Welker, Hoogland y col. 1988).

Las fibras corticales no terminan de manera homogénea en los núcleos del CST. En Sp5c sólo pueden encontrarse en la capa magnocelular, mientras que en los otros tres núcleos aparecen de forma casi exclusiva en sus porciones ventrales (Jacquin, Wiegand y col. 1990; Wold and Brodal 1973). Además, existe un gradiente en la distribución de estas fibras entre los distintos núcleos, de manera que son más abundantes en las zonas caudales del complejo (Sp5c y Sp5i), algo menos frecuentes en Pr5 y aparecen muy poco en Sp5o (Welker, Hoogland y col. 1988). Estas fibras terminan en la región de los barriletes en cada núcleo, formando unos terminales pequeños y muy bien delimitados (Jacquin, Wiegand y col. 1990; Welker, Hoogland y col. 1988). Dichos terminales se distribuyen conforme a un patrón que parece el negativo fotográfico de los terminales de las aferencias primarias, de manera que aparecen sobre todo en las regiones interpuestas entre los botones de dichas aferencias primarias(Jacquin, Wiegand y col. 1990). Este patrón es sobre todo evidente en el núcleo Sp5i contralateral y en Pr5 ipsilateral; mientras que en otras regiones su distribución es más bien difusa(Belford and Killackey 1979; Jacquin, Wiegand y col. 1990).

La lesión de la corteza somatosensorial desorganiza la estructura típica en barriletes del núcleo Pr5, aunque no del Sp5i (Chiaia, Bennett-Clarke y col. 1991; Erzurumlu and Ebner 1988). Una vez que se han formado los mapas topográficos en Pr5 (barriletes) su mantenimiento depende de que los barriles de la corteza somatosensorial estén intactos (Erzurumlu and Ebner 1988).
Electrofisiología

La estimulación de la corteza sensorimotora, sobre todo si se hace de forma repetida, produce de forma mayoritaria una depolarización presináptica en los núcleos del CST, lo que conlleva una inhibición de sus neuronas (Darian-Smith and Yokota 1966a; Darian-Smith and Yokota 1966b; Dubner, Sessle y col. 1969; Hammer, Tarnecki y col. 1966; Sessle and Dubner 1970). No está claro aún qué zona de la corteza es responsable de este efecto, si áreas corticales que no pertenecen a las regiones corticales típicas (SI, SII y SIII), tales como el labio interior del surco coronal (Dubner, Sessle y col. 1969; Dubner and Sessle 1971) o las áreas corticales somatosensoriales SI, SII y SIII (Darian-Smith and Yokota 1966a, 1966b). Parece que esta depolarización presináptica está mediada por fibras piramidales de la capa V, donde son comunes los campos receptivos multivibríscas (Darian-Smith and Yokota 1966a; Darian-Smith and Yokota 1966b). En cualquier caso, esta proyección formaría parte de un bucle de retroalimentación muy rápido entre la corteza y el CST, ya que también se ha observado en neuronas corticales que responden a la estimulación táctil (Darian-Smith and Yokota 1966a; Dubner and Sessle 1971).

Además de este efecto inhibitorio, en ocasiones, bien de forma aislada, bien asociada a una depolarización previa, se ha observado también una hiperpolarización presináptica en los núcleos del CST (Sessle and Dubner 1970), que provoca un aumento de la transmisión sináptica y, por tanto, una excitación de sus neuronas. En general, la depolarización es más común en las regiones rostrales del CST (Pr5 y Sp5o) y menos en las regiones más caudales (Sp5i y Sp5c); al contrario que la hiperpolarización, que es más común en las regiones caudales y menos en las rostrales (Darian-Smith and Yokota 1966a; Dubner and Sessle 1971). En Sp5i, la estimulación de la corteza provoca un aumento de la magnitud de la respuesta ante la estimulación de una vibríscas en las neuronas cuyo campo receptivo se pala con el de la región cortical estimulada, mientras que produce una inhibición.
Introducción

de la respuesta cuando no se da este solapamiento (Jacquin, Wiegand y col. 1990; Woolston, LaLonde y col. 1983).

Todas estos datos indican que la entrada corticotrigeminal juega un papel importante maximizando el contraste de los contornos y bordes de los estímulos, aumentando la relación señal/ruido y, a la vez, inhibiendo la respuesta central ante estímulos débiles o inefectivos (Dubner, Sessle y col. 1978). De hecho, en Sp5i la proyección corticotrigeminal controla el tamaño del campo receptivo de las neuronas de bajo umbral, así como su actividad basal (Jacquin, Wiegand y col. 1990).

Existe una organización somatotópica precisa entre las neuronas corticales que modulan la actividad de las neuronas del CST, tanto en SI, como en SII y SIII, y que está organizada de forma separada en estas tres regiones, funcionando de forma independiente (Darian-Smith and Yokota 1966a). Además, hay neuronas corticales que ejercen su influencia sobre un solo núcleo, y neuronas que influyen sobre varios núcleos del CST (Dubner and Sessle 1971).

La influencia cortical es diferente en función del tipo de neurona del CST. Tanto las neuronas de proyección lemniscales como las interneuronas se inhiben por la estimulación de zonas muy restringidas de la corteza sensorimotora del gato. En cambio, mientras que la excitación de las lemniscales es también a partir de zonas corticales muy restringidas (aunque menos que en la inhibición), la de las interneuronas se puede provocar a partir de la estimulación de prácticamente la totalidad de la corteza sensorimotora (Darian-Smith and Yokota 1966b).
2. HIPÓTESIS DE TRABAJO
Y OBJETIVOS
2.1. HIPÓTESIS DE TRABAJO.

Como se mencionó anteriormente, se ha observado que la actividad de las neuronas del tálamo y la corteza somatosensorial sensibles al movimiento de las vibras de la rata depende de forma compleja de las frecuencias de estimulación que se aplican. Hay tres puntos cruciales en estas observaciones:

1. La dependencia compleja se ve muy claramente en la tasa de disparo de las neuronas y en la precisión temporal de sus actividad en reacción al estímulo proporcionado.

2. Dicha dependencia incluye potenciación y/o filtrado selectivo de las frecuencias en determinados rangos con resultado la generación de "filtros" high-pass, low-pass y band-pass.

3. El comportamiento de las neuronas es distinto en las componentes lemniscal y paralemniscal del tálamo y en la corteza.

Los autores de las observaciones arriba mencionadas consideran que los mecanismos responsables de las mismas están circundritos en dichos núcleos.

Nuestra hipótesis es que aunque en el tálamo y la corteza hay mecanismos neuronales de procesamiento de la información responsables de los "filtros" publicados en la bibliografía, los mecanismos básicos del procesamiento de la información dependiendo de la frecuencia están en los núcleos subtalámicos del Complejos Sensorial del Trigémino.

Además, teniendo en cuenta las características anatómofisiológicas de las neuronas de los cuatro subnúcleos del CST y de sus proyecciones hacia el tálamo, formulamos las hipótesis adicionales:

1. Los cuatro subnúcleos del CST se comportan de forma diferencial a las distintas frecuencias de estimulación, dependiendo de la especialización que tienen con respecto a la información sensorial de las vibras.

2. Los núcleos que contribuyen mayoritariamente a dicho procesamiento son el Pr5 y el Sp5i.
Hipothesis y Objetivos

3. hay una clara diferenciación en las características de las respuestas neuronales entre Pr5 y Sp5i

Por último, teniendo en cuenta la influencia cortical sobre la actividad de las neuronas de núcleos subcorticales en vías sensoriales y en particular sobre los procesos oscilatorios del sistema lemniscal de la rata, formulamos la hipótesis adicional que la corteza sensorimotora tiene un papel importante, pero no determinante, en el procesamiento de la información por frecuencias en el CST.

22. OBJETIVOS DE LA TESIS.

El objetivo general de la presente Tesis fue el estudio, mediante técnicas de electrofisiología, de los mecanismos subcorticales responsables del procesamiento diferencial de los estímulos proporcionados a las vibrisas en función de las frecuencias que dichos estímulos contienen y la influencia que la corteza sensorimotora ejerce sobre su funcionamiento.

Los objetivos particulares fueron:

- El estudio de la actividad electrofisiológica de las neuronas de los cuatro núcleos del CST en condiciones control.

- El estudio de la actividad electrofisiológica de las neuronas de los cuatro núcleos en reposo, pero sin la influencia de la corteza sensorimotora.

- El estudio del procesamiento de los estímulos externos en cada uno de los núcleos del CST en animales intactos.

- El estudio de la influencia de la corteza sensorimotora en el procesamiento de los estímulos externos.
3. MATERIALES Y MÉTODOS
3.1. ANIMALES DE EXPERIMENTACIÓN.

Para el presente estudio se utilizaron 58 ratas adultas albinas Wistar de ambos sexos (ANUC) de pesos comprendidos entre 200 y 250 g. Todos los procedimientos experimentales se realizaron de acuerdo con la normativa nacional (Real Decreto 223/88) y de la Unión Europea (European Communities Council Directive, 86/609/EEC), tratándose de inducir el menor sufrimiento posible y de utilizar el menor número de animales de experimentación.

3.2. PROCEDIMIENTOS QUIRÚRGICOS.

Todos los registros se realizaron en animales anestesiados (uretano 1,5 g/Kg intraperitoneal). La zona sujeta a la intervención quirúrgica fue infiltrada con lidocaína al 1% para reducir la sensación de dolor localizado en dicha zona. Se controló el nivel de anestesia mediante el registro del EEG, manteniéndolo con inyecciones suplementarias de uretano (10% de la dosis inicial). Durante el proceso quirúrgico y la realización de los registros se monitorizó la temperatura del animal, manteniéndola a 37±0,1°C mediante una manta eléctrica abdominal con control manual (Letica Scientific Instruments, Barcelona, España, modelo HB101/2).

Antes de la operación, se cortó el pelo al animal sobre la zona de operación. Una vez anestesiado, el animal fue colocado en un aparato de estereotaxia que permitía el acceso a las estructuras cerebrales y a las vibrías (Narishige Co., LTD., Japón, modelo SN-3N). Después se efectuó una incisión cutánea a nivel de la línea media y se separó la piel y la musculatura de la cabeza, retirando el periósteo y dejando expuesto el cráneo para poder visualizar los puntos lambda y bregma. Se procedió a retirar una parte de hueso mediante un taladro eléctrico con una cuchilla circular de 4 mm de diámetro (Dremel®), a la altura del núcleo del Complejo Sensorial del Trigémino a estudiar, según las coordenadas estereotáxicas del atlas de Paxinos y Watson (1998) (de 7,5 a 15,0 mm posterior a bregma y de 2,0 a 3,5 mm lateral a bregma según el núcleo). También se perforó el cráneo en la
Materiales y Métodos

zona frontal, donde se insertó el macroelectrodo para el registro del EEG. Finalmente, se retiró la duramadre y se cubrió la superficie cerebral expuesta con aceite mineral (Panreac Química) para mantenerla húmeda.

En algunos casos se lesionó la corteza somatosensorial para estudiar su efecto sobre el comportamiento de las neuronas del CST. Las lesiones corticales se produjeron por ablación de la dura expuesta según el protocolo de Rema y Ebner (2003), con el objetivo de eliminar sólo la región cortical de SI donde están representadas las vibras. Una vez fijada la rata al estereotáxico y dejado el cráneo al descubierto, se abrió una ventana en éste desde 4 a 6,5 mm lateral a la línea media y desde 1,5 a 3,5 mm posterior a bregma, manteniendo la dura intacta. La zona expuesta se aspiró con una pipeta Pasteur estéril de calibre fino unida a una bomba de vacío, teniendo cuidado de no dañar la sustancia blanca bajo las capas de corteza. Una vez aspirada esta región de corteza, el área fue limpiada.

3.3 REGISTROS ELECTROFISIOLOGICOS.

Los registros extracelulares se llevaron a cabo con microelectrodos de tungsteno (World Precision Instruments, Inc.) de impedancia entre 0,9 y 2,0 MΩ, colocados en un micromanipulador en posición vertical, e insertados ipsilateralmente con respecto a las vibras estimuladas. Para el registro del EEG se introdujo un macroelectrodo en la corteza frontal a 1,0 mm de profundidad desde la superficie de la corteza, fijándolo con cemento dental. El electrodo consistía en un alambre de Cr-Ni de 125 μm de diámetro, aislado con excepción de la punta (0,5 mm). La realización del EEG permitió estudiar el nivel de actividad de la corteza cerebral y comprobar el nivel de anestesia del animal antes y durante el protocolo de estimulación.

El electrodo de registro se situó en la región correspondiente al núcleo en el que se iba a registrar mediante las coordenadas obtenidas del atlas de Paxinos y Watson (Paxinos and Watson 1998)(Pr5: de 8,5 mm 10,0 mm posterior a bregma, de
Materiales y Métodos

2,5 mm a 3,5 mm lateral y de 8,0 mm a 9,5 mm ventral. Sp5o: de 10,3 mm a 11,6 mm posterior a bregma, de 2,5 mm a 3,2 mm lateral y de 8,4 mm a 9,5 mm ventral. Sp5i: de 11,8 mm a 13,3 mm posterior a bregma, de 2,0 mm a 3,4 mm lateral y de 7,6 mm a 9,8 mm ventral. Sp5c: de 13,7 mm a 15,0 mm posterior a bregma, de 2,0 mm a 3,4 mm lateral y de 7,6 mm a 9,8 mm ventral). Para determinar que la zona de registro era la correcta se tuvo también en cuenta la somatotopía de cada núcleo, descrita en la introducción. Para ello, mientras se dirigía el electrodo verticalmente hacia el tronco encefálico, las vibrasas se estimulaban manualmente con un pincel. Una vez que se obtenía respuesta en el registro ante la estimulación, se determinaba si la somatotopía era la correspondiente al núcleo en el que se pretendía registrar, moviendo levemente el electrodo en dirección dorsoventral. Una vez localizada una neurona, se estableció, de forma manual, la extensión de su campo receptivo y se determinó cual era su vibrisa principal (aquella que evocaba la máxima respuesta).

Tras esto, se aplicó el protocolo de estimulación descrito en el apartado siguiente. La señal registrada se amplificó y filtró (0,3-3 KHz) mediante un amplificador (DAM80, World Precision Instruments, Inc.), la amplitud de la espiga y su forma fueron monitorizadas de forma continua en un osciloscopio analógico (Tektronix, TDS 2002), la señal se derivó a un amplificador de audio y un altavoz para facilitar la discriminación de la actividad unitaria además de a un conversor analógico-digital (1401 plus de Cambridge Electronic Design), para su almacenamiento en un ordenador y su análisis posterior. Para la adquisición se utilizó como frecuencia de muestreo 300 Hz para los registros del electroencefalograma (EEG) y 20 KHz para los registros unitarios.
3.4 ESTIMULACIÓN DE LAS VIBRISAS.

Las vibrasas fueron estimuladas con pulsos de aire comprimido (10 psi). Esta forma de estimulación es semejante al contacto del bigote de la rata con un objeto en movimiento en la dirección rostrocaudal, provocando un desplazamiento de la vibrissa de una manera natural, con su consiguiente vibración libre. Los pulsos de aire comprimido se generaron mediante una bomba neumática que permite controlar la presión de salida (Picospritzer III, Parker Institute, Texas, USA) y se aplicaron sobre la región distal de la vibrissa por medio de un tubo de silicona de 0,5 mm de diámetro, colocado rostro-caudalmente a una distancia de 10-12 mm de la vibrissa. El retraso entre la generación del estímulo de aire y el desplazamiento de vibrissa fue calculado por medio de un micrófono y restado del tiempo de respuesta de la neurona estudiada.

Antes de comenzar la estimulación con los pulsos de aire, se registró la actividad espontánea de la neurona durante 180 s. Tras este tiempo se aplicó una serie de 50 pulsos de 100 ms de duración a 1 Hz para estudiar las características de la respuesta de las neuronas registradas. Después, y tras 120 s en reposo, se aplicó el protocolo de estimulación a diferentes frecuencias. El protocolo constaba de 10 trenes de pulsos de 5 segundos de duración para cada frecuencia, presentados en orden aleatorio. Entre cada tren se dejó un intervalo de reposo de 3 s. Las frecuencias de estimulación fueron 1, 2, 3, 5, 8, 10, 12, 15, 20, 25, 30, 35 y 40 Hz de acuerdo con el protocolo de Garabedian y col. (2003). Una vez finalizada la secuencia de estímulos a diferentes frecuencias se aplicó de nuevo la estimulación de 100 ms a 1 Hz, de manera que sólo se han tenido en cuenta para el estudio aquellos registros en los que se ha podido aplicar la serie completa de estimulaciones y en los que las características de la respuesta se han mantenido. Finalmente, se aplicaron varias estimulaciones de 2 s de duración para determinar si las respuestas obtenidas eran de tipo fásico (aumentos cortos de la frecuencia de disparo ante la aparición de un estímulo) o de tipo tónico (aumentos sostenidos
Materiales y Métodos

de la frecuencia de disparo durante todo el tiempo que dura la estimulación), según el criterio de Veinante y Deschénes (1999).

3.5 PROCESAMIENTO HISTOLÓGICO.

Con el fin de controlar el lugar de registro, al final de cada experimento su posición fue determinada por la inducción de una lesión electrolítica aplicando corriente continua de duración de 5 s (3-5\(\mu\)A), a través del electrodo de registro. Después, los animales fueron inyectados intraperitonealmente con pentobarbital (50 mg/Kg) y perfundidos con suero salino al 0,9 % heparinizado, seguido de una solución de paraformaldehído al 4% (pH 7,4) (ref). La perfusión se completó con sacarosa en tampón fosfato introducida en orden de concentración creciente (5%, 10% y 20%) para facilitar la crio-protección. El tejido se cortó en un microtomo de congelación en secciones coronales de 50 \(\mu\)m de grosor y se tiñó con la técnica de Nissl.

El tejido procesado se montó sobre portaobjetos gelatinizados y se dejaron secar durante 24 h antes de ser metidos en etanol 70° toda la noche. Al día siguiente, se lavaron en agua destilada y se procedió con la tinción: precalentamiento del baño hasta 45° e introducción de violeta de cresil 0,1% junto con acético glacial. Inmediatamente tras la tinción se realizaron dos lavados con agua destilada y sucesivamente dos baños de etanol al 70° y al 96° durante 1 minuto cada uno. El tejido se bañó en triclorometano estabilizado con etanol (Panreac) durante 10 minutos, transcurrido ese tiempo se realizó la diferenciación con etanol al 96° y ácido acético glacial, haciendo un control visual continuo a lo largo del proceso. Los cortes se pasaron a etanol 100° durante un minuto y finalmente se dejaron 1 hora en xilol (figura 8).
Materiales y Métodos

3.6 ANÁLISIS DE DATOS.

Únicamente se han considerado para su estudio aquellos registros en los que la fluctuación de la amplitud de la espiga fue inferior al 10% y la forma de la misma no varió durante el experimento. Para los registros unitarios, la amplitud de la espiga debía al menos triplicar al nivel del ruido. En el caso de registros de neuronas múltiples con el mismo electrodo, solo se aceptaron aquellos cuyas espigas, además de cumplir los requisitos anteriores, estaban claramente diferenciadas por tamaño y forma.

Mediante el software Spike2 (Cambridge Electronic Design), la actividad neuronal registrada se transformó en procesos discretos, sustituyendo las espigas por elementos puntuales tomando como referencia el momento de generación de la espiga, considerando éste como el tiempo en el que el potencial superaba un umbral del doble de la actividad media del ruido.

Para determinar las características básicas de la respuesta y del comportamiento de las neuronas registradas se utilizaron los métodos clásicos de análisis, tales como histogramas periestímulo (PSTH), histogramas de autocorrelación (ACH) e histogramas de correlación cruzada (CCH) en los casos en los que se obtuvieron dos neuronas o una neurona y un multiunitario en el mismo registro.

Para el estudio de las características de las respuestas (latencia y magnitud) se calcularon los PSTH durante la estimulación de 100 ms a 1 Hz. Para estudiar el comportamiento de la actividad del registro tanto en ausencia como al aplicar la estimulación se utilizaron ACHs y CCHs. Mediante estos procesamientos se pudieron identificar comportamientos oscilatorios de la actividad neuronal, obtener las frecuencias medias de oscilación (MOF) y estudiar la sincronización entre dos neuronas o entre una neurona y la actividad multiunitaria. Además, para el estudio de la dependencia de la actividad oscilatoria de los estímulos proporcionados se utilizó el "shift predictor", es decir el ACH o CCH calculado con
retraso de un intervalo inter-estímulo y restado del ACH o CCH original para que desaparezcan las características de la actividad neuronal debidas al estímulo proporcionado.

Para el análisis de la respuesta durante las series de estímulos a diferentes frecuencias se utilizaron funciones más complejas que permiten evidenciar las características de filtrado de frecuencias (low-pass, high-pass o band-pass) de cada neurona o registro multiunitario:

Función promedio de espigas evocadas por estímulo (SR)

La función SR (del inglés “Spike Rate”) determina la respuesta fásica de las neuronas ante una estimulación, esto es, el número medio de espigas evocadas un cierto tiempo después (en este caso 35 ms) de la aplicación de un estímulo.

$$SR = \frac{N_{sp}}{N_{st}},$$

donde N_{sp} es el número total de espigas registradas en los primeros 35 ms tras el estímulo para cada frecuencia de estimulación y N_{st} el número total de estímulos para cada frecuencia de estimulación.

Para comparar el comportamiento de esta función en las diferentes neuronas de un núcleo, entre los diferentes núcleos y entre diferentes estados (en presencia o ausencia de influencia cortical) se normalizó con respecto a su valor máximo.

Función de transferencia de tasa de repetición (RRTF)

Esta función indica el grado de adaptación o potenciación de la respuesta evocada durante la serie de estímulos a frecuencia fija. Para calcularla, se toma el
Materiales y Métodos

El número medio de espigas evocadas por cada estimulación de la serie y se normaliza respecto a la media de las espigas evocadas por el primer estímulo de la serie. Se han utilizado únicamente las espigas que aparecen entre 0 y 35 ms después del comienzo del estímulo. Si el valor de la función RRTF es 1, indica que no hay adaptación; si es menor que 1, indica adaptación de la respuesta, y si es mayor que 1 indica potenciación de la respuesta.

\[RRTF = \frac{\bar{N}_n}{N_0}, \]

donde \(\bar{N}_n \) es el número medio de espigas evocadas por cada estímulo en una serie de estímulos, exceptuando el primero, y \(N_0 \) es el número de espigas evocadas por el primer estímulo de la serie.

En los datos obtenidos se han realizado diferentes cálculos de la función RRTF. En primer lugar se ha calculado con la media de las espigas evocadas por todos los estímulos de la serie. También se ha calculado únicamente con aquellos estímulos de la serie que evocan respuesta. Por último, se ha calculado la función RRTF, no para la media de la serie, sino para cada estímulo de la misma.

Tasa de disparo tónica (TSR)

Es el número medio de espigas durante los 5 s que dura cada serie. Se calcula contabilizando el número de espigas evocadas por cada frecuencia de estimulación y dividiéndolo entre 10, que es el número de series de 5 s para cada frecuencia de estimulación.

Latencia

Dado que la actividad espontánea en estos núcleos es muy baja, la latencia se ha calculado tomando el tiempo entre el comienzo del estímulo y la primera
Materiales y Métodos

Espiga tras el mismo. Además, en varios registros se ha calculado la latencia a partir de los histogramas periéstímulos, definiendo ésta como el tiempo tras el estímulo en el que la amplitud de la respuesta alcanza el 50% de su valor. La comparación de los valores obtenidos por estos dos métodos indica que no hay diferencias significativas entre ambos, por lo que se ha seguido utilizando el primer método descrito, por ser más preciso.

Consistencia temporal (VS)

El uso de esta función nos indica la consistencia temporal del tiempo en que suceden las espigas a lo largo de los ciclos de estimulación. La función VS cuantifica el desfase de cada espiga en el periodo de estimulación en cada ciclo. El valor de VS es proporcional a la amplitud de la componente de Fourier de la frecuencia de estimulación normalizada por el número total de espigas durante el periodo de estimulación. Un valor de 1 implica que las espigas están en fase perfecta con el estímulo; un valor de 0 implica que las espigas ocurren de forma aleatoria con respecto al estímulo.

Se puede considerar cada espiga como definida por un vector de longitud la unidad con un ángulo respecto al estímulo precedente (que marca el comienzo de ciclo) \(\theta_i\), \(0 \leq \theta_i \leq 2\pi\). De este modo, los componentes \(x\) e \(y\) del vector son:

\[
x_i = \cos \theta_i \\
y_i = \sin \theta_i
\]

Los \(n\) vectores que caracterizan un tren de espigas se tratan como una distribución en un círculo unidad y se calcula el vector medio. Su dirección es una medida de la relación de fase media entre el estímulo y las espigas y viene dada por:

\[
\theta = \arctan \left(\frac{\sum y_i}{\sum x_i} \right) + k\pi
\]
Materiales y Métodos

donde \(k \) es igual a cero o a uno dependiendo de los signos de \(\sum x_i \) y \(\sum y_i \).

La longitud del vector media será la función \(VS \), que se define como

\[
VS = \sqrt{\left(\sum \cos(\theta)\right)^2 + \left(\sum \sin(\theta)\right)^2} / n
\]

Donde,

\[
\theta = 2\pi(t/T)
\]

siendo \(n \) el número total de espigas evocadas durante el tren de estímulos, \(t \) el tiempo entre la espiga evocada y la defeción de la vibrissa más reciente y \(T \) el periodo de la frecuencia de estimulación (Goldberg and Brown 1969). También se ha calculado esta función teniendo en cuenta únicamente la primera espiga evocada por cada estímulo y en cada estímulo por separado.

Todos los resultados se expresan como Media ± Error Estándar. Para la comparación estadística de proporciones se ha utilizado el estadístico \(z \), mientras que para la comparación de medias se ha utilizado el estadístico \(t \) de student. El nivel de significación \((a) \) en ambos casos se situó a 0.05. Todos los tests estadísticos se han realizado mediante el software Statgraphics 4.0.
4. RESULTADOS
Nuestra base de datos está compuesta por un total de 341 registros, 181 unitarios y 160 multiunitarios. Todos ellos están caracterizados por un aumento claro de su actividad como consecuencia de la estimulación de las vibrissas. Los registros en los núcleos del CST se han realizado en dos condiciones: animales intactos, obteniéndose 211 registros, 123 unitarios (35 en Pr5, 26 en Sp5o, 38 en Sp5i y 24 en Sp5c) y 88 multiunitarios (22 en Pr5, 20 en Sp5o, 20 en Sp5i y 26 en Sp5c), y animales decorticados, de donde provienen 130 registros, 58 unitarios (19 de Pr5, 18 de Sp5o, 17 de Sp5i y 4 de Sp5c) y 72 multiunitarios (20 de Pr5, 19 de Sp5o, 17 de Sp5i y 16 de Sp5c).
4.1. ESTUDIO DE LOS NÚCLEOS DEL CST

4.1.1. Núcleo Sensorial Principal (Pr5)

Caracterización general

Unitarios

En 24 de los 35 registros unitarios se estudió la extensión y distribución del campo receptivo de la neurona registrada. Los campos receptivos de estas neuronas son pequeños (2,9 ± 0,32 vibrasas), no habiéndose encontrado ninguna neurona que responda a la estimulación de más de 5 vibrasas. De estas 24 neuronas, el 25% (6 neuronas) responde a la estimulación de una única vibrisa; el 20,8% (5 neuronas) a la estimulación de dos vibrasas; el 16,7% (4 neuronas) a la de tres vibrasas; el 12,5% (3 neuronas) a la de cuatro vibrasas, y el 25% (6 neuronas) a la estimulación de 5 vibrasas.

Las neuronas registradas en Pr5 presentan muy poca actividad en ausencia de estimulación sensorial. En estas condiciones, la frecuencia media de disparo (FMD) de la población es de 0,6 ± 0,31 espigas/s, con un rango comprendido entre 0 y 10,2 espigas/s. La mayoría está por debajo de 0,5 espigas/s (29 registros de 35, 82,9%), mientras que sólo una minoría (6 registros, 17,1%) supera esta frecuencia de disparo, de manera que se han clasificado las neuronas en función de su FMD entre silentes (o S), con FMD menor de 0,50 espigas/s, y de alta frecuencia de disparo (o AF), con FMD mayores de 0,50 espigas/s. La frecuencia de disparo media en espontánea del grupo S es de 0,05 ± 0,0132 espigas/s (n = 29), mientras que la del grupo AF es de 3,1 ± 1,47 espigas/s (n = 6, p = 0,045).
Figura 9. Registro real de una neurona fásica (arriba) y su correspondiente histograma periestímulo (abajo) para una estimulación de 100 ms en el núcleo Pr5. La flecha vertical indica el comienzo del estímulo y la barra horizontal su duración. El bin del histograma periestímulo es de 1 ms.

Figura 10. Registro real de una neurona tónica (arriba) y su correspondiente histograma periestímulo (abajo) para una estimulación de 100 ms en el núcleo Pr5. La flecha vertical indica el comienzo del estímulo y la barra horizontal su duración. El bin del histograma periestímulo es de 1 ms.
Resultados

Según lo expuesto en la sección de Materiales y Métodos, la respuesta de los registros unitarios se ha clasificado de forma cualitativa en fásico y tónico (figuras 9 y 10). Entre los registros unitarios predominan las respuestas de tipo fásico (23 registros de 35, 65,7% del total) sobre las de tipo tónico, que constituyen el 34,3% (12 registros). La FMD en condiciones de reposo de las neuronas fásicas es de 0,8 ± 0,46 espigas/s, mientras que la de las unidades tónicas es de 0,2 ± 0,14 espigas/s (p = 0,13). Las FMD en espontánea de las unidades fásicas y tónicas pertenecientes al grupo S es muy parecida (0,05 ± 0,016 espigas/s, n = 19 y 0,04 ± 0,024 espigas/s, n = 10 respectivamente. p = 0,51). Sólo hay dos unidades tónicas de tipo AF, lo que impide la comparación de su FMD en reposo con las fásicas del mismo tipo (n = 4). En cualquier caso, las unidades AF fásicas tienden a presentar una FMD en reposo mayor (entre 1,2 y 10,2 espigas/s frente a 0,5 y 1,7 espigas/s de las unidades tónicas).

Otra diferencia notable entre unidades tónicas y fásicas es la que se refiere al tamaño de su campo receptivo. Las neuronas fásicas presentan, en conjunto, campos receptivos que incluyen un mayor número de vibrisas que los campos receptivos de las unidades tónicas (3,4 ± 0,35 vibrisas y 1,7 ± 0,42 vibrisas respectivamente, p = 0,006). De esta forma, de las tónicas cuyo campo receptivo ha sido delimitado (n = 7) la mayoría (4 registros, 57,1%) responde a la estimulación de una sola vibrisa. El 28,6% (n = 2) incluye dos vibrisas en su campo receptivo y 1 registro cuatro vibrisas. La situación entre las 17 unidades fásicas cuyo CR ha sido delimitado es completamente diferente, presentando CR de 1, 2, 3, 4 y 5 vibrisas 2, 3, 4, 2 y 6 neuronas respectivamente, lo que supone el 11,8%, 17,6%, 23,5%, 11,8% y 35,3% respectivamente.

La aplicación de un pulso de aire de 100 ms de duración sobre la vibrisa principal evoca de 1 a 52 espigas, con una respuesta media de 7,9 ± 2,21 espigas/estímulo. Si se considera la respuesta de las neuronas de los grupos S y AF por separado se observa una respuesta media de 8,4 ± 2,66 y 5,4 ± 0,87 espigas/estímulo respectivamente (p = 0,29). Es evidente la gran dispersión que
Resultados

Resultados muestran las neuronas S frente a la relativamente pequeña de las AF. Las neuronas tónicas responden con un mayor número de espigas (18,6 ± 5,25 espigas/estímulo) a la estimulación de 100 ms que las neuronas fásicas (2,3 ± 0,36 espigas/estímulo; p = 0,005). Las neuronas S tónicas responden con 21,1 ± 6,03 espigas/estímulo, mientras que las fásicas del mismo grupo lo hacen con 1,8 ± 0,18 espigas/estímulo (n = 10 y n = 19 respectivamente, p = 0,005). Las neuronas AF fásicas responden con 5,0 ± 1,30 espigas/estímulo (n = 4). Sólo hay dos neuronas AF tónicas, siendo su respuesta similar a las fásicas del mismo grupo (5,9 y 6,6 espigas/estímulo). También hay diferencias en la magnitud de la respuesta entre las neuronas fásicas de los grupos S y AF (p = 0,043) y entre las tónicas de los mismos grupos (p = 0,02) (tabla I).

Durante los primeros 14 ms de estimulación la respuesta media de las neuronas de Pr5 durante es de 3,0 ± 0,56 espigas/estímulo, siendo prácticamente igual la media entre las unidades S y AF (3,1 ± 0,68 espigas/estímulo y 2,5 ± 0,32 espigas/estímulo respectivamente, p = 0,43). Esta respuesta es sustancialmente diferente entre neuronas fásicas y tónicas (1,5 ± 0,13 espigas/estímulo y 5,8 ± 1,31 espigas/estímulo respectivamente, p = 0,004). Las neuronas S tónicas responden con 6,4 ± 1,51 espigas/estímulo, mientras que las fásicas del mismo grupo lo hacen con 1,3 ± 0,08 espigas/estímulo (n = 10 y n = 19 respectivamente, p = 0,004). Las neuronas AF fásicas responden con 2,4 ± 0,47 espigas/estímulo (n = 4). Sólo hay dos neuronas AF tónicas, siendo su respuesta similar a las fásicas del mismo grupo (2,4 y 3,0 espigas/estímulo). También hay diferencias en la magnitud de la respuesta entre las neuronas fásicas de los grupos S y AF (p = 0,057) y entre las tónicas de los mismos grupos (p = 0,02) (tabla II).

La latencia de la respuesta evocada por la estimulación de las vibras es bastante variable (entre 3 y 15 ms) siendo la latencia media de respuesta (LMR) 7,3 ± 0,58 ms (n = 35). La LMR de las neuronas fásicas (n = 23) es superior a la de las tónicas (n = 12; 8,6 ± 0,70 ms y 4,8 ± 0,51 ms respectivamente, p = 0,0005). No existen diferencias entre la LMR de la respuesta de las unidades silentes (7,2 ±
Resultados

0,65 ms) y la de las unidades de alta frecuencia de disparo en espontánea (7,6 ± 1,28 ms, p = 0,8). Las neuronas S tónicas tienen una LMR de 4,7 ± 0,61 ms, mientras que las fásicas del mismo grupo responden a los 8,5 ± 0,80 ms (n = 10 y n = 19 respectivamente, p = 0,0). Las neuronas AF fásicas responden a los 8,8 ± 1,57 ms (n =4). Sólo hay dos neuronas AF tónicas, siendo su LMR menor que la de las fásicas del mismo grupo (5,3 y 4,8 ms; media 5,0 ± 0,22 ms). No hay diferencias en la LMR de la respuesta ni entre las neuronas fásicas de los grupos S y AF (p = 0,87) ni entre las tónicas de los mismos grupos (p = 0,84). En todos los casos, la dispersión de las unidades fásicas es mayor que la de las tónicas (tabla III).

Multiunitarios

La aplicación de un pulso de aire de 100 ms de duración sobre la vibrissa principal evoca de 1 a 56 espigas en los registros multiunitarios de Pr5, con una respuesta media de 10,6 ± 2,56 espigas/estímulo. La respuesta en los primeros 14 ms de estimulación es de 4,4 ± 0,63 espigas/estímulo, con un rango comprendido entre 1 y 14 espigas/estímulo. La latencia de la respuesta en los registros multiunitarios es de 7,2 ± 0,56 ms (con un rango comprendido entre 3 y 14 ms)(tabla IV).
Resultados

Estudio de la manitud de la respuesta ante estímulos repetitivos de frecuencia fija

Unitarios

El análisis conjunto del comportamiento de las 35 neuronas estudiadas revela que en el núcleo Pr5 se realiza un procesamiento de la información entrante que depende de la frecuencia de estimulación (figura 11A). Como puede observarse en los histogramas periestímulo medios de los 35 registros, la respuesta para cada estímulo de la serie cuando se estimula a frecuencias bajas (< 3 Hz) se mantiene más o menos constante (figura 11A). Sin embargo, para estímulos a mayor frecuencia (sobre todo a partir de los 10 Hz) se puede observar que a partir del segundo estímulo la respuesta empieza a decrecer hasta alcanzar un valor donde se estabiliza. Además, este valor mínimo va decreciendo conforme aumenta la frecuencia de estimulación.

Si se realiza el histograma periestímulo medio para neuronas fásicas y tónicas por separado se pueden observar que el comportamiento general es el mismo que el descrito anteriormente, ya que para frecuencias bajas se mantiene la amplitud ante cada estímulo de la serie (figura 11) y para frecuencias mayores la estimulación provoca respuestas de menor magnitud. Sin embargo existen algunas diferencias importantes entre ambos tipos de registros. La disminución de la respuesta en las fásicas se produce a partir de los 2 Hz, mientras que en las tónicas lo hace a partir de los 20 Hz. Además, la caída de la respuesta en las tónicas es muy suave, mientras que en las fásicas es muy abrupta (figura 11B y C). En general la respuesta de las neuronas tónicas es de mayor amplitud (además de más duradera) con una adaptación menor.
Figura 11. Probabilidad de disparo media de la población total de neuronas del núcleo Pr5 (A) y de la población de neuronas fásicas (B) y tónicas (C).
Figura 12 Arriba: Respuesta media evocada por cada estímulo de la serie para las diferentes frecuencias en el núcleo Pr5. En gris se muestra la respuesta de cada neurona. En negro se muestra la media de la respuesta a cada frecuencia de estimulación y la recta exponencial que se ajusta a los datos obtenidos ($SR = 0,1 + 2,2e^{-0,028\text{frecuencia}}$, $r = 0,99$). Debajo: en gris, respuesta de los diferentes registros unitarios normalizados respecto a la estimulación a 1 Hz. En negro, media de los diferentes registros.
Resultados

Un análisis más pormenorizado de este comportamiento requiere la cuantificación de sus características. De este modo, si consideramos el número medio de espigas por estímulo (SR), se observa cómo se produce una caída exponencial del número de espigas/estímulo según aumenta la frecuencia de estimulación (desde 2,4 espigas/estímulo para 1 Hz, hasta 0,9 espigas/estímulo para 40 Hz. Figura 12). Al normalizar estos valores respecto a la máxima respuesta en cada serie de estimulación, se puede observar que la magnitud de la respuesta a 40 Hz ha disminuido casi un 80% respecto a la respuesta a 1 Hz (figura 12). Sin embargo, si se observa cada registro por separado, se perciben varios comportamientos diferentes en las neuronas de Pr5. La mayoría de ellas (15 de 35 registros, 42,9%. Figura 13A) se ajustan al patrón poblacional: el número de espigas evocado por cada estímulo cae exponencialmente conforme aumenta la frecuencia de estimulación. En otros casos (14 registros de los 35, 40,0%. Figura 13B), también se observa esta tendencia a disminuir el número de espigas conforme aumenta la frecuencia de estimulación, pero para determinadas frecuencias el número de espigas aumenta en relación a frecuencias más bajas. En 6 neuronas (17,1%) el número de espigas permanece constante hasta una cierta frecuencia y a partir de esta frecuencia empieza a caer exponencialmente (figura 13C).

Figura 13 Ejemplos de cada uno de los diferentes comportamientos observados en el núcleo Pr5 respecto a la función SR. A: caída exponencial del número de espigas. B: caída exponencial del número de espigas, con aumentos puntuales de dicho número. C: número de espigas estable hasta una determinada frecuencia de estimulación y caída brusca del mismo a partir de dicha frecuencia. En todos los casos, el eje de coordenadas representa el número de espigas medio evocado por cada estímulo de las diferentes series de estimulación y el de abscisas la frecuencia de estimulación en Hz.
Figura 14. A: Respuesta media evocada por cada estímulo de la serie para las diferentes frecuencias en el núcleo Pr5 de las neuronas fásicas (negro) y tónicas (gris). B: Igual, con los valores normalizados respecto a la estimulación a 1 Hz.
Resultados

Si se estudian las unidades fásicas y tónicas por separado se ve que éstas presentan un mayor número de espigas por cada estímulo para todas las frecuencias de estimulación (figura 14A). Al normalizar el número de espigas medio respecto al valor máximo obtenido de entre todas las series de frecuencias de estimulación, se advierte que en las neuronas fásicas el número de espigas decrece más que en las tónicas con la frecuencia (figura 14B). En ambos casos, esta reducción tiende a estabilizarse a partir de los 30 Hz de estimulación.

Dado que el primer estímulo de una serie debe evocar respuestas de igual magnitud en una neurona, sea cual sea la frecuencia de estimulación; estos cambios en la magnitud de la respuesta media con la frecuencia de estimulación se deben a variaciones de la efectividad de los sucesivos estímulos respecto al primero de la serie. Para medir estas adaptaciones y/o potenciaciones de la respuesta utilizamos la función RRTF (ver Materiales y Métodos). Si se calcula la función RRTF media de todos los registros obtenidos en el núcleo Pr5, podemos observar que la tendencia general es a una reducción progresiva de su valor conforme aumenta la frecuencia de estimulación; es decir, las neuronas de este núcleo tienden a adaptar su respuesta al aumentar la frecuencia de estimulación. Como puede verse en la figura 15 la caída de la respuesta en función de la frecuencia se ajusta perfectamente a una función exponencial.

Si se estudia cada registro por separado, se puede observar que, aunque la mayoría de las neuronas tienden a "filtrar" frecuencias altas, algunas presentan un comportamiento más complejo, adaptando su respuesta a determinadas frecuencias y potenciándola a otras. De este modo 20 de las 35 neuronas (57,1%, figura 16B) adaptan su respuesta siguiendo una función exponencial pero a determinadas frecuencias potencian su respuesta. 10 neuronas (28,6%, figura 16A) se ajustan al comportamiento medio descrito anteriormente (disminución exponencial de la función RRTF con el aumento de la frecuencia de estimulación), mientras que las 5 restantes (14,3%, figura 16C) ni adaptan ni potencian su respuesta hasta los 10-12 Hz de estimulación, adaptando la misma a frecuencias altas.
Resultados

Figura 15 Función RRTF para las diferentes frecuencias de estimulación en el núcleo Pr5. En gris se muestra la función RRTF de cada neurona. En negro se muestra la media de dicha función a cada frecuencia de estimulación y la recta exponencial que se ajusta a los datos obtenidos ($RRTF = -0.038 + 1.0e^{0.033 \text{frecuencia}}$, $r = 0.99$).

Figura 16 Ejemplos de cada uno de los diferentes comportamientos observados en el núcleo Pr5 respecto a la función RRTF en las diferentes series de estimulación a distintas frecuencias. A: caída exponencial la función RRTF. B: caída exponencial de la función RRTF, con aumentos puntuales de dicha función a determinadas frecuencias de estimulación. C: función RRTF estable hasta una determinada frecuencia de estimulación y caída brusca de la misma a partir de dicha frecuencia. En todos los casos, el eje de coordenadas representa el valor de la función RRTF y el de abscisas la frecuencia de estimulación en Hz. La línea gris marca el valor 1 de la función RRTF, valor que indica no variación de la respuesta durante la serie de estimulación.
Las neuronas fásicas (figura 17) tienden a adaptarse de forma exponencial al aumentar la frecuencia. Por el contrario, las neuronas tónicas presentan una adaptación más suave en función de la frecuencia de estimulación, siendo ésta siempre menor que la adaptación de las unidades fásicas. Para frecuencias entre 1 y 10 Hz, las neuronas tónicas, no sólo no adaptan la respuesta, sino que tienden a potenciarla, mientras que las neuronas fásicas alcanzan una reducción de la respuesta del 50% en el mismo intervalo.

Observando los registros se hace notorio que las neuronas fásicas tienden a dejar de responder ante los estímulos de frecuencia alta. La mayor adaptación de este tipo de células frente a las de tipo tónico mostrada por los valores menores de la función RRTF podría deberse, no tanto a una disminución del número de espigas evocadas en cada estímulo de la serie, sino a una menor efectividad de los estímulos a determinadas frecuencias. Efectivamente, si se representa la proporción de estímulos efectivos (aquellos que resultan en respuesta de la neurona) de las neuronas fásicas y tónicas, puede observarse que éstas apenas sufren una disminución de la efectividad con el aumento de la frecuencia, mientras que la efectividad de las primeras cae de forma exponencial con dicho aumento de frecuencia (figura 18A). Al comparar las funciones RRTF para las distintas frecuencias de estimulación de neuronas fásicas y tónicas calculadas a partir únicamente de aquellos estímulos de las diferentes series que provocan respuesta, se comprueba que la adaptación de las unidades fásicas sigue siendo mayor y más rápida en función de la frecuencia de estimulación que la de las tónicas (figura 18B).
Resultados

Figura 17 Función RRTF media para cada frecuencia de estimulación de de las neuronas fásicas (negro) y tónicas (gris) del núcleo Pr5. La línea discontinua gris indica ausencia de cambio.

Figura 18 A: Proporción, en tanto por uno, de estímulos que generan respuesta en las neuronas fásicas (negro) y tónicas (gris) del núcleo Pr5. B: Función RRTF media para cada frecuencia de estimulación de de las neuronas fásicas (negro) y tónicas (gris) del núcleo Pr5, teniendo en cuenta únicamente los estímulos que generan respuesta. La línea discontinua gris indica ausencia de cambio en ambos casos.
Resultados

También se ha estudiado si este comportamiento es dinámico a lo largo de los estímulos de una serie para cada frecuencia de estimulación (figura 19). Para ello se ha calculado la función RRTF de los primeros cinco estímulos de cada serie de frecuencias del conjunto de neuronas obtenidas en Pr5. En las 13 frecuencias estudiadas el mayor descenso de la función RRTF se produce entre el primer y el segundo estímulo. Aunque sigue produciéndose un leve descenso del valor de la función RRTF en los estímulos siguientes, dicho valor tiende a estabilizarse a partir del segundo estímulo. No se observa un descenso paulatino de los valores RRTF en el segundo estímulo según aumenta la frecuencia de estimulación. Antes bien, dichos valores tienden a agruparse, siendo estos valores similares entre 1 y 2 Hz, entre 3 y 20 Hz y entre 25 y 40 Hz. Sin embargo, según se sigue estimulando se van desagrupando de manera que en el quinto estímulo se observa un aumento continuo de la adaptación, aunque no en relación directa con el aumento de la frecuencia de estimulación.

En el 57,1% (20 de 35 registros) el valor de la función TSR aumenta de forma exponencial en función de la frecuencia de estimulación (Figura 20A) hasta alcanzar un valor máximo para 40 Hz, que oscila entre 17 y 1065 espigas en cada caso. En el resto de los registros (15 de 35 registros, 42,9%) se observa un aumento del valor de la función TSR para frecuencias intermedias (entre 10 y 25 Hz), y una caída para frecuencias altas (filtrado band-pass. Figura 20B). La mayoría de las neuronas que muestran este comportamiento son de tipo fásico (14 de las 15), por lo que la función TSR media de neuronas fásicas y tónicas es muy diferente (figura 21). La media de las neuronas tónicas muestra un aumento constante del valor TSR con la frecuencia de estimulación (filtró high-pass), mientras que la de las fásicas muestra un aumento en dichas frecuencias intermedias.
Figura 19. Función RRTF para los primeros 5 estímulos de la serie de las diferentes frecuencias de estimulación para el total de neuronas (arriba), las neuronas fásicas (centro) y las neuronas tónicas (abajo) del núcleo Pr5. La línea gris indica ausencia de cambio. En el eje de abcisas se representa el tiempo en ms y en el de coordenadas el valor de RRTF.
Resultados

Figura 4.20. A: Función TSR de las neuronas de Pr5. En gris se muestran los registros individuales, en negro el valor medio a cada frecuencia de estimulación y la función exponencial que se ajusta a los valores obtenidos (TSR = -2,5 + 180(1-e^{-0.071frecuencia}), r = 1,00). B: Función TSR para los registros del núcleo Pr5 que muestran una amplificación de la respuesta en valores intermedios de frecuencia de estimulación. En gris se muestran los registros individuales y en negro la media.

Figura 4.21. Función TSR media, normalizada respecto a la estimulación a 1 Hz, de las neuronas fásicas (negro) y tónicas (gris) del núcleo Pr5.
Multiunitarios

En el histograma periestímulo medio de los 22 registros multiunitarios (figura 22) puede observarse que la respuesta para cada frecuencia de estimulación se mantiene constante e idéntica a la del primer estímulo de la serie para frecuencias menores de 3 Hz. Para estímulos de mayor frecuencia se produce una caída en la probabilidad de disparo a partir del segundo estímulo de la serie. Esta caída es muy suave para frecuencias de estimulación menores de 15 Hz, tardando unos 600 ms en alcanzar el mínimo, mientras que para frecuencias mayores, ya desde el segundo estímulo se alcanza un valor muy cercano al mínimo. Este valor mínimo es cada vez menor según aumenta la frecuencia de estimulación.

Si se cuantifica este comportamiento como número de espigas medio por estímulo (figura 23A), se observa claramente cómo se produce una caída exponencial del número de espigas evocadas por cada estímulo según aumenta la frecuencia de estimulación (desde 3,8 espigas/estímulo para 1 Hz, hasta 1,2 espigas/estímulo para 40 Hz). Sin embargo, si se observa cada registro por separado, se comprueba que todos se ajustan a dos patrones (figura 23C): la mayoría (12 de 22 registros, 54,5%) siguen el patrón descrito anteriormente con el número de espigas evocado por cada estímulo que cae exponencialmente conforme aumenta la frecuencia de estimulación. El resto (10 registros de los 22, 45,5%) tiene también la tendencia a disminuir su número de espigas conforme aumenta la frecuencia de estimulación, pero para determinadas frecuencias el número de espigas aumenta en relación a frecuencias más bajas.

Si se calcula la función RRTF media de todos los registros obtenidos en el núcleo Pr5 (figura 24), podemos observar que la tendencia general es una reducción progresiva de su valor conforme aumenta la frecuencia de estimulación. La caída de la respuesta en función de la frecuencia se ajusta perfectamente a una función exponencial. Las estimulaciones a 1 Hz potencian la respuesta.
Resultados

1 Hz 2 Hz 3 Hz
1 Hz 2 Hz 3 Hz
5 Hz 8 Hz 10 Hz
12 Hz 15 Hz 20 Hz
25 Hz 30 Hz 35 Hz
40 Hz

Figura 22 Probabilidad de disparo media de la población total de registros multiunitarios del núcleo Pr5

Figura 23 A: Función SR en los registros multiunitarios del núcleo Pr5. En gris se muestra la respuesta de cada registro multiunitario. En negro se muestra la media de la respuesta y la recta exponencial que se ajusta a los datos obtenidos (SR = 1,1 + 2,8e^{-0,07frecuencia}, r = 0,99). B: en gris, respuesta de los diferentes registros multiunitarios normalizados y en negro la media. C: Arriba: ejemplo de registro con caída exponencial. Abajo: ejemplo de registro con aumento del número de espigas para frecuencias de estimulación puntuales.

94
Todos los registros obtenidos, si bien se ajustan al comportamiento medio descrito anteriormente de filtrado de frecuencias altas en general, presentan al menos una frecuencia de estimulación en la que se produce cierta potenciación de la respuesta (figura 24). En general, en cada registro se produce este fenómeno para una frecuencia o combinación de frecuencias diferentes.

Al igual que en los registros unitarios, el comportamiento de la respuesta de los registros multiunitarios ante la estimulación a diferentes frecuencias es muy poco dinámico (figura 25). Para todas las frecuencias, el mayor descenso de la función RRTF se produce en el segundo estímulo, descendiendo levemente en los estímulos posteriores. En este caso, se pueden observar también tres grupos en función del valor RRTF del segundo estímulo: entre 1 y 3 Hz, entre 5 y 15 Hz y entre 20 y 40 Hz. A lo largo del resto de estímulos van aumentando las diferencias de manera que en el quinto estímulo no es evidente ningún tipo de agrupación.

El valor de la función TSR media del conjunto de registros multiunitarios aumenta de forma exponencial según lo hace la frecuencia de estimulación hasta alcanzar un valor máximo (Figura 26). Al igual que en los registros unitarios, en algunos registros multiunitarios se observa un comportamiento característico de un filtro band-pass. Concretamente, el 31,8% de los registros (7 de los 22, figura 26) muestra este tipo de comportamiento, mientras que el comportamiento del 68,2% (15 registros de 22) se ajusta a una exponencial.
Figura 24 Función RRTF para las diferentes frecuencias de estimulación de los registros multiunitarios del núcleo Pr5. En gris se muestra la función RRTF de cada registro. En negro se muestra la media de dicha función y la recta exponencial que se ajusta a los datos obtenidos (RRTF = 0,3 + 0,81e^{0,088 frecuencia}, r = 0,99).

Figura 25. Función RRTF para los primeros cinco estímulos de cada serie de estimulación.

Figura 26 Función TSR de los registros multiunitarios del núcleo Pr5. En gris se muestran los registros individuales, en negro el valor medio y la función exponencial que se ajusta a los valores obtenidos (TSR = 7,7 + 244 frecuencia, r = 1,00).
Resultados

Estudio del tiempo de la respuesta ante estímulos repetitivos de frecuencia fija

Unitarios

El aumento de la frecuencia de estimulación conlleva un aumento de la media de las latencias de las 35 neuronas obtenidas en Pr5, que es muy suave y no presenta cambios abruptos (figura 27). Si bien la mayoría de las neuronas se ajustan a este comportamiento poblacional (18 de las 35, 51,4%), varias presentan comportamientos diferentes: en 9 (25,7%), todas tónicas, la latencia se mantiene constante hasta los 15 Hz y a partir de este punto aumenta de forma brusca hasta los 40 Hz; en 6 (17,2%), todas ellas fásicas, se produce un aumento notable de la latencia en una banda de frecuencias (entre 3 y 15 Hz), y en 2 (5,7%), también fásicas, no se produce cambio alguno de la latencia con la frecuencia de estimulación.

Es evidente, según lo descrito en el párrafo anterior, que el comportamiento de las unidades fásicas y tónicas presenta ciertas diferencias (figura 28). Un examen superficial de los registros indica que, en general, el comportamiento de las tónicas es más suave, sin presentar los picos abruptos que aparecen en los registros fásicos. Para un análisis más profundo se ha calculado la media de las latencias de las neuronas fásicas y tónicas por separado. Aunque en ambos tipos de neuronas la media tiende a aumentar con la frecuencia de estimulación, es siempre menor en las tónicas. La representación de estas medias normalizadas muestra que este aumento de la media es distinto entre las unidades tónicas y fásicas. En las primeras, la latencia permanece prácticamente constante hasta los 15 Hz, aumentando de forma abrupta a partir de este punto. En las fásicas se produce un aumento de la latencia hasta los 20 Hz, manteniéndose constante a partir de este punto.
Figura 27 A: Latencia de la respuesta evocada por las diferentes frecuencias de estimulación en las neuronas del núcleo Pr5. En gris se muestra la latencia de cada neurona. En negro se muestra la media de la respuesta y su SD. B: en gris, latencia de los diferentes registros unitarios normalizados respecto a la estimulación a 1 Hz. En negro, media de las latencias normalizadas. La línea gris horizontal indica ausencia de cambio.
Figura 28 A: Latencia media de la respuesta evocada por cada estímulo de la serie para las diferentes frecuencias de estimulación en las neuronas fásicas (negro) y tónicas (gris) del núcleo Pr5. B: Igual, con los valores normalizados. La línea gris horizontal indica ausencia de cambio.
Resultados

Según lo expuesto hasta este momento, a nivel poblacional el aumento de la frecuencia de estimulación conlleva un aumento de la adaptación, medido con la función RRTF, así como un aumento de la latencia de la respuesta. El aumento de estas funciones no sucede de forma independiente el uno del otro, de manera que existe una correlación clara entre ambos (figura 29).

Figura 29 Relación entre la función RRTF y la latencia media de respuesta normalizada del total de neuronas (izquierda), de las neuronas fásicas (centro) y de las neuronas tónicas (derecha) del núcleo Pr5. En el interior se muestran las funciones que las relacionan, con coeficiente de correlación 0,98 el total, 0,90 las fásicas y 0,96 las tónicas.

En cuanto al comportamiento dinámico de la latencia a lo largo de los estímulos de una serie a cada frecuencia de estimulación cabe decir que, aunque se produce un aumento continuo a lo largo de los cinco estímulos estudiados, el mayor aumento sucede en el segundo estímulo (figura 30). También en este caso se pueden agrupar las frecuencias en función de la latencia ante el segundo estímulo: entre 1 y 3 Hz, entre 5 y 10 Hz y entre 15 y 40 Hz. En general, el comportamiento dinámico de la latencia de la respuesta es bastante diferente del de su magnitud, por lo que la conjunción de ambos parámetros podría ser utilizada por las neuronas de este núcleo como código para determinar la frecuencia a la que se está estimulando y la cantidad de estímulos a dicha frecuencia que se han aplicado.
Figura 30. Latencia de respuesta para cada estímulo de la serie de las diferentes frecuencias de estimulación para el total de neuronas (arriba), las neuronas fásicas (centro) y las neuronas tónicas (abajo) del núcleo Pr5. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la latencia normalizada.
Resultados

En cuanto a la consistencia temporal, medida por la función VS, en la figura 31 se muestra como ante estimulaciones de baja frecuencia (menores de 10 Hz) la respuesta está en una fase muy constante en relación con el estímulo, mientras que ante estimulaciones de frecuencia alta se pierde la consistencia temporal, disminuyendo ésta al aumentar la frecuencia de estimulación. De este modo, mientras que en todas las neuronas el valor de la función VS a 1 Hz es 1 (máxima consistencia temporal), el valor a 40 Hz varía entre 0,09 y 1 (media de 0,7). Si se estudia cada neurona por separado se puede observar que el comportamiento ante altas frecuencias es muy variable.

El comportamiento de tónicas y fásicas de nuevo es muy diferente. Las neuronas tónicas forman un grupo bastante homogéneo y, aunque pierden algo de consistencia temporal con el aumento de la frecuencia de estimulación, nunca lo hacen por debajo de 0,5. Las neuronas fásicas, por el contrario, presentan mucha variabilidad. Algunas se comportan como las tónicas, mientras que otras pierden su consistencia temporal de forma brusca a partir de los 10-20 Hz, alcanzado valores tan bajos como 0,2. Si se calcula la función VS sólo para la primera espiga evocada por cada estímulo, las diferencias se hacen más patentes (figura 31B). Así, las neuronas tónicas pierden bastante menos consistencia que las fásicas, presentando estas últimas comportamientos mucho más variables.

El valor medio de la función VS a cada frecuencia de estimulación está determinado casi exclusivamente por el segundo estímulo de la serie. A partir de éste, apenas hay variaciones de la función VS. En cualquier caso, el aumento de la frecuencia de estimulación conlleva una disminución del valor de la función VS, tanto en el segundo estímulo, como a lo largo del resto de los cinco estudiados.
Figura 31. A: Función VS de cada neurona individual (en gris) y media de la población de neuronas del núcleo Pr5. B: Media de la función VS de las neuronas fásicas (negro) y tónicas (gris) del núcleo Pr5. En ambos casos, la línea gris horizontal representa el máximo de coherencia temporal.
Figura 31. Función VS para los cinco primeros estímulos de las diferentes frecuencias de estimulación para el total de neuronas (arriba), las neuronas fáscicas (centro) y las tónicas (abajo) del núcleo Pr5. La línea gris indica máxima coherencia. En el eje de abscisas se representa el tiempo en ms y en el de ordenadas el valor de la función VS.
Resultados

Multiunitarios

En la mayoría de los registros multiunitarios obtenidos, la latencia de la respuesta aumenta al aumentar la frecuencia de estimulación (figura 32). Sin embargo, en algunos registros se da el fenómeno contrario; incluso en algún caso no hay cambio alguno de la latencia de la respuesta con la frecuencia de estimulación. La media de los valores normalizados muestran tres regiones de comportamiento claras en función de la frecuencia de estimulación (figura 32). En primer lugar, entre 1 Hz y 10 Hz, la latencia media tiende a aumentar conforme aumenta la frecuencia de estimulación. Entre este último valor y 20 Hz la latencia deja de aumentar, volviendo a hacerlo a partir de los 20 Hz y hasta los 40 Hz.

El aumento de la adaptación, medido con la función RRTF, con la frecuencia de estimulación correlaciona con el aumento de la latencia de la respuesta (figura 33).

En el segundo estímulo de la serie a cada frecuencia de estimulación se produce un aumento grande de la latencia (figura 34). Este aumento es diferente en función de la frecuencia de estimulación, aunque sin relación directa con el mismo. A partir del segundo estímulo, la latencia varía de forma más o menos aleatoria.

En cuanto a la consistencia temporal, medida por la función VS, en la figura 35 se muestra como ante estimulaciones de baja frecuencia la respuesta está en una fase muy constante en relación con el estímulo, mientras que ante estimulaciones de alta frecuencia se pierde la consistencia temporal, disminuyendo ésta al aumentar la frecuencia de estimulación. Si se estudia cada registro multiunitario por separado se puede observar que el comportamiento ante altas frecuencias es muy variable, teniendo algunas neuronas mayor consistencia temporal en estas frecuencias de estimulación que otras.
Resultados

Figura 32 A: Latencia de la respuesta evocada por las diferentes frecuencias de estimulación en los registros multiunitarios del núcleo Pr5. En gris se muestra la latencia de cada registro. En negro se muestra la media de la respuesta. B: en gris, latencia de los diferentes registros multiunitarios normalizados. En negro, media de las latencias normalizadas. La línea gris horizontal indica ausencia de cambio.
Total

\[y = 1.4 - 0.37x \]

Figura 33. Relación entre la función RRTF y la latencia media de respuesta normalizada del total de registros multiunitarios de Pr5

Figura 34. Latencia de respuesta para los cinco primeros estímulos de las diferentes frecuencias de estimulación para los registros multiunitarios del núcleo Pr5. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la latencia normalizada.

Figura 35. Función VS de cada registro multiunitario individual (en gris) y media de la población de registros multiunitarios del núcleo Pr5. La línea gris horizontal representa el máximo de coherencia temporal.
Resultados

El valor medio de la función VS a cada frecuencia de estimulación depende casi exclusivamente del obtenido en el segundo estímulo de la serie (figura 36). A partir de éste, apenas hay variaciones de la función VS. En cualquier caso, el aumento de la frecuencia de estimulación conlleva una disminución del valor de la función VS, tanto en el segundo estímulo, como a lo largo del resto de los cinco estudiados. Entre 1 y 15 Hz la función VS del segundo estímulo apenas sufre variaciones. A frecuencias mayores, se producen un descenso de dicha función, mayor cuanto mayor es la frecuencia de estimulación.

Figura 36. Función VS para los cinco primeros estímulos de las diferentes frecuencias de estimulación para los registros multunitarios del núcleo Pr5. La línea gris indica el máximo de consistencia temporal. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de VS.
4.1.2. Núcleo Sensorial Espinal Oral

Caracterización general

Unitarios

En 15 de los 26 registros unitarios se estudió la extensión y distribución del campo receptivo de la neurona registrada. Los campos receptivos de estas neuronas son muy grandes (7,2 ± 0,99 vibrissas); de hecho sólo se ha obtenido 1 registro con campo receptivo limitado a una vibrissa (6,7%). El 13,2% (2 neuronas) responde a la estimulación de tres vibrissas; el 6,7% (1 neurona) a la estimulación de cuatro vibrissas; el 20,0% (3 neuronas) a la de seis vibrissas; el 6,7% (1 neurona) a la de ocho vibrissas, el 40,0% (6 neuronas) a la estimulación de nueve vibrissas y el 6,7% (1 neurona) a la estimulación de 17 vibrissas.

Las neuronas registradas en Sp5o presentan una FMD en condiciones de reposo de 0,9 ± 0,57 espigas/s, con un rango comprendido entre 0 y 14,4 espigas/s. Existen dos grupos de neuronas: unas con FMD iguales o menores que 0,3 espigas/s y otras con FMD mayores de 1,1 espigas/s. La mayoría de las neuronas estudiadas (21 de 26, 80,8%) corresponden al primer grupo (neuronas silentes o S); mientras que sólo unas pocas (5 registros de 26, 19,2%) pertenecen al grupo que se ha denominado de alta frecuencia de disparo en espontánea o AF. La frecuencia de disparo media en espontánea del grupo S es de 0,04 ± 0,017 espigas/s (n = 21), mientras que la del grupo AF es de 4,5 ± 2,53 espigas/s (n = 5, p = 0,08).

Entre los registros unitarios de Sp5o predominan las respuestas de tipo fásico (18 registros de 26, 69,2% del total. Figura 4.40) sobre las de tipo tónico, que constituyen el 30,8% (8 registros, figura 4.41) del total de neuronas registradas (figuras 37 y 38). La FMD de las neuronas fásicas es de 1,3 ± 0,81 espigas/s, mientras que la de las unidades tónicas es de 0,03 ± 0,021 espigas/s (p = 0,069). Entre las neuronas tónicas no hay ninguna del grupo de alta frecuencia de disparo en espontánea. La FMD en espontánea de las unidades fásicas pertenecientes al grupo S es muy parecida a la de las tónicas (0,05 ± 0,024
Resultados

espígas/s, \(n = 13 \), no existiendo diferencias significativas entre ellas (\(p = 0,5 \)). Las unidades fásicas y tónicas tienen campos receptivos de tamaño similar (7,6 ± 1,31 y 6,0 ± 0,82 vibriras respectivamente).

Figura 37. Registro real de una neurona fásica (arriba) y su correspondiente histograma periestímulo (abajo) para una estimulación de 100 ms en el núcleo Sp5o. La flecha vertical indica el comienzo del estímulo y la barra horizontal su duración. El bin del histograma periestímulo es de 1 ms.

Figura 38. Registro real de una neurona tónica (arriba) y su correspondiente histograma periestímulo (abajo) para una estimulación de 100 ms en el núcleo Sp5o. La flecha vertical indica el comienzo del estímulo y la barra horizontal su duración. El bin del histograma periestímulo es de 1 ms.
La aplicación de un pulso de aire de 100 ms de duración sobre la vibrissa principal evoca de 1 a 38 espigas, con una respuesta media de $6,3 \pm 1,80$ espigas/estímulo. Las neuronas tónicas responden con un mayor número de espigas ($15,0 \pm 4,67$ espigas/s) a la estimulación de 100 ms que las neuronas fásicas ($2,4 \pm 0,26$ espigas/s, $P = 0,015$).

Si se compara la magnitud de la respuesta de las neuronas de los grupos S y AF se puede observar que difieren mucho entre sí, obteniéndose una respuesta media de $7,0 \pm 2,21$ espigas/estímulo entre la población de neuronas S ($n = 21$) y de $3,4 \pm 0,49$ entre la de neuronas AF ($n = 5$, $p = 0,07$). En el grupo AF no se han encontrado neuronas tónicas. Si se comparan las respuestas de las neuronas fásicas del grupo S ($2,1 \pm 0,24$ espigas/estímulo de media, $n = 13$) con las de las neuronas fásicas del grupo AF ($3,4 \pm 0,49$ espigas/estímulo, $n = 5$) se observa que las del grupo S son menores en magnitud ($p = 0,009$). La respuesta de las neuronas tónicas, todas ellas silentes, es mayor que la respuesta de las neuronas fásicas del grupo S ($15,0 \pm 4,67$ y $2,1 \pm 0,24$ espigas/estímulo respectivamente, $p = 0,01$) (tabla I).

La respuesta media de estas neuronas durante los primeros 14 ms de estimulación es de $2,4 \pm 0,40$ espigas/estímulo. Esta respuesta también es sustancialmente diferente entre neuronas fásicas y tónicas ($1,6 \pm 0,14$ espigas/estímulo y $4,4 \pm 0,99$ espigas/estímulo respectivamente, $p = 0,012$). Sin embargo, es similar entre las neuronas S y AF ($2,5 \pm 0,49$ y $2,0 \pm 0,39$ espigas/estímulo respectivamente, $p = 0,31$). La respuesta de las neuronas tónicas del grupo S es mayor que la de las fásicas del mismo grupo ($4,4 \pm 0,99$ y $1,4 \pm 0,10$ espigas/estímulo respectivamente, $p = 0,009$). Así mismo, estas neuronas (fásicas del grupo S) muestran respuestas de menor magnitud que las fásicas del grupo AF ($2,0 \pm 0,39$ espigas/estímulo, $p = 0,02$) (tabla II).

La latencia de la respuesta evocada por la estimulación de las vibrissas es bastante variable (entre 3 y 12 ms) siendo la LMR de $9,0 \pm 0,47$ ms. La latencia con que las neuronas de tipo fásico responden a la estimulación sensorial es bastante
superior que la de las neuronas de tipo tónico \((9,7 \pm 0,42 \text{ ms } y \ 7,4 \pm 1,06 \text{ ms}\) respectivamente, \(p=0,011\)). No existen diferencias entre la latencia de la respuesta de las unidades \(S\) \((8,7 \pm 0,55 \text{ ms})\) y la de las unidades \(AF\) \((10,2 \pm 0,71 \text{ ms}, p = 0,21)\).

La latencia de las unidades tónicas del grupo \(S\) es menor que la de las fásicas del mismo grupo \((7,4 \pm 1,06 \text{ y } 9,5 \pm 0,51 \text{ ms respectivamente, } p = 0,03)\), mientras que las latencias de las unidades fásicas de los grupos \(S\) y \(AF\) son iguales \((9,5 \pm 0,51 \text{ y } 10,2 \pm 0,71 \text{ ms respectivamente, } p = 0,45)\) (tabla III).

Multiunitarios

La aplicación de un pulso de aire de 100 ms de duración sobre la vibrissa principal evoca de 2 a 49 espigas en los registros multiunitarios del núcleo Sp5o, con una respuesta media de \(11,5 \pm 2,41 \text{ espigas/estímulo}\). La respuesta en los primeros 14 ms de estimulación entre los registros multiunitarios del núcleo Sp5o es de \(4,3 \pm 0,54 \text{ espigas/estímulo}\), con un rango comprendido entre 1 y 12 espigas/estímulo. La latencia de la respuesta en los registros multiunitarios es de \(8,0 \pm 0,56 \text{ ms}\) (con un rango comprendido entre 5 y 13 ms) (tabla IV).
Estudio de la magnitud de la respuesta ante estímulos repetitivos de frecuencia fija

Unitarios

En primer lugar se ha analizado el comportamiento conjunto de la población. Para ello, como se muestra en la figura 39A, se ha realizado el histograma periestímulo medio de los 26 registros. Como puede observarse, la respuesta para cada estímulo de la serie cuando se estimula a frecuencias bajas (< 8 Hz) se mantiene más o menos constante. Sin embargo, para estímulos a mayor frecuencia se puede observar cómo el primer estímulo alcanza la misma magnitud que para frecuencias bajas, pero a partir del segundo estímulo la respuesta empieza a decrecer hasta alcanzar un valor donde se estabiliza. Este valor mínimo va decreciendo conforme aumenta la frecuencia de estimulación.

Si se realiza el histograma periestímulo medio para neuronas fásicas y tónicas por separado se pueden observar ciertas diferencias (figura 39B y C). El comportamiento general es el mismo: para frecuencias bajas se mantiene la amplitud ante cada estímulo de la serie, y para frecuencias altas la estimulación provoca respuestas de menor magnitud. La diferencia entre estos tipos de neuronas es que la disminución de la respuesta en las fásicas se produce a partir de los 5 Hz, mientras que en las tónicas lo hace a partir de los 20 Hz. Además, la caída de la respuesta en las tónicas es muy suave, mientras que en las fásicas es muy abrupta. Efectivamente, en éstas se puede observar una caída de la magnitud de la respuesta muy fuerte casi desde el segundo estímulo de cada serie de frecuencias. En general la respuesta de las neuronas tónicas es de mayor amplitud (además de más duradera) y la adaptación es menor.
Figura 39 Probabilidad de disparo media de la población total de neuronas del núcleo Sp5o (A) y de la población de neuronas fásicas (B) y tónicas (C).
Figura 40 A: Respuesta media evocada por cada estímulo de la serie para las diferentes frecuencias en el núcleo Sp5o. En gris se muestra la respuesta de cada neurona. En negro se muestra la media de la respuesta y la recta exponencial que se ajusta a los datos obtenidos \(SR = 0.3 + 1.14 e^{-0.005 f_{\text{frecuencia}}} \), \(r = 0.99 \). B: en gris, respuesta de los diferentes registros unitarios normalizados. En negro, media de los diferentes registros. C: ejemplo de dos patrones de respuesta diferentes - Izquierda, caída exponencial de la respuesta con el aumento de la frecuencia de estimulación. Derecha, caída exponencial de la respuesta con aumentos puntuales.
Si se cuantifica este comportamiento como número medio de espigas por estímulo, se observa cómo se produce una caída exponencial del número de espigas/estímulo según aumenta la frecuencia de estimulación (desde 1,7 espigas/estímulo para 1 Hz, hasta 0,5 espigas/estímulo para 40 Hz. Figura 40A). Sin embargo, si se observa cada registro por separado, se perciben varios comportamientos diferentes en las neuronas de Sp5o. La mayoría de éstas (15 de 26 registros, 57,7%, figura 40C) se ajustan al patrón poblacional: el número de espigas evocado por cada estímulo cae exponencialmente conforme aumenta la frecuencia de estimulación. En otros casos (9 registros de los 26, 34,6%, figura 40C), también se observa esta tendencia a caer el número de espigas conforme aumenta la frecuencia de estimulación, pero para determinadas frecuencias el número de espigas aumenta en relación a frecuencias más bajas. Por último, en una neurona el número de espigas se mantiene más o menos constante para todas las frecuencias de estimulación, y en otra el número de espigas permanece constante hasta 5 Hz y a partir de esta frecuencia empieza a caer exponencialmente.

Las neuronas tónicas muestran un mayor número de espigas/estímulo que las fásicas para todas las frecuencias de estimulación (figura 41A). Mientras que el promedio de las fásicas cae de forma exponencial, el de las tónicas presenta dos picos, uno a 5 Hz y otro a 15 Hz. Al normalizar el número de espigas medio respecto al valor máximo obtenido de entre todas las series de frecuencias de estimulación (figura 41B), se advierte que en las neuronas fásicas el número de espigas decrece más rápido que en las tónicas con la frecuencia. Además, la reducción que se alcanza en las fásicas para 40 Hz de estimulación respecto a 1 Hz es mucho mayor que en las tónicas. En la población de neuronas fásicas esta reducción tiende a estabilizarse a partir de los 25 Hz de estimulación.
Figura 41 A: Respuesta media evocada por cada estímulo de la serie para las diferentes frecuencias en el núcleo Sp5o de las neuronas fásicas (negro) y tónicas (gris). B: Igual, con los valores normalizados.
Si se calcula la función RRTF media de todos los registros obtenidos en el núcleo Sp5o (figura 42A), podemos observar que la tendencia general es una reducción progresiva de su valor conforme aumenta la frecuencia de estimulación, es decir, las neuronas de este núcleo tienden a adaptar su respuesta al aumentar la frecuencia de estimulación. Como puede verse en la figura 42A la caída de la respuesta en función de la frecuencia se ajusta perfectamente a una función exponencial.

Si se estudia cada registro por separado se observan varios comportamientos diferentes. En 9 neuronas de las 26 (34,6%, figura 42B) la función RRTF cae exponencialmente conforme aumenta la frecuencia de estimulación. En 6 (23,1%, figura 42C) se potencia la respuesta a frecuencias bajas (entre 1 y 5 Hz), adaptando la misma a frecuencias mayores. En 8 neuronas (30,8%, figura 42D) se produce una adaptación de la respuesta al aumentar la frecuencia de estimulación, pero a determinadas frecuencias se produce una potenciación. Por último, en 3 neuronas (11,5%, figura 42E) se produce una adaptación muy fuerte para todas las frecuencias de estimulación, sin mostrar ningún tipo de dependencia de la misma.

Si se calcula la función RRTF media de las neuronas fásicas y tónicas por separado (figura 43) se hace evidente el diferente comportamiento de unas y otras. Las neuronas fásicas tienden a adaptarse de forma exponencial al aumentar la frecuencia, siendo dicha adaptación muy fuerte. Por el contrario, las neuronas tónicas presentan una adaptación más suave en función de la frecuencia de estimulación, siendo siempre menor que la adaptación de las unidades fásicas. Para frecuencias entre 8 y 10 Hz, las neuronas tónicas, no sólo no adaptan la respuesta, sino que tienden a potenciarla, mientras que las neuronas fásicas alcanzan una reducción de la respuesta del 50% en el mismo intervalo.
Figura 42. A: Función RRTF para las diferentes frecuencias de estimulación en el núcleo Sp5o. En gris se muestra la función RRTF de cada neurona. En negro se muestra la media de dicha función la recta exponencial que se ajusta a los datos obtenidos \((RRTF = 0,16 + 0,85e^{-0,075frecuencia}, r = 0,99)\). B-E: Ejemplos de cada uno de los diferentes comportamientos observados en el núcleo Sp5o respecto a la función RRTF en las diferentes series de estimulación a distintas frecuencias.
Figura 43 Función RRTF media para cada frecuencia de estimulación de de las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5o. La línea gris indica ausencia de cambio.

Figura 44 A: Proporción, tanto por uno, de estimul que generan respuesta en l neuronas fásicas (negro) tónicas (gris) del núcl Sp5o. B: Función RRTF med para cada frecuencia estimulación de de l neuronas fásicas (negro) tónicas (gris) del núcl Sp5o, teniendo en cuen únicamente los estimulos q generan respuesta. La lín gris indica ausencia cambio en ambos casos.
Resultados

Observando los registros se hace notorio que las neuronas fásicas tienden a dejar de responder ante estímulos de frecuencia alta (figura 44). De este modo, la mayor adaptación de este tipo de células frente a las de tipo tónico mostrada por los valores menores de la función RRTF podría deberse, no tanto a una disminución del número de espigas evocadas en cada estímulo de la serie, sino a una menor efectividad de los estímulos a determinadas frecuencias. Efectivamente, si se representa la proporción de estímulos efectivos (aquellos que resultan en respuesta de la neurona) de las neuronas fásicas y tónicas, puede observarse que éstas apenas sufren una disminución de la efectividad con el aumento de la frecuencia, mientras que la efectividad de las primeras cae de forma exponencial con el susodicho aumento de frecuencia. Al comparar las funciones RRTF para las distintas frecuencias de estimulación de neuronas fásicas y tónicas calculadas a partir únicamente de aquellos estímulos de las diferentes series que provocan respuesta (figura 44B), se comprueba que la adaptación de las unidades fásicas es menor ahora que la de las tónicas.

El comportamiento de estas neuronas es algo más dinámico que el de las de Pr5 (figura 45). Tanto en el segundo estímulo como en el tercero se produce un descenso muy fuerte de la función RRTF. Aunque sigue produciéndose un leve descenso del valor de la función RRTF en los estímulos siguientes, dicho valor tiende a estabilizarse. Se observa un descenso paulatino de los valores RRTF en el segundo estímulo según aumenta la frecuencia de estimulación, aunque en algunos casos se alcanzan valores superiores a los de frecuencias menores (por ejemplo, el valor del segundo y tercer estímulo a 15 Hz es mayor que a 12 Hz).
Figura 45. Función RRTF para los cinco primeros estímulos de las diferentes frecuencias de estimulación para el total de neuronas (arriba), las neuronas fásicas (centro) y las tónicas (abajo) del núcleo SpO5. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de ordenadas el valor de RRTF.
Figura 46. Función TSR para las diferentes frecuencias de estimulación en el núcleo Sp5o. A: Registros individuales (gris) y media del total de neuronas y función exponencial que se ajusta a los valores obtenidos (negro. TSR = -1,4 + 90(1-e^{-0,096 frecuencia}), r = 0,99). B: Media de los registros que muestran una amplificación de la respuesta en valores intermedios de frecuencia de estimulación. En gris se muestran los registros individuales y en negro la media. C: Media de las neuronas fásicas (negro) y tónicas (gris).
Resultados

En el 57,7% de los registros (15 de 26 registros) se observa un aumento del valor de la función TSR para frecuencias intermedias (entre 10 y 25 Hz), y una caída para frecuencias altas (filtrado band-pass. Figura 46B). En el resto de los registros (11 de 26 registros, 42,3%) el valor de la función TSR aumenta de forma exponencial en función de la frecuencia de estimulación (Figura 46A) hasta los 15 Hz, momento a partir del cual se estabiliza. La media de las neuronas tónicas muestra un aumento constante del valor TSR con la frecuencia de estimulación (filtro high-pass), mientras que la de las fásicas muestra un aumento hasta los 15 Hz y a partir de aquí el valor de la función no aumenta (figura 46C).

Figura 47 Probabilidad de disparo media de la población total de registros multiunitarios del núcleo Sp5o.
Resultados

Multiunitarios

En el histograma periestímulo medio de los 20 registros multiunitarios puede observarse que la respuesta para cada frecuencia de estimulación se mantiene constante e igual al primer estímulo de la serie para frecuencias menores de 3 Hz (figura 47A). Para estímulos de mayor frecuencia se produce una caída en la probabilidad de disparo a partir del segundo estímulo de la serie; caída que es muy suave para frecuencias de estimulación menores de 25 Hz. El valor mínimo que se alcanza es cada vez menor según aumenta la frecuencia de estimulación.

Si se cuantifica este comportamiento como número de espigas medio por estímulo, se observa claramente cómo se produce una caída exponencial del número de espigas evocadas por cada estímulo según aumenta la frecuencia de estimulación (desde 3,4 espigas/estímulo para 1 Hz, hasta 1,1 espigas/estímulo para 40 Hz. Figura 48A). Sin embargo, si se observa cada registro por separado, se comprueba que todos se ajustan a dos patrones. La mayoría (11 registros de los 20, 55,0%. Figura 48C) siguen el patrón descrito anteriormente: el número de espigas evocado por cada estímulo cae exponencialmente conforme aumenta la frecuencia de estimulación. El resto (9 de 20 registros, 45,0%. Figura 48D) presenta esta tendencia a disminuir su número de espigas conforme aumenta la frecuencia de estimulación, pero para determinadas frecuencias el número de espigas aumenta en relación a frecuencias más bajas.

Si se calcula la función RRTF media de todos los registros obtenidos en el núcleo Sp50, podemos observar que la tendencia general es una reducción progresiva de su valor conforme aumenta la frecuencia de estimulación (figura 49A). La caída de la respuesta en función de la frecuencia se ajusta perfectamente a una función exponencial.
Figura 48 A: Respuesta media evocada por cada estimulo de la serie para las diferentes frecuencias en los registros multiunitarios del nucleo Sp5o. En gris se muestra la respuesta de cada registro multiunitario. En negro se muestra la media de la respuesta la recta exponencial que se ajusta a los datos obtenidos ($SR = 1,0 + 2,4e^{-0.074\text{frecuencia}}$, $r = 0,99$). B: en gris, respuesta de los diferentes registros multiunitarios normalizados. En negro, media de los diferentes registros. C: Ejemplo de registro con caída exponencial. D: Ejemplo de registro con aumento del número de espigas para frecuencias de estimulación puntuales.
Si se estudia cada registro por separado se puede observar que, salvo en 2 registros de los 20 obtenidos (10%), existe una o varias frecuencias de estimulación que inducen una potenciación, al menos relativa a las frecuencias de estimulación circundantes, de la respuesta; aunque la tendencia en todos es a adaptar la respuesta ante estimulaciones de frecuencia alta. En general, en cada registro se produce este fenómeno para una frecuencia o combinación de frecuencias diferentes. En los dos registros que no siguen este patrón, se produce una caída exponencial de la función RRTF sin más.

Tanto en el segundo estimulo como en el tercero se produce un descenso muy fuerte de la función RRTF (figura 50). Aunque sigue produciéndose un leve descenso del valor de la función RRTF en los estímulos siguientes, dicho valor tiende a estabilizarse. Se observa un descenso paulatino de los valores RRTF en el segundo estímulo según aumenta la frecuencia de estimulación, aunque en algunos casos se alcanzan valores superiores a los de frecuencias menores.

El valor de la función TSR media del conjunto de registros multiunitarios aumenta de forma exponencial según lo hace la frecuencia de estimulación hasta alcanzar un valor máximo (Figura 51A). Al igual que en los registros unitarios, en algunos registros multiunitarios se observa un comportamiento característico de un filtro band-pass (figura 51B). Concretamente, el 25% de los registros (5 de los 20) muestra este tipo de comportamiento, mientras que el comportamiento del 75% (14 registros de 20) se ajusta a una exponencial.
Resultados

Figura 49 A: Función RRTF para las diferentes frecuencias de estimulación de los registros multiunitarios del núcleo Sp5o. En gris se muestra la función RRTF de cada registro. En negro se muestra la media de dicha función y la recta exponencial que se ajusta a los datos obtenidos \(RRTF = 0,16 + 0,85e^{-0,075\text{frecuencia}}, r = 0,99 \). La línea gris indica ausencia de cambio en ambos casos.

Figura 50. Función RRTF para los primeros cinco estimulos de cada serie de las diferentes frecuencias de estimulación para los registros multiunitarios del núcleo Sp5o. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de ordenadas el valor de RRTF.
Figura 51 A: Función TSR para cada estímulo de la serie de las diferentes frecuencias de estimulación para los registros multiunitarios del núcleo Sp5o. En gris se muestran los registros individuales, en negro el valor medio y la función exponencial que se ajusta a los valores obtenidos (TSR = -1,4 + 90(1-\text{e}^{-0.096 \text{frecuencia}}), r = 0,99). B: Función TSR para los registros del núcleo Sp5o que muestran una amplificación de la respuesta en valores intermedios de frecuencia de estimulación. En gris se muestran los registros individuales y en negro la media.
Resultados

Estudio del tiempo de la respuesta ante estímulos repetitivos de frecuencia fija

Unitarios

En las 26 neuronas, el valor medio de la latencia a cada frecuencia de estimulación, así como su dispersión, aumenta con dicha frecuencia de estimulación (figura 52A).

![Gráfica A](image1)

![Gráfica B](image2)

Figura 52 A: Latencia de la respuesta evocada por las diferentes frecuencias de estimulación en las neuronas del núcleo Sp5o. En gris se muestra la latencia de cada neurona. En negro se muestra la media de la respuesta. B: en gris, latencia de los diferentes registros unitarios normalizados. En negro, media de las latencias normalizadas. La línea gris horizontal indica ausencia de cambio.
Resultados

Figura 53 A: Latencia media de la respuesta evocada por cada estímulo de la serie para las diferentes frecuencias de estimulación en las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5o. B: Igual, con los valores normalizados. La línea gris horizontal indica ausencia de cambio.

Figura 54 Relación entre la función RRTF y la latencia media de respuesta normalizada del total de neuronas (izquierda), de las neuronas fásicas (centro) y de las neuronas tónicas (derecha) del núcleo Sp5o. En el interior se muestran las funciones que las relacionan, con coeficiente de correlación 0,98 el total y 0,97 las tónicas.
Resultados

El aumento de la latencia media de las neuronas fásicas y tónicas presenta un comportamiento diferente (figura 53A). La latencia de las neuronas fásicas es siempre mayor que la de las tónicas, sea cual sea la frecuencia de estimulación. En las neuronas fásicas, a partir de los 10 Hz la latencia se estabiliza, disminuyendo por encima de los 25 Hz. El aumento de la latencia de las neuronas tónicas es lineal, de manera que la latencia para 40 Hz de las neuronas fásicas y tónicas es muy similar. Si se utilizan las latencias normalizadas (figura 53B) puede observarse que entre 1 y 2 Hz el cambio de la latencia de las unidades fásicas y tónicas es idéntico. A 3 Hz de estimulación, en las unidades tónicas se produce una disminución en el cambio de latencia. A partir de este punto, y hasta los 12 Hz, ambos tipos de neuronas aumentan su latencia con igual rapidez pero, a partir de los 12 Hz, las neuronas fásicas dejan de aumentar su latencia, mientras que las tónicas los siguen haciendo, de forma lineal, por lo que el cambio final de latencia con respecto a la de 1 Hz es mucho mayor en las neuronas tónicas que en las fásicas.

El aumento de la adaptación, medido con la función RRTF, con la frecuencia de estimulación está correlacionado con el aumento de la latencia de la respuesta en el conjunto de neuronas (RRTF = 1,38 - 0,36latencia; r = -0,98). También se cumple esta relación en neuronas tónicas (RRTF = 1,76 - 0,75latencia; r = -0,97). En las neuronas fásicas, en cambio, sólo se observa una correlación clara para las frecuencias de estimulación entre 1 y 8 Hz (figura 54).

En el segundo estímulo de la serie a cada frecuencia de estimulación se produce un aumento grande de la latencia (figura 55). Este aumento es diferente en función de la frecuencia de estimulación, aunque sin relación directa con el mismo (por ejemplo, el segundo estímulo a 5 Hz tiene un valor de latencia menor que a 2 y 3 Hz). A partir del segundo estímulo se producen aumentos muy suaves de la latencia. En el quinto estímulo ya puede observarse una correspondencia clara y directa entre aumento de frecuencia y aumento de latencia.
Resultados

Figura 55. Latencia de respuesta para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para el total de neuronas (arriba), las neuronas fásicas (centro) y tónicas (abajo) del núcleo Sp5o. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la latencia normalizada.
Resultados

En cuanto a la consistencia temporal, medida por la función VS, en la figura 56A se muestra como ante estimulaciones de baja frecuencia (menores de 10 Hz) la respuesta está en una fase muy constante en relación con el estímulo, mientras que ante estimulaciones de mayor frecuencia se pierde la consistencia temporal, disminuyendo ésta al aumentar la frecuencia de estimulación. Si se estudia cada neurona por separado se puede observar que el comportamiento ante altas frecuencias es muy variable, teniendo algunas neuronas mayor consistencia temporal en estas frecuencias de estimulación que otras.

El comportamiento de tónicas y fásicas de nuevo es muy diferente (figura 56B). Las neuronas tónicas forman un grupo bastante homogéneo y, aunque pierden algo de consistencia temporal con el aumento de la frecuencia de estimulación, nunca lo hacen por debajo de 0,5. Las neuronas fásicas, por el contrario, presentan mucha variabilidad. Algunas se comportan como las tónicas (12 de 20, 60%), mientras que otras sufren pérdidas de coherencia mayores, llegando a alcanzar en algunos casos valores tan bajos como 0,2. Si se calcula la función VS sólo para la primera espiga evocada por cada estímulo, las diferencias se hacen más notables. Así, las neuronas tónicas pierden bastante menos consistencia que las fásicas, presentando éstas comportamientos mucho más variables. De hecho, ciertas neuronas fásicas presentan valores de VS muy bajos (menores de 0,5) de forma puntual para ciertas frecuencias de estimulación.

El valor medio de la función VS a cada frecuencia de estimulación está determinado casi exclusivamente por el segundo estímulo de la serie (figura 57). A partir de éste, apenas hay variaciones de la función VS. En cualquier caso, el aumento de la frecuencia de estimulación conlleva una disminución del valor de la función VS, tanto en el segundo estímulo, como a lo largo del resto de los cinco estudiados. Esta disminución es muy leve entre 1 y 15 Hz, siendo muy acusada a partir de 20 Hz.
Figura 56. A: Función VS de cada neurona individual (en gris) y media de la población de neuronas del núcleo Sp5o. B: Media de la función VS de las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5o. En ambos casos, la línea gris horizontal representa el máximo de coherencia temporal.
Figura 57. Función VS para cada los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para el total de neuronas (arraiba), las neuronas fásicas (centro) y tónicas (abajo) del núcleo Sp5o. La línea gris indicada máxima coherencia. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la función VS.
Multiunitarios

En la mayoría de los registros multiunitarios obtenidos, la latencia de la respuesta aumenta al aumentar la frecuencia de estimulación (figura 58). Sin embargo, en algunos registros se da el fenómeno contrario; incluso en algún caso no hay cambio alguno de la latencia de la respuesta con la frecuencia de estimulación. La media de los valores normalizados muestra que el aumento de la latencia es de forma exponencial hasta alcanzar un máximo.

Figura 58 A: Latencia de la respuesta evocada por las diferentes frecuencias de estimulación en los registros multiunitarios del núcleo Sp50. En gris se muestra la latencia de cada registro. En negro se muestra la media de la respuesta B: en gris, latencia de los diferentes registros multiunitarios normalizados. En negro, media de las latencias normalizadas. La línea gris horizontal indica ausencia de cambio.
El aumento de la adaptación, medido con la función RRTF, con la frecuencia de estimulación correlaciona con el aumento de la latencia de la respuesta (figura 59).

Figura 59 Relación entre la función RRTF y la latencia media de respuesta del total de registros multiunitarios (izquierda), de los registros multiunitarios fásicos (centro) y de los registros multiunitarios tónicos (derecha) del núcleo Sp5o. En el interior se muestran las funciones que las relacionan, con coeficiente de correlación 0,99 el total, 0,98 los fásicos y 0,99 los tónicos.

Figura 60. Latencia de respuesta para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para los registros multiunitarios del núcleo Sp5o. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la latencia normalizada.

El aumento de la latencia a lo largo de los estímulos de una serie es más o menos continuo para todas las frecuencias (figura 60). Para 1 y 2 Hz este aumento es muy leve, siendo mucho mayor a partir de 5 Hz. El aumento de la latencia depende en cierto modo de la frecuencia de estimulación, aunque no de forma
Resultados
directa. En el segundo estímulo, el aumento de latencia para frecuencias comprendidas entre 8 y 40 Hz es similar. En los estímulos siguientes se van diferenciando los valores para las distintas frecuencias de manera que en el quinto estímulo apenas hay coincidencias. Los valores de latencia para los distintos estímulos a 3 Hz son similares a los del grupo de 8-40 Hz.

En cuanto a la consistencia temporal, medida por la función VS, en la figura 61 se muestra como ante estimulaciones de baja frecuencia la respuesta está en una fase muy constante en relación con el estímulo, mientras que ante estimulaciones de alta frecuencia se pierde la consistencia temporal, disminuyendo ésta al aumentar la frecuencia de estimulación. Este valor tiende a estabilizarse a partir de los 30 Hz. Si se estudia cada registro multiunitario por separado se puede observar que el comportamiento ante altas frecuencias es muy variable, teniendo algunas neuronas mayor consistencia temporal en estas frecuencias de estimulación que otras.

En el segundo estímulo de cada serie de estimulación se produce una disminución continua del valor de la función VS según aumenta la frecuencia de estimulación (figura 62). Este aumento es notorio sobre todo a partir de 15 Hz. Después del segundo estímulo, el valor de VS tiende a estabilizarse.
Resultados

Figura 61. Función VS de cada registro multiunitario individual (en gris) y media de la población de registros multiunitarios del núcleo Sp50. La línea gris horizontal representa el máximo de coherencia temporal.

Figura 62. Función VS para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación de los registros multiunitarios de Sp50. La línea gris indica máxima coherencia. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la función VS.
4.1.3. Núcleo Sensorial Espinal Interpolar

Caracterización general

Unitarios

En 12 de los 38 registros unitarios obtenidos se estudió la extensión y distribución del campo receptivo de la neurona registrada. Los campos receptivos de las neuronas del núcleo Sp5i son grandes (7,6 ± 1,14 vibrisas de media), no habiéndose encontrado ninguna neurona que responda a la estimulación de menos de 3 vibrisas. De estas 12 neuronas, sólo el 25% (3 neuronas) responde a la estimulación de 3 vibrisas, mientras que el 75% de las neuronas responde a más de 3 vibrisas (hasta 13 vibrisas).

Las neuronas registradas en Sp5i presentan una actividad alta, al menos en comparación con los dos núcleos anteriores, en ausencia de estimulación sensorial. En estas condiciones, la FMD de la población es de 3,0 ± 1,08 espigas/s, con un rango comprendido entre 0 y 32,3 espigas/s. La mayoría están por debajo de 0,5 espigas/s (26 registros de 38, 68,4%), mientras que el 31,6% (12 registros) supera esta frecuencia de disparo, clasificando las neuronas en silentes (S), con FMD menor de 0,50 espigas/s, y de frecuencia alta de disparo (AF), con FMD mayor de 0,50 espigas/s. La frecuencia de disparo media en espontánea del grupo de neuronas S es de 0,2 ± 0,03 espigas/s (n = 26), mientras que la del grupo AF es de 9,2 ± 2,71 espigas/s (n = 12, p = 0,003).

Entre los registros unitarios obtenidos en Sp5i predominan los de tipo fásico (23 registros de 38, 60,5% del total. Figura 63) sobre las de tipo tónico, que constituyen el 39,5% (15 registros, figura 64) del total de neuronas registradas. La frecuencia media de disparo en condiciones de reposo de las neuronas fásicas es de 3,7 ± 1,71 espigas/s, mientras que la de las unidades tónicas es de 1,9 ± 0,82 espigas/s, sin presentar diferencias significativas (p = 0,34). La proporción de unidades S y AF entre los grupos de neuronas fásicas y tónicas es muy similar (69,6% de unidades S en las fásicas, 16 registros de los 23, y 66,7% de
Resultados

unidades S en las tónicas, 10 registros de los 15). Mientras que las neuronas S tanto del grupo de las fásicas como del de las tónicas muestran FMDs idénticas (0,2 ± 0,04 espigas/s y 0,2 ± 0,07 espigas/s respectivamente, p = 0,97), las neuronas AF de dichos grupos son muy diferentes (las neuronas AF fásicas tienen FMD de 11,9 ± 4,36 espigas/s y las tónicas 5,4 ± 1,55 espigas/s, p = 0,1).

El campo receptivo de las unidades tónicas es algo mayor que el de las fásicas, aunque no hay diferencias significativas entre ambas (8,6 ± 1,72 y 6,9 ± 1,56 vibrissas, p = 0,5).

La aplicación de un pulso de aire de 100 ms de duración sobre la vibrissa principal evoca de 1 a 40 espigas, con una respuesta media de 7,2 ± 1,29 espigas/estímulo. Las neuronas tónicas responden con un mayor número de espigas (13,0 ± 2,54 espigas/s) a la estimulación de 100 ms que las neuronas fásicas (3,4 ± 0,49 espigas/s, p = 0,0). Si se compara la magnitud de la respuesta de las neuronas de los grupos S y AF se puede observar que son muy similares (6,8 ± 1,67 espigas/estímulo y 8,0 ± 1,96 espigas/estímulo respectivamente. P = 0,69). El resultado es el mismo si se comparan las neuronas fásicas del grupo S con las neuronas fásicas del grupo AF (3,2 ± 0,64 espigas/estímulo y 3,7 ± 0,72 espigas/estímulo respectivamente; p = 0,65), así como si la comparación se realiza entre las neuronas tónicas de los grupos S y AF (12,6 ± 3,60 espigas/estímulo y 13,9 ± 3,03 espigas/estímulo respectivamente; p = 0,82). La respuesta de las neuronas tónicas es siempre significativamente mayor que la de las fásicas, tanto dentro del grupo S (p = 0,01) como dentro del grupo AF (p = 0,01) (tabla I).

La respuesta media de las neuronas de Sp5i durante los primeros 14 ms de estimulación es de 2,8 ± 0,36 espigas/estímulo (con rango comprendido entre 1 y 10 espigas/estímulo). Esta respuesta también es sustancialmente diferente entre neuronas fásicas y tónicas (1,7 ± 0,17 espigas/estímulo y 4,6 ± 0,67 espigas/estímulo respectivamente, p = 0,0004), aunque es idéntica entre neuronas S y de AF (2,8 ± 0,44 espigas/estímulo y 2,9 ± 0,66 espigas/estímulo respectivamente, p = 0,85). Las neuronas S tónicas responden con 4,5 ± 0,87
Resultados

estacas/estímulo, mientras que las fásicas del mismo grupo lo hacen con $1,7 \pm 0,21$
estacas/estímulo ($p = 0,006$). Las neuronas AF tónicas responden con $4,7 \pm 1,13$
estacas/estímulo, mientras que las fásicas del mismo grupo lo hacen con $1,7 \pm 0,30$
estacas/estímulo ($p = 0,006$). No hay diferencias en la magnitud de la respuesta entre las neuronas fásicas de los grupos S y AF ($p = 0,86$) ni entre las tónicas de los mismos grupos ($p = 0,87$) (tabla II).

La latencia de la respuesta evocada por la estimulación de las vibrissas es bastante variable (entre 4 y 18 ms) siendo la LMR de $8,7 \pm 0,53$ ms. La latencia con que las neuronas de tipo fásico del núcleo Sp5i responden a la estimulación sensorial es igual a la de las neuronas de tipo tónico ($8,9 \pm 1,00$ ms y $8,5 \pm 0,61$ ms respectivamente, $p=0,72$). No existen diferencias entre la latencia de la respuesta de las unidades S ($9,1 \pm 0,68$ ms) y la de las unidades AF ($7,8 \pm 0,79$ ms, $p = 0,13$). Las neuronas S tónicas tienen una latencia de $9,2 \pm 1,31$ ms, siendo muy parecida a la de las fásicas del mismo grupo ($9,0 \pm 0,79$ ms, $p = 0,86$). Las neuronas AF tónicas tienen una latencia de $8,3 \pm 1,64$ ms, que es algo mayor que la de las fásicas del mismo grupo ($7,5 \pm 0,80$ ms, $p = 0,64$). Tampoco hay diferencias en la magnitud de la respuesta entre las neuronas fásicas de los grupos S y AF ($p = 0,13$) ni entre las tónicas de los mismos grupos ($p = 0,33$) (tabla III).
Figura 63. Registro real de una neurona fásica (arriba) y su correspondiente histograma periestímulo (abajo) para una estimulación de 100 ms en el núcleo Sp5i. La flecha vertical indica el comienzo del estímulo y la barra horizontal su duración. El bin del histograma periestímulo es de 1 ms.

Figura 64. Registro real de una neurona tónica (arriba) y su correspondiente histograma periestímulo (abajo) para una estimulación de 100 ms en el núcleo Sp5i. La flecha vertical indica el comienzo del estímulo y la barra horizontal su duración. El bin del histograma periestímulo es de 1 ms.
Multiunitarios

La aplicación de un pulso de aire de 100 ms de duración sobre la vibrissa principal evoca de 2 a 37 espigas en las neuronas del núcleo Sp5i, con una respuesta media de 13,0 ± 1,99 espigas/estímulo. La respuesta en los primeros 14 ms de estimulación entre los registros multiunitarios del núcleo Sp5i es de 5,5 ± 0,60 espigas/estímulo, con un rango comprendido entre 1 y 10 espigas/estímulo. La latencia de la respuesta en los registros multiunitarios es de 8,6 ± 0,64 ms (con un rango comprendido entre 4 y 15 ms) (tabla IV).
Resultados

Estudio de la magnitud de la respuesta ante estímulos repetitivos de frecuencia fija

Unitarios

En primer lugar se ha analizado el comportamiento conjunto de la población. Para ello, como se muestra en la figura 65A, se ha realizado el histograma periestímulo medio de los 38 registros. Como puede observarse, la respuesta para cada estímulo de la serie cuando se estimula a frecuencias bajas (< 5 Hz) se mantiene más o menos constante. Sin embargo, para estímulos a mayor frecuencia se puede observar cómo el primer estímulo alcanza la misma magnitud que para frecuencias bajas, pero a partir del segundo estímulo la respuesta empieza a decrecer hasta alcanzar un valor donde se estabiliza. Además, este valor mínimo va decreciendo conforme se aumenta la frecuencia de estimulación.

Si se realiza el histograma periestímulo medio para neuronas fásicas (figura 65B) y tónicas (figura 65C) por separado se pueden observar ciertas diferencias. El comportamiento general es el mismo: para frecuencias bajas se mantiene la amplitud ante cada estímulo de la serie, y para frecuencias altas la estimulación provoca respuestas de menor magnitud. La diferencia entre estos tipos de neuronas es que la disminución de la respuesta en las fásicas se produce a partir de los 3 Hz, mientras que en las tónicas lo hace a partir de los 10 Hz. Además, la caída de la respuesta en las tónicas es muy suave, mientras que en las fásicas es muy abrupta. Efectivamente, en éstas se puede observar una caída de la magnitud de la respuesta muy fuerte casi desde el segundo estímulo de cada serie de frecuencias. En general la respuesta de las neuronas tónicas es de mayor amplitud (además de más duradera) y la adaptación es menor.
Resultados

Figura 65 Probabilidad de disparo media de la población total de neuronas del núcleo Sp5i (A) y de la población de neuronas fásicas (B) y tónicas (C).
Si consideramos el número medio de espigas por estímulo (SR) (figura 66A), se observa cómo se produce una caída exponencial del número de espigas/estímulo según aumenta la frecuencia de estimulación (desde 2,22 espigas/estímulo para 1 Hz, hasta 0,62 espigas/estímulo para 40 Hz).

Sin embargo, si se observa cada registro por separado, se comprueba que casi la totalidad de las neuronas se ajustan a dos patrones (figura 66C). La mayoría de éstas (20 de 38 registros, 52,6%) se ajustan al patrón poblacional: el número de espigas evocado por cada estímulo cae exponencialmente conforme aumenta la frecuencia de estimulación. En otros casos (17 registros de los 38, 44,7%), también se observa esta tendencia a disminuir el valor SR conforme aumenta la frecuencia de estimulación, pero para determinadas frecuencias el número de espigas aumenta en relación a frecuencias más bajas. Cada neurona de este tipo puede tener una o varias frecuencias para las que potencia su respuesta, siendo muy variadas tanto las frecuencias implicadas como las diferentes combinaciones de éstas; tanto que no se han encontrado dos (o más) neuronas que coincidan. Por último, en un único caso de los 38 estudiados, el número de espigas evocado por cada estimulación tendía a crecer conforme aumenta la frecuencia de estimulación.

Las neuronas tónicas presentan un mayor número de espigas/estímulo que las fásicas para todas las frecuencias de estimulación, así como una mayor dispersión (figura 67A). En ambos casos el número de espigas cae de forma exponencial con el aumento de la frecuencia de estimulación. Al normalizar el número de espigas medio respecto al valor máximo para cada serie de estimulación (figura 67B), se observan diferentes comportamientos. Entre 1 y 3 Hz, el número de espigas decrece más rápido en las fásicas que en las tónicas. Entre 3 y 8 Hz, la velocidad de caída es prácticamente la misma entre ambas poblaciones. Entre 8 y 20 Hz, de nuevo la tasa de caída es mayor en las neuronas fásicas, aunque menor que en el tramo entre 1 y 3 Hz. A partir de este punto, la tasa de caída del número de espigas se iguala entre tónicas y fásicas, de manera que para 40 Hz la reducción en el número de espigas respecto a la estimulación a 1Hz en las neuronas tónicas es
casi la mitad que en las neuronas fásicas. En ambos casos, la caída en el número de espigas tiende a estabilizarse a partir de los 30 Hz.

Figura 66 A: Respuesta media evocada por cada estímulo de la serie para las diferentes frecuencias en el núcleo Sp5i. En gris se muestra la respuesta de cada neurona. En negro se muestra la media de la respuesta y la recta exponencial que se ajusta a los datos obtenidos (SR = 0,5 + 1,81e^{-0,07frecuencia}, r = 1,00). B: en gris, respuesta de los diferentes registros unitarios normalizados. En negro, media de los diferentes registros. C: ejemplo de dos patrones de respuesta diferentes - Izquierda, caída exponencial de la respuesta con el aumento de la frecuencia de estimulación. Derecha, caída exponencial de la respuesta con aumentos puntuales.
Figura 67 A: Respuesta media evocada por cada estímulo de la serie para las diferentes frecuencias en el núcleo Sp5i de las neuronas fásicas (negro) y tónicas (gris). B: Igual, con los valores normalizados.
Si se calcula la función RRTF media de todos los registros obtenidos en el núcleo Sp5i (figura 4.68A), podemos observar que la tendencia general es una reducción progresiva de su valor conforme aumenta la frecuencia de estimulación, es decir, las neuronas de este núcleo tienden a adaptar su respuesta al aumentar la frecuencia de estimulación. La caída de la respuesta en función de la frecuencia se ajusta perfectamente a una función exponencial. De este modo, la eficacia en la respuesta de estas neuronas ante estimulaciones de 40 Hz es casi cinco veces menor que la de estimulaciones de baja frecuencia (1-3 Hz).

Si se estudia cada registro por separado se observan diferentes comportamientos. En 18 de las 38 neuronas (47,4%, figura 68B) la función RRTF cae exponencialmente conforme aumenta la frecuencia de estimulación. 14 neuronas (36,8%, figura 68C) siguen este patrón, pero a determinadas frecuencias, más o menos altas, potencian su respuesta. 2 neuronas (5,3%. Figura 68D) alcanzan valores RRTF muy bajos para todas las frecuencias, sin mostrar ningún tipo de dependencia de la frecuencia de estimulación. Por último, 4 neuronas de las 38 (10,5%. Figura 68E) alcanzan valores RRTF muy bajos para casi todo el espectro de frecuencias, pero que potencian su respuesta a determinadas frecuencias puntuales, al menos en relación a las frecuencias circundantes.

Si se calcula la función RRTF media de las neuronas fásicas y tónicas por separado se hace evidente el diferente comportamiento de unas y otras (figura 69A). Ambos grupos tienden a adaptarse de forma exponencial al aumentar la frecuencia, aunque las fásicas lo hacen de manera más acusada. De este modo, el valor RRTF a 40 Hz de las tónicas es casi el doble que el de las fásicas. A partir de 25 Hz, en ambos grupos, el valor de la función RRTF tiende a estabilizarse.
Resultados

Figura 68. A: Función RRTF para las diferentes frecuencias de estimulación en el núcleo Sp5i. En gris se muestra la función RRTF de cada neurona. En negro se muestra la media de dicha función y la recta exponencial que se ajusta a los datos obtenidos (RRTF = 0,18 + 0,75e^{-0,082\text{frecuencia}}, r = 1,00). B-E: Ejemplos de cada uno de los diferentes comportamientos observados en el núcleo Sp5i respecto a la función RRTF en las diferentes series de estimulación a distintas frecuencias.
Resultados

Figura 69. A: Función RRTF media para cada frecuencia de estimulación de las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5i. B: Proporción, en tanto por uno, de estímulos que generan respuesta en las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5i. C: Función RRTF media para cada frecuencia de estimulación de las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5i, teniendo en cuenta únicamente los estímulos que generan respuesta. La línea gris indica ausencia de cambio en todos los casos.
Resultados

Las neuronas fásicas tienden a dejar de responder ante estímulos de frecuencia alta (figura 69B), de manera que si se calcula la efectividad de cada serie de estímulos se observa que en estas neuronas cae de manera exponencial según aumenta la frecuencia de estimulación. Sin embargo, en las neuronas tónicas esta caída es más suave y de forma lineal. Al comparar las funciones RRTF para las distintas frecuencias de estimulación de neuronas fásicas y tónicas calculadas a partir únicamente de aquellos estímulos de las diferentes series que provocan respuesta (figura 69C), se comprueba que la adaptación de las unidades fásicas es menor ahora que la de las tónicas, por lo que la mayor adaptación de las primeras encontrada se debe casi exclusivamente a una pérdida de la efectividad del estímulo y no tanto a una disminución del número de espigas provocadas por cada estímulo. En ambos casos, para determinadas frecuencias puntuales se produce una potenciación de la respuesta. En el caso de las fásicas ocurre para 2 y 12 Hz, y en el de las tónicas para 2 y 30 Hz.

En todas las frecuencias estudiadas, en el segundo estímulo se produce un descenso muy fuerte de la función RRTF, seguido de un descenso suave en los estímulos siguientes (figura 70). De hecho, a frecuencias altas (mayores de 3 Hz), no se llega a estabilizar dicha función. Salvo alguna excepción, el aumento de la frecuencia de estimulación conlleva un aumento de la adaptación para todas los estímulos de la serie. El valor de la función RRTF en el segundo estímulo es muy parecido entre las 13 frecuencias. Conforme aumenta el número de estímulos a lo largo de la serie, aumentan las diferencias entre los valores RRTF de las diferentes frecuencias de estimulación, de manera que en el quinto estímulo a cada frecuencia de estimulación le corresponde un valor RRTF distinto al del resto de frecuencias.
Figura 70. Función RRTF para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para el total de neuronas (arriba), las neuronas fásicas (centro) y tónicas (abajo) del núcleo Sp5i. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de RRTF.
Resultados

En el 57.9% (22 de 38 registros) el valor de la función TSR aumenta de forma exponencial en función de la frecuencia de estimulación (Figura 71A) hasta alcanzar un valor máximo para 40 Hz, que oscila entre 17 y 1065 espigas en cada caso. En el resto de los registros (16 de 38 registros, 42,1%) se observa un aumento del valor de la función TSR para frecuencias intermedias, y una caída para frecuencias altas (filtrado band-pass. Figura 71B). La media de estas neuronas muestra un máximo en 15 Hz. La mayoría de las neuronas que muestran este comportamiento son de tipo fásico (13 de las 16), por lo que la función TSR media de neuronas fásicas y tónicas es muy diferente, siendo el aumento de dicha función en las tónicas siempre mayor que en las fásicas (figura 71C).

![Gráfico A](image1)

![Gráfico B](image2)

![Gráfico C](image3)

Figura 71. Función TSR para las diferentes frecuencias de estimulación en el núcleo Sp5i. A: Registros individual (gris) y media del total de neuronas y función exponencial que se ajusta a los valores obtenidos (negro, TSR = 5,1 116(1-e^{-0.077 frecuencias}), r = 0,99). B: Media de los registros que muestran una amplificación de la respuesta en valor intermedios de frecuencia de estimulación. En gris se muestran los registros individuales y en negro la media. C Media de las neuronas fásicas (negro) y tónicas (gris).
Multiunitarios

En el histograma periestímulo medio de los 20 registros multiunitarios puede observarse que la respuesta para cada frecuencia de estimulación se mantiene constante e igual al primer estímulo de la serie para frecuencias menores de 3 Hz (figura 72). Para frecuencias superiores se produce una caída en la probabilidad de disparo a partir del segundo estímulo de la serie. Este valor mínimo es cada vez menor según aumenta la frecuencia de estimulación.

Figura 72. Probabilidad de disparo media de la población total de registros multiunitarios del núcleo Sp5i.
Resultados

Figura 73 A: Respuesta media evocada por cada estímulo de la serie para las diferentes frecuencias en los registros multiunitarios del núcleo Sp5i. En gris se muestra la respuesta de cada registro multiunitario. En negro se muestra la media de la respuesta y la recta exponencial que se ajusta a los datos obtenidos ($SR = 1,1 + 3,7e^{-0,083*Frecuencia}$, $r = 0,98$). B: en gris, respuesta de los diferentes registros multiunitarios normalizados. En negro, media de los diferentes registros. C: Ejemplo de registro con caída exponencial. D: Ejemplo de registro con aumento del número de espijas para frecuencias de estimulación puntuales.
Si se cuantifica este comportamiento como número de espigas medio por estímulo (figura 73A), se observa claramente cómo se produce una caída exponencial del número de espigas evocadas por cada estímulo según aumenta la frecuencia de estimulación: desde 5.0 espigas/estímulo a 1 Hz, hasta 1.6 espigas/estímulo a 40 Hz. Sin embargo, si se observa cada registro por separado, se comprueba que todos se ajustan a dos patrones: La mitad de los registros (10 registros de los 20) tiene una tendencia a disminuir su número de espigas conforme aumenta la frecuencia de estimulación (figura 73D), pero para determinadas frecuencias (diferentes en cada caso) el número de espigas aumenta en relación a frecuencias más bajas. En la otra mitad el número de espigas evocado por cada estímulo cae exponencialmente conforme aumenta la frecuencia de estimulación (figura 73C).

Si se calcula la función RRTF media de todos los registros obtenidos en el núcleo Sp5i (figura 74), podemos observar que la tendencia general es una reducción progresiva de su valor conforme aumenta la frecuencia de estimulación. La caída de la respuesta en función de la frecuencia se ajusta perfectamente a una función exponencial.

Si se estudia cada registro por separado se puede observar que, aunque en todos ellos la tendencia es a adaptar la respuesta ante estimulaciones de frecuencia alta, en la mayoría de los registros obtenidos (17 de 20, 85%) existen una o varias frecuencias de estimulación que inducen una potenciación.

En todas las frecuencias estudiadas, en el segundo estímulo se produce un descenso muy fuerte de la función RRTF, seguido de un descenso suave en los estímulos siguientes (figura 75). De hecho, a frecuencias altas (mayores de 3 Hz), no se llega a estabilizar dicha función. Salvo alguna excepción, el aumento de la frecuencia de estimulación conlleva un aumento de la adaptación para todas los estímulos de la serie. En el segundo estímulo, los valores RRTF para las distintas frecuencias están muy agrupados, aumentando su dispersión conforme lo hace el número de estímulos.
Resultados

El valor de la función TSR media del conjunto de registros multiunitarios aumenta de forma exponencial según lo hace la frecuencia de estimulación hasta alcanzar un valor máximo (Figura 76). Al igual que en los registros unitarios, en algunos registros multiunitarios se observa un comportamiento característico de un filtro band-pass. Concretamente, el 40% de los registros (8 de los 20) muestra este tipo de comportamiento (figura 76), con un pico claro en 15 Hz; mientras que el comportamiento del 60% restante (12 registros de 20) se ajusta a una exponencial.

Figura 74 Función RRTF para las diferentes frecuencias de estimulación de los registros multiunitarios del núcleo Sp5i. En gris se muestra la función RRTF de cada registro. En negro se muestra la media de dicha función y la recta exponencial que se ajusta a los datos obtenidos (RRTF = 0,2 + 0,84e^{0.079 \text{frecuencia}}, r = 1,00). La línea gris indica ausencia de cambio en ambos casos.
Figura 75. Función RRTF para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para los registros multiunitarios de Sp5i. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de ordenadas el valor de RRTF.

Figura 76. A: Función TSR para cada estímulo de la serie de las diferentes frecuencias de estimulación para los registros multiunitarios del núcleo Sp5i. En gris se muestran los registros individuales, en negro el valor medio y la función exponencial que se ajusta a los valores obtenidos (TSR = 6,7 + 221(1-e^{-0,086 frecuencia}), r = 0,99). B: Función TSR para los registros del núcleo Sp5i que muestran una amplificación de la respuesta en valores intermedios de frecuencia de estimulación. En gris se muestran los registros individuales y en negro la media.
Resultados

Estudio del tiempo de la respuesta ante estímulos repetitivos de frecuencia fija

Unitarios

En las 38 neuronas, el valor medio de la latencia a cada frecuencia de estimulación, así como su dispersión, aumenta con dicha frecuencia (figura 77A), aunque a partir de los 15 Hz tiende a estabilizarse.

El aumento de la latencia media de las neuronas fásicas y tónicas presenta un comportamiento diferente. Excepto en el caso de estimulaciones a 1 Hz, la latencia de las neuronas fásicas es siempre mayor que la de las tónicas (figura 78A). Entre 1 y 3 Hz de estimulación, la latencia en las unidades fásicas aumenta de forma muy rápida mientras que en las unidades tónicas la latencia no varía (figura 78B). Entre 3 y 15 Hz, la latencia en ambos tipos de células aumenta en función de la frecuencia de estimulación de forma parecida. Una vez llegadas a esta frecuencia de estimulación, en las unidades fásicas se estabiliza el aumento de la frecuencia, mientras que en las tónicas sigue aumentando, aunque de forma más suave. De este modo, para frecuencias de estimulación de 40 Hz, apenas hay diferencias en el aumento de la latencia entre las unidades tónicas y las fásicas.

El aumento de la adaptación, medido con la función RRTF, con la frecuencia de estimulación está correlacionado con el aumento de la latencia de la respuesta en el conjunto de neuronas (RRTF = 1,45 - 0,50latencia; r = 0,99. Figura 79)). También se cumple esta relación en neuronas fásicas (RRTF = 1,45 - 0,49latencia; r = 0,98) y tónicas (RRTF = 1,44 - 0,53latencia; r = 0,94).

En cuanto al comportamiento dinámico del aumento de latencia a lo largo de la serie de estímulos, se produce un aumento notable en el segundo estímulo a todas las frecuencias de estimulación, y aumentos más leves a lo largo del resto de estímulos de la serie (figura 80). En general, el aumento de la frecuencia de estimulación conlleva un aumento de la latencia en todos los estímulos de la serie, aunque existen varias excepciones.
Figura 77 A: Latencia de la respuesta evocada por las diferentes frecuencias de estimulación en las neuronas del núcleo Sp5i. En gris se muestra la latencia de cada neurona. En negro se muestra la media de la respuesta. B: en gris, latencia de los diferentes registros unitarios normalizados. En negro, media de las latencias normalizadas. La línea gris horizontal indica ausencia de cambio.
Resultados

Figura 78 A: Latencia media de la respuesta evocada por cada estímulo de la serie para las diferentes frecuencias de estimulación en las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5i. B: Igual, con los valores normalizados. La línea gris horizontal indica ausencia de cambio.

Figura 79 Relación entre la función RRTF y la latencia media de respuesta normalizada del total de neuronas (izquierda), de las neuronas fásicas (centro) y de las neuronas tónicas (derecha) del núcleo Sp5i. En el interior se muestran las funciones que las relacionan.
Figura 80. Latencia de respuesta para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para el total de neuronas (arriba), las neuronas fásicas (centro) y tónicas (abajo) del núcleo Sp5i. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la latencia normalizada.
Resultados

En cuanto a la consistencia temporal, medida por la función VS, en la figura 81A se muestra como ante estimulaciones de baja frecuencia la respuesta está en una fase muy constante en relación con el estímulo, mientras que al aumentar la frecuencia de estimulación disminuye la consistencia temporal, de manera que a 40 Hz el valor de la función VS es 0,6. Si se estudia cada neurona por separado se puede observar que el comportamiento ante altas frecuencias es muy variable, teniendo algunas neuronas mayor consistencia temporal en estas frecuencias de estimulación que otras.

El comportamiento de tónicas y fásicas de nuevo es muy diferente (figura 81B). En las neuronas tónicas pueden diferenciarse dos tipos de comportamientos. Por un lado, la mayoría de las neuronas tónicas (11 de las 15, 73,3%) pierden algo de consistencia temporal con el aumento de la frecuencia de estimulación, aunque nunca lo hacen por debajo de 0,6. Por otro lado, unas pocas neuronas tónicas pierden consistencia temporal desde frecuencias de estimulación muy bajas, alcanzando valores VS cercanos a 0 a 40 Hz. Las neuronas fásicas, por el contrario, presentan mucha variabilidad. Algunas se comportan como las tónicas (13 de las 23, 56,5%) perdiendo coherencia temporal con el aumento de la frecuencia de estimulación pero de forma muy paulatina, mientras que otras alcanzan valores VS muy cercanos a cero (10 de las 23).

En el segundo estímulo de cada serie de estimulación se produce una disminución del valor de la función VS según aumenta la frecuencia de estimulación. Este aumento es notorio sobre todo a partir de 15 Hz. Después del segundo estímulo, el valor de VS tiende a estabilizarse (figura 82).
Figura 81. A: Función VS de cada neurona individual (en gris) y media de la población de neuronas del núcleo Sp15. B: Media de la función VS de las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5i. En ambos casos, la línea gris horizontal representa el máximo de coherencia temporal.
Figura 82. Función VS para los primeros cinco estímulos de la serie de las diferentes frecuencias de estimulación para el total de neuronas (arriba), las neuronas fásicas (centro) y tónicas (abajo) del núcleo Sp5i. La línea gris indica máxima coherencia. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la función VS.
Multiunitarios

En la mayoría de los registros multiunitarios obtenidos (16 de 20, 80%), la latencia de la respuesta aumenta al aumentar la frecuencia de estimulación (figura 83). Sin embargo, en 3 registros se da el fenómeno contrario; incluso en 1 registro no hay cambio alguno de la latencia de la respuesta con la frecuencia de estimulación. El cambio de la latencia media de los 20 registros con el aumento de la frecuencia se ajusta a un crecimiento exponencial hasta alcanzar un valor máximo (10,8 ms de media).

Figura 83 A: Latencia de la respuesta evocada por las diferentes frecuencias de estimulación en los registros multiunitarios de SpI5. En gris se muestra la latencia de cada registro. En negro se muestra la media de la respuesta. B: en gris, latencia de los diferentes registros multiunitarios normalizados. En negro, media de las latencias normalizadas. La línea gris horizontal indica ausencia de cambio.
Resultados

El aumento de la adaptación, medido con la función RRTF, con la frecuencia de estimulación correlaciona con el aumento de la latencia de la respuesta (figura 84).

![Figura 84](attachment:image.png)

Figura 84 Relación entre la función RRTF y la latencia media de respuesta normalizada del total de registros multiunitarios. En el interior se muestran las funciones que las relacionan ($r = 0.98$)

En cuanto al comportamiento dinámico del aumento de latencia a lo largo de la serie de estímulos, se produce un aumento notable en el segundo estímulo a todas las frecuencias de estimulación, y aumentos más leves a lo largo del resto de estímulos de la serie (figura 85). En general, el aumento de la frecuencia de estimulación conlleva un aumento de la latencia en todos los estímulos de la serie, aunque existen varias excepciones. Existe un aumento de la dispersión de los valores de latencia a lo largo de la serie de estímulos. Se pueden diferenciar dos grupos en función de los valores de latencia, uno entre 1 y 10 Hz, excepto 8 Hz, y otro entre 12 y 40 Hz, además de 8 Hz.

En la figura 86 se muestra como ante estimulaciones de baja frecuencia la respuesta está en una fase muy constante en relación con el estímulo, mientras que ante estimulaciones de alta frecuencia se pierde la consistencia temporal, disminuyendo ésta al aumentar la frecuencia de estimulación. De este modo la función V_5 disminuye desde 1 a 1 Hz hasta 0,5 a 40 Hz. Si se estudia cada registro multiunitario por separado se puede observar que el comportamiento ante altas frecuencias es muy variable.
Resultados

En el segundo estímulo de cada serie de estimulación se produce una disminución continua del valor de la función VS según aumenta la frecuencia de estimulación (figura 87). Este aumento es notorio sobre todo a partir de 15 Hz. Después del segundo estímulo, el valor de VS tiende a estabilizarse.

Figura 85. Latencia de respuesta para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para los registros multiunitarios de Sp5i. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la latencia normalizada.
Resultados

Figura 86 Función VS de cada registro multiunitario individual (en gris) y media de la población de registros multiunitarios del núcleo Sp5i (negro). La línea gris horizontal representa el máximo de coherencia temporal.

Figura 87. Función VS para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para los registros multiunitarios de Sp5i. La línea gris indica máxima coherencia. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la función VS.
4.1.4. Núcleo Sensorial Espinal Caudal

Caracterización general

Unitarios

En 10 de los 24 registros unitarios obtenidos se estudió la extensión y distribución del campo receptivo de la neurona registrada. Los campos receptivos de las neuronas del núcleo Sp5c son pequeños (2,7 ± 0,50 vibras de media). De estas 10 neuronas, el 40% (4 neuronas) responde a la estimulación de 1 vibras, el 20% (2 neuronas) a la de 3 vibras; el 30% (3 neuronas) a la de 4 vibras y 1 neurona a la de 5 vibras.

Las neuronas registradas en Sp5c presentan una actividad alta en ausencia de estimulación sensorial. En estas condiciones, la FMD de la población es de 4,3 ± 2,16 espigas/s, con un rango comprendido entre 0 y 44,2 espigas/s. La mayoría está por debajo de 0,1 espigas/s (16 registros de 24, 66,7%), mientras que el 33,3% (8 registros) supera las 1,2 espigas/s. De este modo se han clasificado estas neuronas en silentes (S), con FMD menor de 0,1 espigas/s, y de frecuencia alta de disparo (AF), con FMD mayor de 1,2 espigas/s. La frecuencia de disparo media en espontánea del grupo de neuronas S es de 0,04 ± 0,012 espigas/s (n = 16), mientras que la del grupo AF es de 12,7 ± 5,55 espigas/s (n = 8, p = 0,03).

Entre los registros unitarios obtenidos en Sp5c existen tantos de tipo fálico (13 de 24, 54,2%. Figura 88) como de tipo tónico (11 de 24, 45,8%. Figura 89). La frecuencia media de disparo en condiciones de reposo de las neuronas fásicas es de 5,9 ± 3,80 espigas/s, mientras que la de las unidades tónicas es de 2,3 ± 1,49 espigas/s, sin presentar diferencias significativas (p = 0,2). La proporción de unidades S y AF entre los grupos de neuronas fásicas y tónicas es muy similar (61,5% de unidades S en las fásicas, 8 registros de los 13, y 72,7% de unidades S en las tónicas, 8 registros de los 11). Mientras que las neuronas S tanto del grupo de las fásicas como del de las tónicas muestran FMDs idénticas (0,05 ± 0,015 espigas/s y 0,04 ± 0,018 espigas/s respectivamente, p = 0,6), las neuronas
Resultados

AF de dichos grupos son muy diferentes (las neuronas AF fásicas tienen FMD de 15,3 ± 8,78 espigas/s y las tónicas 8,4 ± 3,97 espigas/s, p = 0,6). El campo receptivo de las unidades fásicas y tónicas es muy parecido (2,3 ± 0,75 y 3,0 ± 0,68 vibras respectivamente, p = 0,5).

La aplicación de un pulso de aire de 100 ms de duración sobre la vibrissa principal evoca de 1 a 48 espigas, con una respuesta media de 7,6 ± 2,04 espigas/estímulo. Las neuronas tónicas responden con un mayor número de espigas (11,8 ± 3,84 espigas/s) a la estimulación de 100 ms que las neuronas fásicas (4,1 ± 1,42 espigas/s, p = 0,04). Si se compara la magnitud de la respuesta de las neuronas de los grupos S y AF se puede observar que son idénticas (7,6 ± 2,85 espigas/estímulo y 7,7 ± 2,48 espigas/estímulo respectivamente, p = 1). El resultado es el mismo si se comparan las neuronas tónicas del grupo S con las neuronas tónicas del grupo AF (12,7 ± 5,20 espigas/estímulo y 9,4 ± 3,74 espigas/estímulo respectivamente, p = 0,7). Sin embargo, las neuronas fásicas del grupo S presentan respuestas de menor magnitud que las neuronas fásicas del grupo AF (2,4 ± 0,46 espigas/estímulo y 6,7 ± 3,51 espigas/estímulo respectivamente, p = 0,07). La respuesta de las neuronas tónicas del grupo S es significativamente mayor que la de las fásicas del mismo grupo (p = 0,04), mientras que la respuesta de las neuronas AF fásicas y tónicas es similar (p = 0,3) (tabla I).

La respuesta media de las neuronas de Sp5c durante los primeros 14 ms de estimulación es de 2,8 ± 0,50 espigas/estímulo (con rango comprendido entre 1 y 11 espigas/estímulo). Este caso no hay una gran diferencia en el comportamiento entre unidades fásicas y tónicas (2,1 ± 0,50 espigas/estímulo y 3,6 ± 0,88 espigas/estímulo respectivamente, p = 0,13); y tampoco en el comportamiento de las unidades S y AF (2,6 ± 0,65 espigas/estímulo y 3,1 ± 0,81 espigas/estímulo respectivamente, p = 0,9). La magnitud de la respuesta de las neuronas fásicas AF es el doble que la de las fásicas del grupo S (3,0 ± 1,20 espigas/estímulo y 1,5 ± 0,25 espigas/estímulo respectivamente, p =0,15), mientras que el comportamiento de las unidades tónicas de los grupos S y AF es muy similar (3,7 ± 1,17...
Resultados

espigas/estímulo y 3,2 ± 1,12 espigas/estímulo respectivamente, p = 0,8). La magnitud de la respuesta de las neuronas fásicas y tónicas del grupo S es diferente (p = 0,05), mientras que la de las neuronas fásicas y tónicas del grupo AF es idéntica (p = 0,9) (tabla II).

La latencia de la respuesta evocada por la estimulación de las vibrisas es bastante variable (entre 5 y 21 ms) siendo la LMR de 8,6 ± 0,82 ms. La latencia con que las neuronas de tipo fásico del núcleo Sp5c responden a la estimulación sensorial es igual a la de las neuronas de tipo tónico (8,7 ± 1,07 ms y 8,5 ± 1,31 ms respectivamente, p=0,9). No existen diferencias entre la latencia de la respuesta de las unidades S (8,2 ± 0,80 ms) y la de las unidades AF (9,5 ± 1,92 ms, p = 0,5). Las neuronas S tónicas tienen una latencia de 7,6 ± 0,64 ms, siendo muy parecida a la de las fásicas del mismo grupo (8,8 ± 1,48 ms, p = 0,5). Las neuronas AF tónicas tienen una latencia de 10,8 ± 4,86 ms, que es algo mayor que la de las fásicas del mismo grupo (8,6 ± 1,69 ms, p = 0,3). Tampoco hay diferencias en la magnitud de la respuesta entre las neuronas fásicas de los grupos S y AF (p = 1) ni entre las tónicas de los mismos grupos (p = 0,3) (tabla III).
Resultados

Figura 88. Registro real de una neurona fásica (arriba) y su correspondiente histograma periestímulo (abajo) para una estimulación de 100 ms en el núcleo Sp5c. La flecha vertical indica el comienzo del estímulo y la barra horizontal su duración. El bin del histograma periestímulo es de 1 ms.

Figura 89. Registro real de una neurona tónica (arriba) y su correspondiente histograma periestímulo (abajo) para una estimulación de 100 ms en el núcleo Sp5c. La flecha vertical indica el comienzo del estímulo y la barra horizontal su duración. El bin del histograma periestímulo es de 1 ms.
Multiunitarios

La aplicación de un pulso de aire de 100 ms de duración sobre la vibrissa principal evoca de 2 a 22 espigas en los registros multiunitarios de Sp5c, con una respuesta media de 18,5 ± 2,07 espigas/estímulo. La respuesta en los primeros 14 ms de estimulación entre los registros multiunitarios del núcleo Sp5c es de 6,7 ± 0,64 espigas/estímulo, con un rango comprendido entre 1 y 8 espigas/estímulo, y una latencia de su respuesta de 7,2 ± 0,40 ms, con un rango comprendido entre 4 y 18 ms (tabla IV).
Resultados

Estudio de la magnitud de la respuesta ante estímulos repetitivos de frecuencia fija

Unitarios

En primer lugar se ha analizado el comportamiento conjunto de la población. Para ello, como se muestra en la figura 90A, se ha realizado el histograma periestímulo medio de los 38 registros. Como puede observarse, la respuesta para cada estímulo de la serie cuando se estimula a frecuencias bajas (< 5 Hz) se mantiene más o menos constante. Sin embargo, para estímulos a mayor frecuencia se puede observar cómo el primer estímulo alcanza la misma magnitud que para frecuencias bajas, pero a partir del segundo estímulo la respuesta empieza a decrecer hasta alcanzar un valor donde se estabiliza. Además, este valor mínimo va decreciendo conforme se aumenta la frecuencia de estimulación.

Si se realiza el histograma periestímulo medio para neuronas fásicas y tónicas por separado se pueden observar ciertas diferencias. En las neuronas fásicas (figura 90B) aumenta la probabilidad de disparo tras el primer estímulo entre 1 y 3 Hz. Entre 5 Hz y 8 Hz se mantiene la probabilidad de disparo, mientras que para 10 Hz y 12 Hz se produce un aumento inicial de la probabilidad de disparo durante 2-3 estímulos, seguido de una disminución de dicha probabilidad. A partir de 15 Hz sólo se puede observar una disminución de la probabilidad de disparo, que desciende de forma muy brusca ya en el segundo estímulo. Esta disminución es mayor cuanto mayor es la frecuencia de estimulación. El comportamiento de las neuronas tónicas es más sencillo (figura 90C). Entre 1 Hz y 3 Hz no hay ninguna variación de la probabilidad de disparo. A partir de los 5 Hz, la probabilidad comienza a disminuir, más cuanto mayor es la frecuencia de estimulación.
Figura 90 Probabilidad de disparo media de la población total de neuronas del núcleo Sp5c (A) y de la población de neuronas fásicas (B) y tónicas (C).
Si consideramos el número medio de espigas por estímulo (SR) (figura 91A), se observa cómo se produce una caída exponencial del número de espigas/estímulo según aumenta la frecuencia de estimulación (desde 2,08 espigas/estímulo para 1 Hz, hasta 0,76 espigas/estímulo para 40 Hz). Sin embargo, si se observa cada registro por separado, se comprueba que casi la totalidad de las neuronas se ajustan a dos patrones (figura 91C). En la mayoría de ellas (15 de 24 registros, 62,5%) el número de espigas evocado por cada estímulo cae exponencialmente conforme aumenta la frecuencia de estimulación. En otros casos (8 registros de los 24, 33,3%), también se observa esta tendencia a disminuir el valor SR conforme aumenta la frecuencia de estimulación, pero para determinadas frecuencias el número de espigas aumenta en relación a frecuencias más bajas. Cada neurona de este tipo puede tener una o varias frecuencias para las que potencia su respuesta, siendo muy variadas tanto las frecuencias implicadas (se han encontrado potenciaciones a 2, 3, 5, 10 y 15 Hz) como las diferentes combinaciones de éstas; tanto que no se han encontrado dos (o más) neuronas que coincidan. Por último, en un único caso de los 24 estudiados, el número de espigas evocado por cada estimulación no tiene ninguna relación con la frecuencia de estimulación.

Las neuronas tónicas presentan un mayor número de espigas/estímulo que las fásicas para todas las frecuencias de estimulación, así como una mayor dispersión (figura 92A). En ambos casos el número de espigas cae de forma exponencial con el aumento de la frecuencia de estimulación. Al normalizar el número de espigas medio respecto al valor máximo para cada serie de estimulación (figura 92B), se observan diferentes comportamientos. Entre 1 y 3 Hz, el número de espigas decrece más rápido en las fásicas que en las tónicas. Entre 3 y 8 Hz, en las fásicas apenas cambia el número de espigas y a partir de 8 Hz cae exponencialmente, excepto en 15 Hz, donde aumenta el número de espigas. En las tónicas, prácticamente hay una caída exponencial en todo el rango de frecuencias de estimulación.
Resultados

Figura 91 A: Respuesta media evocada por cada estímulo de la serie para las diferentes frecuencias en el núcleo Sp5c. En gris se muestra la respuesta de cada neurona. En negro se muestra la media de la respuesta y la recta exponencial que se ajusta a los datos obtenidos (SR = 0,6 + 1,51e^(-0,05frecuencia), r = 1,00). B: en gris, respuesta de los diferentes registros unitarios normalizados. En negro, media de los diferentes registros. C-D: ejemplos de dos patrones de respuesta diferentes.
Figura 92 A: Respuesta media evocada por cada estímulo de la serie para las diferentes frecuencias en el núcleo Sp5c de las neuronas fásicas (negro) y tónicas (gris). B: Igual, con los valores normalizados.
Si se calcula la función RRTF media de todos los registros obtenidos en el núcleo Sp5c (figura 93A), podemos observar que la tendencia general es una reducción progresiva de su valor conforme aumenta la frecuencia de estimulación, es decir, las neuronas de este núcleo tienden a adaptar su respuesta al aumentar la frecuencia de estimulación. La caída de la respuesta en función de la frecuencia se ajusta perfectamente a una función exponencial. De este modo, la eficacia en la respuesta de estas neuronas ante estimulaciones de 40 Hz es la mitad que la de estimulaciones de baja frecuencia (1-3 Hz), pasando de 0,86 a 1 Hz a 0,33 a 40 Hz.

Si se estudia cada registro por separado se observan diferentes comportamientos. En 9 de las 24 neuronas (37,5%, figura 93B) la función RRTF cae exponencialmente conforme aumenta la frecuencia de estimulación. 11 neuronas (45,8%, figura 93C) siguen este patrón, pero a determinadas frecuencias, más o menos altas, potencian su respuesta. 2 neuronas (8,3%) alcanzan valores RRTF muy bajos para todas las frecuencias, sin mostrar ningún tipo de dependencia de la frecuencia de estimulación. Por último, otras 2 neuronas (8,3%) alcanzan valores RRTF muy bajos para casi todo el espectro de frecuencias, pero que potencian su respuesta a determinadas frecuencias puntuales, al menos en relación a las frecuencias circundantes.

Si se calcula la función RRTF media de las neuronas fásicas y tónicas por separado se hace evidente el diferente comportamiento de unas y otras (figura 94A). Ambos grupos tienden a adaptarse de forma exponencial al aumentar la frecuencia, aunque las fásicas lo hacen de manera más acusada, siendo siempre menor la adaptación en las neuronas tónicas que en las fásicas. De este modo, aunque el valor de RRTF a 1 Hz es similar en ambas poblaciones (0,8 en las fásicas por 0,9 en las tónicas), las fásicas alcanzan un valor de RRTF medio mucho menor que las tónicas (0,2 y 0,4 respectivamente).
Figura 93. A: Función RRTF para las diferentes frecuencias de estimulación en el núcleo Sp5c. En gris se muestra la función RRTF de cada neurona. En negro se muestra la media de dicha función y la recta exponencial que se ajusta a los datos obtenidos ($RRTF = 0.29 + 0.56e^{-0.099frecuencia}$, $r = 0.99$). B y C: Ejemplos de dos comportamientos observados en el núcleo Sp5c respecto a la función RRTF en las diferentes series de estimulación a distintas frecuencias.
Figura 94. A: Función RRTF media para cada frecuencia de estimulación de las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5c. B: Proporción, en tanto por uno, de estímulos que generan respuesta en las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5c. C: Función RRTF media para cada frecuencia de estimulación de las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5c, teniendo en cuenta únicamente los estímulos que generan respuesta. La línea gris indica ausencia de cambio en todos los casos.
Resultados

Las neuronas fásicas tienden a dejar de responder ante estímulos de frecuencia alta (figura 94B), de manera que si se calcula la efectividad de cada serie de estímulos se observa que en estas neuronas cae de manera exponencial según aumenta la frecuencia de estimulación. Sin embargo, en las neuronas tónicas esta caída es más suave y de forma lineal. Al comparar las funciones RRTF para las distintas frecuencias de estimulación de neuronas fásicas y tónicas calculadas a partir únicamente de aquellos estímulos de las diferentes series que provocan respuesta (figura 94C), se comprueba que la adaptación de las unidades fásicas es menor ahora que la de las tónicas (RRTF = 0,85 y RRTF = 0,65 a 40 Hz para los registros fásicos y tónicos respectivamente), por lo que la mayor adaptación de las primeras encontrada se debe casi exclusivamente a una pérdida de la efectividad del estímulo y no tanto a una disminución del número de espigas provocadas por cada estímulo. En las fásicas se produce ahora una potenciación a 12 Hz.

Para 1 y 2 Hz, el valor de la función RRTF para los distintos estímulos de la serie es igual (figura 95). A frecuencias superiores en el segundo estímulo se produce un descenso muy fuerte de la función RRTF, seguido de un descenso suave en los estímulos siguientes. Salvo alguna excepción (8 Hz), el aumento de la frecuencia de estimulación conlleva un aumento de la adaptación para todos los estímulos de la serie. En el segundo estímulo, los valores RRTF para las distintas frecuencias están muy agrupados, aumentando su dispersión conforme lo hace el número de estímulos.

En el 79,2% (19 de 24 registros) el valor de la función TSR aumenta de forma exponencial en función de la frecuencia de estimulación (Figura 96A) hasta alcanzar un valor máximo para 40 Hz. En el resto de los registros (5 de 24 registros, 28,8%) se observa un aumento del valor de la función TSR para frecuencias intermedias (con un máximo en 15 Hz) y una caída para frecuencias altas (filtrado band-pass. Figura 96B). Todas las neuronas que muestran este comportamiento son de tipo fásico, por lo que la función TSR media de neuronas
Resultados

fásicas y tónicas es muy diferente, siendo el aumento de dicha función en las tónicas siempre mayor que en las fásicas (figura 96C).

Figura 95. Función RRTF para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para el total de neuronas (arriba), las neuronas fásicas (centro) y tónicas (abajo) del núcleo Sp5c. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de RRTF.
Figura 96. Función TSR para las diferentes frecuencias de estimulación en el núcleo Sp5c. A: Registros individuales (gris) y media del total de neuronas y función exponencial que se ajusta a los valores obtenidos (negro, TSR = 3,5 + 163(1-e^{-0,054frecuencia}), r = 0,99). B: Media de los registros que muestran una amplificación de la respuesta en valores intermedios de frecuencia de estimulación. En gris se muestran los registros individuales y en negro la media. C: Media de las neuronas fásicas (negro) y tónicas (gris).
Multiunitarios

En el histograma periestímulo medio de los 21 registros multiunitarios puede observarse que la respuesta para cada frecuencia de estimulación se mantiene constante e igual al primer estímulo de la serie para frecuencias menores de 3 Hz (figura 97). Para estímulos de mayor frecuencia se produce una caída en la probabilidad de disparo a partir del segundo estímulo de la serie hasta alcanzar un valor mínimo que disminuye según aumenta la frecuencia de estimulación.

![Diagrama de disparos multiunitarios](image)

Figura 97. Probabilidad de disparo media de la población total de registros multiunitarios del núcleo Sp5c.

Si se cuantifica este comportamiento como número de espigas medio por estímulo (figura 98), se observa claramente cómo se produce una caída exponencial del número de espigas evocadas por cada estímulo según aumenta la frecuencia de estimulación (desde 2,9 espigas/estímulo para 1 Hz, hasta 0,7 espigas/estímulo para 40 Hz). Sin embargo, si se observa cada registro por separado, se comprueba que la mayoría se ajustan a dos patrones: en 10 de los 21 registros (47,6%) el número de espigas evocado por cada estímulo cae exponencialmente conforme...
Resultados

aumenta la frecuencia de estimulación; otros 10 registros (47,6%) tienen también
la tendencia a disminuir su número de espigas conforme aumenta la frecuencia de
estimulación, pero para determinadas frecuencias el número de espigas aumenta en
relación a frecuencias más bajas, y el restante no muestra una dependencia clara
de la frecuencia de estimulación.

Figura 98 Arriba: Respuesta media evocada por cada estímulo de la serie para
las diferentes frecuencias en los registros multiunitarios del núcleo Sp5c. En
gris se muestra la respuesta de cada registro multiunitario. En negro se
muestra la media de la respuesta y la recta exponencial que se ajusta a los
datos obtenidos (SR = 0,6 + 2,3e^{-0,06frecuencia}, r = 1,00). Abajo: en gris,
respuesta de los diferentes registros multiunitarios normalizados. En negro,
media de los diferentes registros.
Si se calcula la función RRTF media de todos los registros obtenidos en el núcleo Sp5c, podemos observar que la tendencia general es una reducción progresiva de su valor conforme aumenta la frecuencia de estimulación (desde 1 a 1 Hz hasta 0,3 a 40 Hz)(figura 99). De este modo, la eficacia en la respuesta de estas neuronas ante estimulaciones de 40 Hz es tres veces menor que la de estimulaciones de baja frecuencia (1-3 Hz). La caída de la respuesta en función de la frecuencia se ajusta perfectamente a una función exponencial.

Si se estudia cada registro por separado se puede observar que, aunque en casi todos los registros la tendencia es a adaptar la respuesta ante estimulaciones de frecuencia alta, en la mayoría (18 de 21, 85,7%) existe una o varias frecuencias de estimulación que inducen una potenciación (siendo las más frecuentes 2, 3, 5 y 15 Hz), al menos relativa a las frecuencias de estimulación circundantes, de la respuesta. En general, en cada registro se produce este fenómeno para una frecuencia o combinación de frecuencias diferentes.

Para 1 y 2 Hz, el valor de la función RRTF para los distintos estímulos de la serie es el mismo (figura 100). A frecuencias mayores de 2 Hz, en el segundo estímulo se produce un descenso muy fuerte de la función RRTF, seguido de un descenso suave en los estímulos siguientes. Salvo alguna excepción (8 Hz), el aumento de la frecuencia de estimulación conlleva un aumento de la adaptación para todas los estímulos de la serie. En el segundo estímulo, los valores RRTF para las distintas frecuencias están muy agrupados, aumentando su dispersión conforme lo hace el número de estímulos.

El valor de la función TSR media del conjunto de registros multiunitarios aumenta de forma exponencial según lo hace la frecuencia de estimulación (Figura 101A). Al igual que en los registros unitarios, en algunos registros multiunitarios se observa un comportamiento característico de un filtro band-pass (figura 101B). Concretamente, el 23,8% de los registros (5 de los 21) muestra este tipo de comportamiento, con un pico claro en 15 Hz; mientras que el comportamiento del 76,2% restante (16 registros de 21) se ajusta a una exponencial.
Resultados

Figura 99. Función RRTF para las diferentes frecuencias de estimulación de los registros multunitarios del núcleo Sp5c. En gris se muestra la función RRTF de cada registro. En negro se muestra la media de dicha función y la recta exponencial que se ajusta a los datos obtenidos (RRTF = 0,2 + 0,80e^{0.075 \text{frecuencia}}, r = 1,00).

Figura 100. Función RRTF para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para los registros multunitarios de Sp5c. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de RRTF.
Figura 101. A: Función TSR para las diferentes frecuencias de estimulación de los registros multunitarios del núcleo Sp5c (gris), media y función exponencial que se ajusta a los valores obtenidos (TSR = 3,9 + 157(1-e^{-0,079 frecuencia}), r = 0,99) (negro). B: Función TSR de los registros que muestran filtado band-pass.
Resultados

Estudio del tiempo de la respuesta ante estímulos repetitivos de frecuencia fija

Unitarios

En las 24 neuronas, el valor medio de la latencia a cada frecuencia de estimulación, así como su dispersión, aumenta con dicha frecuencia (figura 102), aunque a partir de los 15 Hz tiende a estabilizarse. El aumento de la latencia media de las neuronas fásicas y tónicas presenta un comportamiento diferente (figura 103A). La latencia en las neuronas tónicas crece de forma lineal con el aumento de la frecuencia de estimulación hasta los 25 Hz (entre 8,7 ms a 1 Hz hasta 11 ms a 25 Hz), momento en el que la latencia se estabiliza. Las neuronas fásicas aumentan su latencia de forma lineal hasta los 3 Hz (de 9 a 10 ms). A partir de este punto la latencia aumenta muy poco con la frecuencia de estimulación. De este modo, para estimulaciones a 20 Hz la latencia de ambas poblaciones es similar (10,5 ms en ambos casos) y a para frecuencias de estimulación mayores, la latencia de las neuronas fásicas es menor que la de las tónicas (10,5 y 11,2 ms respectivamente a 40 Hz). Si se estudian las latencias normalizadas (figura 103B) se puede apreciar cómo el aumento de la latencia en las unidades tónicas es menor que el de las fásicas hasta los 3 Hz y que a partir de este punto se hace mayor.

El aumento de la adaptación, medido con la función RRTF, con la frecuencia de estimulación está correlacionado con el aumento de la latencia de la respuesta en el conjunto de neuronas (RRTF = 1,6 - 0,72latencia; r = 0,97. Figura 4.102)). También se cumple esta relación para las neuronas fásicas (RRTF = 1,4 - 0,52latencia; r = 0,95) y las tónicas (RRTF = 1,9 - 0,98latencia; r = 0,98)(Figura 104).

En cuanto al comportamiento dinámico del aumento de latencia a lo largo de los estímulos de la serie cabe decir que, aunque se produce un aumento continuo a lo largo de los cinco estímulos estudiados, el mayor aumento sucede en el segundo estímulo. En general, el aumento de la frecuencia de estimulación conlleva un aumento de la latencia, aunque existen varias excepciones (8 Hz).
Figura 102 A: Latencia de la respuesta evocada por las diferentes frecuencias de estimulación en las neuronas del núcleo Sp5c. En gris se muestra la latencia de cada neurona. En negro se muestra la media de la respuesta. B: en gris, latencia de los diferentes registros unitarios normalizados. En negro, media de las latencias normalizadas. La línea gris horizontal indica ausencia de cambio.
Resultados

Figura 103 A: Latencia media de la respuesta evocada por cada estímulo de la serie para las diferentes frecuencias de estimulación en las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5c. B: Iguales, con los valores normalizados. La línea gris horizontal indica ausencia de cambio.

Figura 104 Relación entre la función RRTF y la latencia media de respuesta normalizada del total de neuronas (izquierda), de las neuronas fásicas (centro) y de las neuronas tónicas (derecha) del núcleo Sp5c. En el interior se muestran las funciones que las relacionan.
Figura 105. Latencia de respuesta para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para del total de neuronas (arriba), las neuronas fásicas (centro) y tónicas (abajo) de Sp5c. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la latencia normalizada.
Resultados

En cuanto a la consistencia temporal, medida por la función VS, en la figura 106A se muestra como ante estimulaciones de baja frecuencia la respuesta está en una fase muy constante en relación con el estímulo (VS es prácticamente 1 entre 1 y 3 Hz), mientras que ante estimulaciones de alta frecuencia se pierde la consistencia temporal, disminuyendo ésta al aumentar la frecuencia de estimulación (VS = 0,5 a 40 Hz). Si se estudia cada neurona por separado se puede observar que el comportamiento ante altas frecuencias es muy variable, teniendo algunas neuronas mayor consistencia temporal en estas frecuencias de estimulación que otras.

El comportamiento de tónicas y fásicas de nuevo es muy diferente (figura 106B). Las neuronas tónicas pierden algo de consistencia temporal con el aumento de la frecuencia de estimulación, aunque nunca lo hacen por debajo de 0,6 (excepto en un caso). Las neuronas fásicas, por el contrario, presentan mucha variabilidad. Algunas (6 neuronas) se comportan como las tónicas, mientras que otras alcanzan valores mucho más bajos (7 neuronas), siempre por debajo de 0,5. Si se calcula la función VS sólo para la primera espiga evocada por cada estímulo, las diferencias se hacen más patentes. Así, las neuronas tónicas pierden bastante menos consistencia que las fásicas (VS = 7,2 y VS = 5,1 a 40 Hz respectivamente), presentando éstas comportamientos mucho más variables.

En el segundo estímulo de cada serie de estimulación se produce una disminución continua del valor de la función VS según aumenta la frecuencia de estimulación (figura 107). Este aumento es notorio sobre todo a partir de 15 Hz. Después del segundo estímulo, el valor de VS tiende a estabilizarse.
Figura 106. A: Función VS de cada neurona individual (en gris) y media de la población de neuronas del núcleo Sp5c. B: Media de la función VS de las neuronas fásicas (negro) y tónicas (gris) del núcleo Sp5c. En ambos casos, la línea gris horizontal representa el máximo de coherencia temporal.
Resultados

Figura 107. Función VS para los primeros cinco estímulos de la serie de las diferentes frecuencias de estimulación para el total de neuronas (arriba), las neuronas fásicas (centro) y tónicas (abajo) del núcleo Sp5c. La línea gris indicala máxima coherencia. En el eje de abcisas se representa el tiempo en ms y en el de coordenadas el valor de la función VS.
Multiunitarios

En la mayoría de los registros multiunitarios obtenidos (n = 22), la latencia de la respuesta aumenta al aumentar la frecuencia de estimulación (figura 108A). Sin embargo, en 4 registros se da el fenómeno contrario; incluso en algún caso no hay cambio alguno de la latencia de la respuesta con la frecuencia de estimulación. El cambio de la latencia con el aumento de la frecuencia de la media de los registros se ajusta a un crecimiento exponencial, desde 7,8 ms a 1 Hz hasta 10,5 ms a 40 Hz.

El aumento de la adaptación, medido con la función RRTF, con la frecuencia de estimulación correlaciona con el aumento de la latencia de la respuesta (figura 109).

En cuanto al comportamiento dinámico del aumento de latencia a lo largo de los estímulos de la serie cabe decir que, aunque se produce un aumento continuo a lo largo de los cinco estímulos estudiados, el mayor aumento sucede en el segundo estímulo (figura 110). En general, el aumento de la frecuencia de estimulación conlleva un aumento de la latencia, aunque existen varias excepciones (8 Hz).

En cuanto a la consistencia temporal, medida por la función VS, en la figura 111 se muestra como ante estimulaciones de baja frecuencia la respuesta está en una fase muy constante en relación con el estímulo (entre 1 y 5 Hz existe una consistencia total, con valores VS que prácticamente son 1), mientras que ante estimulaciones de alta frecuencia se pierde la consistencia temporal, disminuyendo ésta al aumentar la frecuencia de estimulación (VS = 0,6 a 40 Hz). Si se estudia cada registro multiunitario por separado se puede observar que el comportamiento ante altas frecuencias es muy variable, teniendo algunas neuronas mayor consistencia temporal en estas frecuencias de estimulación que otras. En 6 registros de los 24, el valor VS a 40 Hz es menor que 0,6.

En el segundo estímulo de cada serie de estimulación se produce una disminución continua del valor de la función VS según aumenta la frecuencia de
Estimulación (figura 112). Este aumento es notorio sobre todo a partir de 15 Hz. Después del segundo estímulo, el valor de VS tiende a estabilizarse.

Figura 108 A: Latencia de la respuesta evocada por las diferentes frecuencias de estimulación en los registros multiunitarios del núcleo Sp5c. En gris se muestra la latencia de cada registro. En negro se muestra la media de la respuesta. **B:** en gris, latencia de los diferentes registros multiunitarios normalizados. En negro, media de las latencias normalizadas. La línea gris horizontal indica ausencia de cambio.
Resultados

Figura 109 Relación entre la función RRTF y la latencia media de respuesta normalizada del total de registros multiunitarios de Sp5c ($r = 0.99$)

Figura 110. Latencia de respuesta para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para los registros multiunitarios fásicos de Sp5c. La línea gris indica ausencia de cambio. En el eje de abscisas se representa el tiempo en ms y en el de coordenadas el valor de la latencia normalizada.
Resultados

Figura 111. Función VS de cada registro multiunitario individual (en gris) y media de la población de registros multiunitarios del núcleo Sp5c.

Figura 112. Función VS para los cinco primeros estímulos de la serie de las diferentes frecuencias de estimulación para los registros multiunitarios de Sp5c. La línea gris indica máxima coherencia. En el eje de abcisas se representa el tiempo en ms y en el de coordenadas el valor de la función VS.
4.2. ESTUDIO DE LOS NÚCLEOS DEL CST EN AUSENCIA DE LA INFLUENCIA CORTICAL

4.2.1. Núcleo Principal

Caracterización general

Unitarios

En el núcleo Principal de CST se han obtenido 19 registros unitarios en ausencia de la corteza sensorimotora. La frecuencia de disparo media de estos 19 registros en condiciones de reposo es de $4,3 \pm 1,69$ espigas/s, con un rango comprendido entre 0 y 32 espigas/s. La proporción de neuronas que presentan un disparo rítmico es notable, constituyendo el 36,8% (7 neuronas de las 19) de la población. La mayoría de estas neuronas (6 de las 7) presentan una oscilación en el rango comprendido entre 5 y 10 Hz. La última oscila a 32 Hz.

Todas las neuronas registradas presentan una respuesta clara a la estimulación sensorial de las vibrisas (tabla V). La respuesta evocada sobreviene, como media, $11,5 \pm 0,81$ ms después de moverse la vibrisa (con un rango comprendido entre 5 y 18 ms). Dicha estimulación evoca en estas neuronas de 2 a 12 espigas durante los 100 ms que dura, con una media de $4,2 \pm 0,60$ espigas/estímulo; mientras que en los primeros 14 ms responden con $1,8 \pm 0,20$ espigas/estímulo de media (rango entre 1 y 4 espigas/estímulo).

La mayoría de las neuronas del núcleo Pr5, en ausencia de SI, presentan respuestas de tipo tónico (11 neuronas de 19, 57,9%), siendo el número de neuronas fásicas algo menor (8 neuronas de 19, 42,1%). La frecuencia media de disparo en reposo de las unidades fásicas y tónicas es muy similar ($3,5 \pm 0,93$ espigas/s y $4,9 \pm 2,89$ espigas/s respectivamente, $p = 0,34$), como también lo es la latencia de la respuesta obtenida ($11,7 \pm 0,88$ ms y $11,3 \pm 1,29$ ms respectivamente, $p = 0,4$). La magnitud de la respuesta durante los 100 ms que dura el estímulo es mayor en las neuronas tónicas ($5,2 \pm 0,91$ espigas/estímulo) que en las fásicas ($2,8 \pm 0,33$ espigas/estímulo).
Resultados

espigas/estímulo, p = 0,015), aunque la respuesta en los primeros 14 ms de ambos tipos neuronales es idéntica (1,7 ± 0,17 espigas/estímulo las fásicas y 1,9 ± 0,33 espigas/estímulo las tónicas, p = 0,33).

Multiunitarios

En el núcleo Pr5 en ausencia de influencia cortical se han obtenido 20 registros multiunitarios. La latencia media de las respuestas es de 9,8 ± 0,66 ms (rango entre 5 y 15 ms) tras la estimulación de la vibrissa; evocando de 1 a 14 espigas durante los 100 ms que dura la estimulación (media 7,0 ± 0,80 espigas/estímulo). En los primeros 14 ms de la estimulación se producen, de media, 2,8 ± 0,28 espigas/estímulo (rango entre 1 y 6 espigas/estímulo) (tabla VI). De entre los 20 registros, 4 presentan actividad rítmica clara (20%), con frecuencias de oscilación entre 4 y 7 Hz.

Media de espigas por cada estímulo (SR)

Unitarios

La media de la función SR se ajusta a una caída exponencial (figura 113). El 42,1% de los registros unitarios (8 de los 19) presenta un comportamiento que se ajusta perfectamente a este patrón poblacional, 9 registros (47,4%) presentan una caída similar pero con aumentos puntuales del número de espigas a determinadas frecuencias. Finalmente, en dos neuronas (10,5%), el número de espigas se mantiene más o menos constante para todas las frecuencias de estimulación, aunque a determinadas frecuencias presentan aumentos puntuales de la función SR (mayoritariamente a 8 Hz).

La media de los 9 registros que presentan aumentos puntuales de la función SR muestra un aumento muy claro para estimulaciones de 8 Hz. El 55,6% de estas
Resultados

neuronas (5 de 9) tienen un comportamiento oscilatorio, lo que representa el 71,4% del total de neuronas oscilantes (5 de las 7 encontradas). La proporción de neuronas fásicas y tónicas es similar a la poblacional, con un 55,6% (5 neuronas de 9) de neuronas fásicas y un 44,4% (4 neuronas) de tonicas. El comportamiento de las unidades fásicas y tónicas es similar, aunque las fásicas filtran las frecuencias altas (sobre todo las mayores de 10 Hz) en mayor medida (casi el doble) que las tónicas. Además, las fásicas presentan también un aumento brusco de la función SR para 8 Hz (figuras 114 y 115).

Multiunitarios

En ausencia de influencia cortical el número de espigas evocadas por cada estímulo disminuye de forma exponencial con el aumento de la frecuencia de estimulación en los registros multiunitarios del núcleo Pr5, desde 2,3 espigas/estímulo a 1 Hz hasta 0,8 espigas/estímulo a 40 Hz (figura 116). Al normalizar estos valores respecto al valor obtenido para la estimulación a 1 Hz se puede observar un pequeño aumento a 8 Hz. Si bien la mayoría de los registros (11 de los 20, 55%) presentan este comportamiento, en el resto (9 de 20, 45%) pueden observarse aumentos puntuales para determinadas frecuencias de estimulación de las espigas evocadas por cada estímulo. Entre estos registros predominan los de tipo tónico (88,9% de registros tónicos, 8 de los 9) y hay una gran abundancia de registros con actividad rítmica (3 registros, lo que supone el 75% de los registros oscilantes encontrados). La media de estos 9 registros con aumentos puntuales del número de espigas por estímulo presenta un máximo muy evidente a 8 Hz.
Resultados

Figura 113. Arriba Función SR de las neuronas de Pr5 en animales intactos (negro) y decorbicados (gris). Abajo, idem, con los valores SR normalizados.
Figura 114. Arriba Función SR de las neuronas Fásicas de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Resultados

Figura 115. Arriba Función SR de las neuronas Tónicas de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Figura 116. Arriba Función SR de los registros multiunitarios de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Resultados

Adaptación de la respuesta (RRTF)

Unitarios

La función RRTF media de los 19 registros cae de forma exponencial según aumenta la frecuencia de estimulación, con un aumento claro para 8 Hz (figura 117). La mayoría de las neuronas del núcleo Pr5 (11 de las 19, 57,9%) muestran cierta potenciación para al menos una frecuencia. De las 8 restantes, 6 (31,6% del total) presentan una caída exponencial sin ninguna potenciación y en 2 (10,5% del total) se produce una adaptación de la respuesta para todas las frecuencias de estimulación.

La media de los registros que muestran potenciación en alguna frecuencia presenta un aumento de la función RRTF para 8 Hz. Además, la dispersión en este punto es muy baja. Todas las neuronas que presentan oscilaciones están dentro de este grupo. El 45,5% de estas neuronas son de tipo tónico (5 neuronas de 11) y el 54,5% fásicas (6 neuronas de 11). Las neuronas fásicas adaptan más su respuesta que las tónicas a partir de 12 Hz de estimulación, y presentan también una potenciación de su respuesta a 8 Hz (figuras 118 y 119).

La proporción de estímulos que no son capaces de evocar respuesta en las unidades fásicas y tónicas es algo menor en estas últimas (un 13% a 40 Hz). De esta forma, las funciones RRTF utilizando únicamente los estímulos que evocan respuesta de las neuronas fásicas y tónicas son idénticas, salvo algunas pequeñas diferencias. Estas diferencias se refieren sobre todo a las frecuencias en las que se produce potenciación de la respuesta, que son 1 Hz y 8 Hz en las fásicas y 2 Hz, 10 Hz y 30 Hz en las tónicas.

Multiunitarios

La adaptación de la respuesta en los registros multiunitarios del núcleo Pr5 en ausencia de influencia cortical, medida mediante la función RRTF, aumenta, de
Los resultados muestran una forma exponencial, con la frecuencia de estimulación (RRTF = 1 a 1 Hz y RRTF = 0,4 a 40 Hz) (figura 120).

La mayoría de los registros obtenidos presentan aumentos locales de la función RRTF a determinadas frecuencias de estimulación (16 de los 20 obtenidos, 80%). Los 4 restantes adaptan su respuesta de forma exponencial. La media de estos 16 registros muestra potenciación de la respuesta a 1 Hz y a 8 Hz. Entre los 16 registros con aumentos locales, la mayoría (14 de los 16, 87,5%) tienen respuestas de tipo tónico.

Figura 117. Función RRTF de las neuronas de Pr5 en animales intactos (negro) y decorticados (gris).
Figura 118. Función RRTF de las neuronas Fásicas de Pr5 en animales intactos (negro) y decorticados (gris).

Figura 119. Función RRTF de las neuronas Tónicas de Pr5 en animales intactos (negro) y decorticados (gris).

Figura 120. Función RRTF de los registros multiunitarios de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Resultados

Total de espigas (TSR)

Unitarios

La media del total de espigas para cada frecuencia aumenta de manera exponencial al aumentar ésta, desde 7 espigas a 1 Hz hasta 62 esigas a 40 Hz (figura 121). Sin embargo, si se estudian individualmente, la mayoría de las neuronas presenta un comportamiento de tipo band-pass (11 de las 19, 57,9%), de las cuales 8 son fásicas (72,7%) y 3 tónicas (27,3%). Estas neuronas tienen preferencia por estimulaciones en torno a los 8 Hz, aunque existe gran variabilidad entre las distintas neuronas respecto a la banda de frecuencia que prefieren (entre 3 y 8 Hz de mínimo y 8 y 15 Hz de máximo).

Las neuronas tónicas presentan un aumento exponencial de la función TSR (de 7 a 74 espigas para 1 y 40 Hz respectivamente), mientras que las fásicas tienden a filtrar las frecuencias superiores a 8 Hz (figuras 122 y 123).

Multiunitarios

El número de espigas total para cada frecuencia de los registros multiunitarios en ausencia de influencia cortical aumenta de manera exponencial entre 11 y 158 espigas para 1 y 40 Hz respectivamente. De entre los 20 registros obtenidos, 4 (20%), todos ellos de tipo fásico, presentan un comportamiento diferente, con aumento de la respuesta entre 8 y 20 Hz (con máximo en 12 Hz) y filtrado de las frecuencias altas (figura 124).
Figura 121. Arriba Función TSR de las neuronas de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Figura 122. Arriba Función TSR de las neuronas Fásicas de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Figura 123. Arriba Función TSR de las neuronas Tónicas de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Figura 124. Arriba Función TSR de los registros multiunitarios de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Resultados

Latencia de la respuesta

Unitarios

En las neuronas del núcleo Pr5, la latencia aumenta conforme lo hace la frecuencia de estimulación desde 1 Hz hasta 15 Hz (12.7 ms y 13.8 ms respectivamente) (figura 125). A partir de este momento, disminuye hasta llegar a ser, incluso, menor que la de 1 Hz (11.5 ms a 40 Hz). El comportamiento entre unidades tónicas y fásicas es bastante diferente (figuras 126 y 127). En las primeras apenas hay variación de la latencia con el cambio de frecuencia de estimulación. En las fásicas, por el contrario, la latencia aumenta hasta los 10 Hz (de 12.4 ms a 1 Hz hasta 14.4 ms a 10 Hz) y se mantiene constante entre esta frecuencia de estimulación y los 15 Hz (14.3 ms). A partir de aquí disminuye, hasta alcanzar un valor mucho menor que la latencia para 1 Hz (10.6 ms a 40 Hz).

Multiunitarios

La latencia media de los 20 registros multiunitarios aumenta de forma más o menos rápida hasta los 15 Hz (de 10 ms a 1 Hz hasta 11.2 ms a 15 Hz), estabilizándose en el valor que alcanza en este punto (11.4 ms a 40 Hz). En 4 registros se produce una disminución de la latencia a partir de los 8-15 Hz; en el resto se produce un aumento continuo de la latencia con la frecuencia de estimulación (figura 128).
Figura 125. Arriba Latencia de las neuronas de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Resultados

Figura 126. Arriba Latencia de las neuronas Fásicas de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latenica normalizados.
Figura 127. Arriba Latencia de las neuronas tónicas de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Figura 128. Arriba Latencia de los registros multiunitarios de Pr5 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Consistencia temporal de la respuesta (VS)

Unitarios

En las neuronas del núcleo Pr5 sin influencia de la corteza hay una gran pérdida de consistencia temporal al aplicar frecuencias altas de estimulación, sobre todo mayores de 15 Hz (figura 129). De este modo el valor VS se encuentra entre 1 para 1 Hz y 0,8 para 15 Hz, mientras que su valor a 40 Hz es de 0,3. Las fásicas conforman un grupo muy homogéneo para esta función, mientras que en las tónicas se aprecian dos grupos: uno que alcanza valores VS tan bajos como las fásicas (n = 4) y otro en el que las pérdidas de consistencia son mínimas (n = 7). Como media, las neuronas tónicas pierden menos consistencia temporal que las fásicas (VS = 0,4 en las tónicas y VS = 0,2 en las fásicas a 40 Hz) (figuras 130 y 131).

En este caso, las funciones VS de todas las espigas y de la primera espiga tras el estímulo únicamente son idénticas.

Multiunitarios

Se produce una pérdida sustancial de la consistencia temporal de la respuesta de los registros multiunitarios con el aumento de la frecuencia de estimulación, sobre todo a partir de los 12 Hz (VS = 1 a 1 Hz y VS = 0,9 a 12 Hz), de manera que el valor de la función VS para 40 Hz es de 0,5 (figura 132).
Resultados

Figura 129. Función VS de las neuronas de Pr5 en animales intactos (negro) y decorticados (gris).

Figura 130. Función VS de las neuronas Fásicas de Pr5 en animales intactos (negro) y decorticados (gris).
Resultados

Figura 131. Función VS de las neuronas Tónicas de Pr5 en animales intactos (negro) y decorticados (gris).

Figura 132. Función VS de los registros multiunitarios de Pr5 en animales intactos (negro) y decorticados (gris).
4.2.2. Núcleo Espinal Oral

Caracterización general

Unitarios

Se han obtenido 18 registros unitarios en ausencia de influencia cortical en el núcleo Espinal Oral. La actividad media en condiciones de reposo de estas neuronas es de 0,5 ± 0,38 espigas/s, con un rango comprendido entre 0 y 6,9 espigas/s. Todas ellas muestran un aumento de la actividad como consecuencia de la estimulación sensorial de las vibrissas, con una latencia media de 9,4 ± 1,08 ms (rango entre 6 y 25 ms). Durante los 100 ms que dura la estimulación, las neuronas del Sp5o responden con 3,6 ± 0,44 espigas de media (rango entre 1 y 7 espigas/estímulo); mientras que la respuesta durante los primeros 14 ms de estimulación es de 2,1 ± 0,19 espigas/estímulo (rango entre 1 y 4 espigas/estímulo) (tabla V). Sólo dos neuronas de las 18 presentan actividad rítmica (11,1%).

La mayoría de las neuronas de este núcleo responde de manera fásica (13 neuronas de 18, 72,2%). Estas neuronas presentan mayor actividad en reposo (0,6 ± 0,52 espigas/s) que las de tipo tónico (0,06 ± 0,041 espigas/s; p = 0,16), así como mayor latencia de respuesta (10,1 ± 1,40 ms las fásicas por 7,7 ± 1,26 ms las tónicas, p = 0,17). La respuesta evocada en las neuronas fásicas es siempre menor que la evocada en las tónicas, tanto durante la estimulación completa (2,6 ± 0,27 espigas/estímulo las fásicas por 6,0 ± 0,52 espigas/estímulo las tónicas, p = 0,0) como durante los primeros 14 ms (1,7 ± 0,15 espigas/estímulo las fásicas por 2,9 ± 0,41 espigas/estímulo las tónicas, p = 0,002).

Multiunitarios

Los 19 registros multiunitarios obtenidos en el núcleo Espinal Oral en ausencia de influencia cortical presentan una latencia media de respuesta de 9,4 ± 0,54 ms (rango entre 6 y 12 ms), respondiendo con 6,0 ± 1,52 espigas/estímulo
durante los 100 ms que dura la estimulación (rango entre 1 y 30 espigas/estímulo) y con 2,5 ± 0,37 espigas/estímulo durante los primeros 14 ms (rango entre 1 y 7 espigas/estímulo) (tabla VI). Dos registros multiunitarios presentan actividad rítmica (10,5%).

Media de espigas por cada estímulo (SR)

Unitarios

La media de la función SR de los 18 registros unitarios decrece de forma exponencial al aumentar la frecuencia de estimulación desde 1,7 espigas/estímulo a 1 Hz hasta 0,2 espigas/estímulo a 40 Hz (figura 134). La mayoría de los registros obtenidos siguen este comportamiento (10 registros, 55,6%). Los 8 restantes (44,4%) también presentan una caída exponencial del número de espigas por estímulo con el aumento de la frecuencia de estimulación, pero muestran aumentos puntuales de la función SR. De estos 8 registros, 5 (62,5%) son de tipo fásico y 3 (37,5%) de tipo tónico. La media de la función SR de los 8 registros muestra un pequeño aumento de la función SR a 12 Hz, aunque muy leve.

Las neuronas tónicas responden siempre con un mayor número de espigas por cada estímulo que las fásicas, sea cual sea la frecuencia de estimulación. Además, la función SR en las neuronas tónicas decrece menos que en las fásicas (desde 2,2 espigas/estímulo a 1 Hz hasta 0,5 espigas/estímulo a 40 Hz las tónicas y desde 1,5 espigas/estímulo a 1 Hz hasta 0,1 espigas/estímulo a 40 Hz las fásicas), hasta el punto de que el valor de la función SR a 40 Hz es cinco veces mayor en las neuronas tónicas que en las fásicas (figuras 135 y 136).
Resultados

Multiunitarios

El número de espigas evocadas por cada estímulo disminuye de forma exponencial con el aumento de la frecuencia de estimulación en los registros multiunitarios del núcleo Sp5o en ausencia de influencia cortical desde 2,1 espigas/estímulo a 1 Hz hasta 0,5 espigas/estímulo a 40 Hz. Si bien la mayoría de los registros (11 de los 19, 57,9%) presentan este comportamiento, en el resto (8 de 19, 42,1%) pueden observarse aumentos puntuales para determinadas frecuencias de estimulación de las espigas evocadas por cada estímulo. Entre estos registros predominan los de tipo tónico (62,5% de registros tónicos, 5 de los 8). La media de estos 8 registros con aumentos puntuales del número de espigas por estímulo presenta un máximo a 15 Hz, aunque poco evidente (figura 137).
Figura 134. Arriba Función SR de las neuronas de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Resultados

Figura 135. Arriba Función SR de las neuronas Fásicas de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Figura 136. Arriba Función SR de las neuronas tónicas de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Figura 137. Arriba Función SR de los registros multiunitarios de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
La función RRTF media de los registros unitarios del núcleo Sp5o, en ausencia de inervación cortical, muestra que la respuesta de estas neuronas se adapta de forma exponencial al aumentar la frecuencia de estimulación (RRTF = 0,95 a 1 Hz y RRTF = 0,13 a 40 Hz) (figura 138). Sin embargo, 11 registros (61,1%) muestran una caída exponencial de la adaptación de la respuesta, pero a determinadas frecuencias presentan una potenciación de la misma. Todas las neuronas tónicas obtenidas en el núcleo Espinal Oral se comportan de esta manera. El resto de los registros (7 de los 18, 38,9%) se ajustan a la exponencial pura. El 45,5% de los registros con potenciaciones puntuales son tónicos (5 registros), mientras que el 54,4% (6 registros) son fásicos. En la función RRTF media de estos 11 registros no se aprecia ninguna frecuencia en la que se produzca una potenciación clara, lo que indica una gran variabilidad al respecto.

En general, las neuronas tónicas adaptan menos su respuesta que las fásicas (figuras 139 y 140). De este modo, las neuronas tónicas pasan de un valor RRTF de 0,98 a 1 Hz a 0,25 a 40 Hz, mientras que las fásicas disminuyen su valor RRTF desde 0,94 a 1 Hz hasta 0,08 a 40 Hz. También tienen un promedio más alto de estímulos capaces de evocar una respuesta (a 40 Hz la proporción de estímulos efectivos en las fásicas es de 0,1 y en las tónicas es de 0,5). La función RRTF de las neuronas tónicas y fásicas tomando sólo los estímulos que provocan respuesta es muy parecida hasta 15 Hz (RRTF = 0,7 en ambos casos). A partir de los 15 Hz, en las neuronas fásicas no se produce más adaptación (RRTF = 0,73 a 40 Hz), mientras que las tónicas siguen aumentando su adaptación con el aumento de la frecuencia de estimulación (RRTF = 0,55 a 40 Hz).
Resultados

Multiunitarios

La adaptación de la respuesta en los registros multiunitarios del núcleo Sp5o en ausencia de influencia cortical, medida mediante la función RRTF, aumenta, de forma exponencial, con la frecuencia de estimulación (RRTF = 1 a 1 Hz y RRTF = 0,2 a 40 Hz) (figura 141). La mayoría de los registros obtenidos presentan aumentos locales de la función RRTF a determinadas frecuencias de estimulación (12 de los 19 obtenidos, 63,2%). Los 7 restantes adaptan su respuesta de forma exponencial. La media de estos 12 registros no muestra ninguna frecuencia en la que se produzca potenciación de la respuesta, ya que los registros presentan mucha variabilidad en relación a dichas frecuencias. Entre los 12 registros con aumentos locales, la mayoría (10 de los 12, 83,3%) tienen respuestas de tipo tónico.

Figura 138. Función RRTF de las neuronas de Sp5o en animales intactos (negro) y decorticados (gris).
Figura 139. Función RRTF de las neuronas Fásicas de Sp5o en animales intactos (negro) y decorticados (gris).

Figura 140. Función RRTF de las neuronas tónicas de Sp5o en animales intactos (negro) y decorticados (gris).

Figura 141. Función SR de los registros multiunitarios de Sp5o en animales intactos (negro) y decorticados (gris).
Resultados

Total de espigas (TSR)

Unitarios

El número de espigas total medio para cada frecuencia de estimulación aumenta de forma exponencial desde 8 espigas a 1 Hz hasta 45 espigas a 40 Hz, mostrando un pequeño aumento local a 15 Hz (figura 142). 10 registros de los 18 muestran un comportamiento compatible con un filtro band-pass, aumentando la respuesta ante estimulaciones de frecuencia intermedia (entre 3-8 Hz y 12-15 Hz) y disminuyéndola para el resto de frecuencias. Todas las neuronas con este comportamiento son fásicas, y la media de sus funciones TSR muestra un aumento de la respuesta entre 8 y 15 Hz.

Las neuronas tónicas aumentan su valor TSR al aumentar la frecuencia de estimulación de forma exponencial (desde 11 espigas a 1 Hz hasta 102 espigas a 40 Hz), mientras que las fásicas lo aumentan hasta 15 Hz, donde se alcanza un máximo (38 espigas), y después tienden a disminuir dicho valor, aunque levemente (23 espigas a 40 Hz) (figuras 143 y 144).

Multiunitarios

El número de espigas total para cada frecuencia de los registros multiunitarios en ausencia de influencia cortical aumenta de manera exponencial entre 10 espigas y 100 espigas (1 Hz y 40 Hz respectivamente) (figura 145). De entre los 19 registros obtenidos, 8 (42,1%), todos ellos de tipo fásico, presentan un comportamiento diferente, con aumento de la respuesta a 8 Hz y filtrado de las frecuencias altas. Todas los registros fásicos, excepto uno, presentan este comportamiento.
Figura 142. Arriba Función TSR de las neuronas de Sp50 en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Figura 143. Arriba Función TSR de las neuronas Fásicas de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Figura 144. Arriba Función TSR de las neuronas tónicas de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Figura 145. Arriba Función TSR de los registros multiunitarios de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Resultados

Latencia de la respuesta

Unitarios

La latencia media de todos los registros obtenidos en el núcleo Espinal Oral aumenta conforme lo hace la frecuencia de estimulación hasta los 20 Hz (figura 146). La media de todos los registros aumenta desde 9,2 ms a 1 Hz hasta 12,3 ms a 20 Hz. A partir de esta frecuencia de estimulación la latencia permanece invariable (12,3 ms de media a 40 Hz). El comportamiento de las unidades tónicas y fásicas es algo diferente entre sí. Ambas aumentan su latencia de forma similar hasta los 10 Hz. De este modo, las fásicas aumentan, como promedio, de 9,7 ms a 1 Hz hasta 12,1 ms a 10 Hz, y las tónicas de 8,0 ms a 9,9 ms a 1 Hz y 10 Hz respectivamente (figuras 147 y 148). En ambos casos esto supone aproximadamente un 25% de cambio. A partir de este momento, en las fásicas la latencia permanece siempre con el mismo valor (a 40 Hz presentan 12,3 ms de latencia), pero en las tónicas la latencia sigue aumentando hasta los 25 Hz, momento a partir del cual se estabiliza, alcanzando 12,5 ms de latencia a 40 Hz. En cualquier caso, la latencia de los registros tónicos es menor que la de los fásicos hasta los 25 Hz. A partir de este punto, ambas latencias son iguales (aproximadamente 12,5 ms en ambos casos).

Multiunitarios

La latencia media de los 19 registros multiunitarios aumenta de forma más o menos rápida desde 1 Hz (9,9 ms de latencia) hasta los 20 Hz (12,0 ms de latencia), estabilizándose en el valor que alcanza en este punto (11,8 ms de latencia a 40 Hz) (figura 149).
Figura 146. Arriba Latencia de las neuronas de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Figura 147. Arriba Latencia de las neuronas Fásicas de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Figura 148. Arriba: Latencia de las neuronas tónicas de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Figura 149. Arriba Latencia de los registros multiunitarios de Sp5o en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Resultados

Consistencia temporal de la respuesta (VS)

Unitarios

La consistencia temporal de la respuesta respecto del estímulo en estas neuronas es grande hasta los 10 Hz, siendo el valor de la función VS prácticamente 1 entre 1 y 10 Hz (figura 150). A partir de este punto, comienza a disminuir de forma brusca, siendo VS igual a 0,6 a 40 Hz. En general, las neuronas tónicas pierden menos consistencia que las fásicas (figuras 151 y 152), formando un grupo más homogéneo. De este modo, las neuronas fásicas pasan de un valor VS de 1 a 1 Hz a VS igual a 0,6 a 40 Hz, mientras que las tónicas pasan de 1 a 0,8 entre 1 y 40 Hz respectivamente.

Multiunitarios

Se produce una pérdida sustancial de la consistencia temporal de la respuesta de los registros multiunitarios con el aumento de la frecuencia de estimulación, sobre todo a partir de los 10 Hz. Entre 1 y 10 Hz el valor de VS es 1, llegando a ser 0,6 a 40 Hz (figura 153).

![Figura 150. Función VS de las neuronas de Sp5o en animales intactos (negro) y decorticados (gris).](image)
Figura 151. Función VS de las neuronas Fásicas de Sp5o en animales intactos (negro) y decorticados (gris).

Figura 152. Función VS de las neuronas tónicas de Sp5o en animales intactos (negro) y decorticados (gris).

Figura 153. Función VS de los registros multiunitarios de Sp5o en animales intactos (negro) y decorticados (gris).
4.2.3. Núcleo Espinal Interpolar

Caracterización general

Unitarios

Se han obtenido 17 registros unitarios en ausencia de influencia cortical en el núcleo Espinal Interpolar. La actividad media en condiciones de reposo de estas neuronas es de \(0,4 \pm 0,24\) espigas/s, con un rango comprendido entre 0 y 3,9 espigas/s. Todas ellas muestran un aumento de la actividad como consecuencia de la estimulación sensorial de las vibrisas, con una latencia media de \(10,6 \pm 0,78\) ms (rango entre 6 y 18 ms). Durante los 100 ms que dura la estimulación, las neuronas del Sp5i responden con \(4,0 \pm 0,64\) espigas de media (rango entre 1 y 10 espigas/estímulo); mientras que la respuesta durante los primeros 14 ms de estimulación es de \(1,9 \pm 0,26\) espigas/estímulo (rango entre 1 y 4 espigas/estímulo) (tabla V). Sólo 2 neuronas presentan actividad rítmica.

Prácticamente hay el mismo número de neuronas fásicas y tónicas (8 y 9 neuronas respectivamente). Las neuronas de tipo fásico presentan menor actividad en reposo \((0,2 \pm 0,18\) espigas/s) que las de tipo tónico \((0,6 \pm 0,43\) espigas/s; \(p = 0,17\), así como mayor latencia de respuesta \((11,6 \pm 0,85\) ms las fásicas por 9,7 \pm 1,23\) ms las tónicas, \(p = 0,11\)). La respuesta evocada en las neuronas fásicas es siempre menor que la evocada en las tónicas, tanto durante la estimulación completa \((2,1 \pm 0,31\) espigas/estímulo las fásicas por 5,8 \pm 0,84\) espigas/estímulo las tónicas, \(p = 0,013\) como durante los primeros 14 ms \((1,3 \pm 0,10\) espigas/estímulo las fásicas por 2,4 \pm 0,41\) espigas/estímulo las tónicas, \(p = 0,001\).

Multiunitarios

Los 17 registros multiunitarios obtenidos en el núcleo Espinal Interpolar en ausencia de influencia cortical presentan una latencia media de respuesta de \(11,0 \pm 0,83\) ms (rango entre 6 y 20 ms), respondiendo con \(6,8 \pm 1,88\) espigas/estímulo.
Durante los 100 ms que dura la estimulación (rango entre 1 y 32 espigas/estimulo) y con $2,7 \pm 0,60$ espigas/estimulo durante los primeros 14 ms (rango entre 1 y 10 espigas/estimulo) (tabla VI). Cinco registros multiunitarios presentan actividad rítmica (29,4%).

Media de espigas por cada estímulo (SR)

Unitarios

La media de la función SR de los 17 registros unitarios decays de forma exponencial al aumentar la frecuencia de estimulación desde 1,5 espigas/estimulo a 1 Hz hasta 0,3 espigas/estimulo a 40 Hz (figura 154). La mayoría de los registros obtenidos sigue este comportamiento (13 registros, 76,5%). Los 4 restantes (23,5%) también presentan una caída exponencial del número de espigas por estímulo con el aumento de la frecuencia de estimulación, pero muestran aumentos puntuales de la función SR (2 a 3 Hz, 1 a 5 Hz y 1 a 8 Hz). De estos 4 registros, 3 (75%) son de tipo tónico y 1 es de tipo fásico.

Las neuronas tónicas responden siempre con un mayor número de espigas por cada estímulo que las fásicas, sea cual sea la frecuencia de estimulación (figuras 155 y 156). Además, la función SR en las neuronas tónicas decays menos que en las fásicas: desde 2,0 espigas/estímulo a 1 Hz hasta 0,5 espigas/estímulo a 40 Hz las tónicas, y desde 1,0 espigas/estímulo a 1 Hz hasta 0,1 espigas/estímulo a 40 Hz las fásicas, lo que supone un 75% de disminución en las tónicas y un 90% en las fásicas.

Multiunitarios

El número de espigas evocadas por cada estímulo disminuye de forma exponencial con el aumento de la frecuencia de estimulación en los registros...
Resultados

multiunitarios del núcleo Sp5i en ausencia de influencia cortical (desde 2,0 espitas/estímulo a 1 Hz hasta 0,6 espigas/estímulo a 40 Hz) (figura 157). Estudiados de forma individual, 8 registros (47,1%) presentan un comportamiento puramente exponencial, mientras que en los 9 restantes (52,9%) pueden observarse aumentos puntuales para determinadas frecuencias de estimulación de las espigas evocadas por cada estímulo. Entre estos registros predominan los de tipo tónico (55,6% de registros tónicos, 5 de los 9) y 3 presentan actividad rítmica (60% de los 5 que presentan actividad rítmica). La media de estos 9 registros con aumentos puntuales del número de espigas por estímulo no presenta máximo alguno, ya que hay mucha variabilidad en cuanto a la frecuencia a la que aparecen estos máximos.
Figura 154. Arriba Función SR de las neuronas de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Figura 155. Arriba Función SR de las neuronas Fásicas de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Figura 156. Arriba Función SR de las neuronas tónicas de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Figura 157. Arriba Función SR de los registros multiunitarios de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Adaptación de la respuesta (RRTF)

Unitarios

La función RRTF media de los registros unitarios del núcleo Sp5i, en ausencia de inervación cortical, muestra que la respuesta de estas neuronas se adapta de forma exponencial al aumentar la frecuencia de estimulación, disminuyendo la función RRTF desde 0,9 a 1 Hz hasta 0,2 a 40 Hz (figura 158). 11 registros, 64,7%) muestra una caída exponencial de la adaptación de la respuesta, pero a determinadas frecuencias presentan una potenciación de la misma. El 72,7% de los registros con potenciaciones puntuales son tónicos (8 registros), mientras que el 27,3% (3 registros) son fásicos. En la función RRTF media de estos 11 registros no se aprecia ninguna frecuencia en la que se produzca una potenciación clara, lo que indica una gran variabilidad al respecto. El resto (6 de 17 registros, 35,3%) se ajustan a una exponencial pura.

En general, las neuronas tónicas adaptan menos su respuesta que las fásicas (desde 1 a 0,3 entre 1 y 40 Hz las tónicas y desde 0,9 a 0,06 entre 1 y 40 Hz las fásicas) (figuras 159 y 160). También tienen un promedio más alto de estímulos capaces de evocar una respuesta (50% de estímulos efectivos a 40 Hz las tónicas, 10% las fásicas). La función RRTF de las neuronas tónicas y fásicas tomando sólo los estímulos que provocan respuesta es muy diferente. En las fásicas apenas hay adaptación de la respuesta (desde 1 hasta 0,9 entre 1 y 40 Hz), mientras que en las tónicas disminuye algo la función RRTF (desde 1 hasta 0,6 entre 1 y 40 Hz). Ambas presentan potenciación a 12 Hz (0,94 las fásicas y 0,75 las tónicas).

Multiunitarios

La adaptación de la respuesta en los registros multiunitarios del núcleo Sp5i en ausencia de influencia cortical, medida mediante la función RRTF, aumenta, de forma exponencial, con la frecuencia de estimulación, de manera que dicha función
Resultados
desciende desde 0,9 a 1 Hz hasta 0,2 a 40 Hz (figura 161). La mayoría de los registros obtenidos adaptan su respuesta de forma exponencial (9 de 17, 52,9%), mientras que los 8 restantes (47,1%) presentan aumentos locales de la función RRTF a determinadas frecuencias de estimulación. La media de estos 8 registros muestra potenciación de la respuesta a 5 y 10 Hz. Entre los 8 registros con aumentos locales, la mayoría (5 de los 8, 62,5%) tiene respuestas de tipo tónico.

Figura 158. Función RRTF de las neuronas de Sp5i en animales intactos (negro) y decorticados (gris).
Resultados

Figura 159. Función RRTF de las neuronas Fásicas de Sp5i en animales intactos (negro) y decorticados (gris).

Figura 160. Función RRTF de las neuronas tónicas de Sp5i en animales intactos (negro) y decorticados (gris).

Figura 161. Función RRTF de los registros multiunitarios de Sp5i en animales intactos (negro) y decorticados (gris).
Resultados

Total de espigas (TSR)

Unitarios

El número de espigas total medio para cada frecuencia de estimulación aumenta de forma exponencial desde 8 espigas hasta 57 espigas entre 1 y 40 Hz (figura 162). 8 registros de los 17 muestran un comportamiento compatible con un filtro band-pass, aumentando la respuesta ante estimulaciones de frecuencia intermedia (entre 3-5 Hz y 8-12 Hz) y disminuyéndola para el resto de frecuencias. Todas las neuronas con este comportamiento son fásicas (de hecho todas las neuronas fásicas pertenecen a este grupo), y la media de sus funciones TSR muestra un aumento de la respuesta a 8 Hz, donde se alcanzan 22 espigas (a 40 Hz las fásicas presentan 13 espigas). Las neuronas tónicas aumentan su valor TSR al aumentar la frecuencia de estimulación de forma exponencial, desde 10 espigas a 95 espigas entre 1 y 40 Hz (figuras 163 y 164).

Multiunitarios

El número de espigas total para cada frecuencia de los registros multiunitarios en ausencia de influencia cortical aumenta de manera exponencial desde 10 espigas a 1 Hz hasta 113 espigas a 40 Hz (figura 165). De entre los 17 registros obtenidos, 4 (23,5%), todos ellos de tipo fásico, presentan un comportamiento diferente, con aumento de la respuesta a 8 Hz (entre 3-8 Hz y 8-15 Hz) y filtrado de las frecuencias altas.
Figura 162. Arriba Función TSR de las neuronas de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Figura 16.3. Arriba Función TSR de las neuronas Fásicas de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Figura 164. Arriba Función TSR de las neuronas tónicas de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Resultados

Figura 165. Arriba Función TSR de los registros multiunitarios de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Resultados

Latencia de la respuesta

Unitarios

La latencia media de todos los registros obtenidos en el núcleo Espinal Interpolar aumenta conforme lo hace la frecuencia de estimulación hasta los 20 Hz (figura 166). La media de todos los registros aumenta desde 11 ms a 1 Hz hasta 13,1 ms a 20 Hz. A partir de esta frecuencia de estimulación la latencia permanece invariable, siendo la media a 40 Hz de 12,5 ms. El comportamiento de las unidades tónicas y fásicas es algo diferente entre sí (figuras 167 y 168). Las fásicas aumentan su latencia hasta los 10 Hz (desde 12,3 ms a 1 Hz hasta 14,4 ms a 10 Hz) y a partir de este punto disminuye tanto que la latencia a 40 Hz llega a ser mucho menor que la latencia a 1 Hz (11,6 ms y 12,3 ms respectivamente). Las tónicas aumentan su latencia hasta 25 Hz (desde 9,9 ms hasta 13,1 ms entre 1 y 25 Hz respectivamente), estabilizando su valor a partir de este punto (13,2 ms a 40 Hz). De esta manera, entre 1 y 25 Hz la latencia de las tónicas es menor que la de las fásicas y a frecuencias mayores la latencia de las fásicas es menor.

Multiunitarios

La latencia media de los 17 registros multiunitarios no cambia al aumentar la frecuencia de estimulación (10,5 ms y 10,4 ms a 1 Hz y a 40 Hz respectivamente). A pesar de esto, en 6 registros se ha detectado un aumento leve, aunque claro, de la latencia (figura 169).
Figura 166. Arriba Latencia de las neuronas de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Figura 167. Arriba, Latencia de las neuronas Fásicas de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Figura 168. Arriba Latencia de las neuronas tónicas de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Figura 169. Arriba Latencia de los registros multiunitarios de Sp5i en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Resultados

Consistencia temporal de la respuesta (VS)

Unitarios

En estas neuronas, la consistencia temporal de la respuesta con respecto al estímulo es grande hasta los 10 Hz, siendo el valor VS prácticamente 1 hasta este punto (figura 170). A partir de este momento, comienza a disminuir de forma brusca, alcanzando la función VS un valor de 0,6 a 40 Hz. En general, las neuronas tónicas pierden menos consistencia que las fásicas (desde VS = 1 a 1 Hz hasta VS = 0,7 a 40 Hz las tónicas y desde VS = 1 a 1 Hz hasta VS = 0,4 a 40 Hz las fásicas) (figuras 171 y 172).

Multiunitarios

Se produce una pérdida sustancial de la consistencia temporal de la respuesta de los registros multiunitarios con el aumento de la frecuencia de estimulación (VS desde 1 a 1 Hz hasta 0,4 a 40 Hz), sobre todo a partir de los 5 Hz (figura 173).

![Figura 170. Función VS de las neuronas de Sp5i en animales intactos (negro) y decorticados (gris).](image-url)
Resultados

Figura 171. Función VS de las neuronas Fásicas de Sp5i en animales intactos (negro) y decorticados (gris).

Figura 172. Función VS de las neuronas tónicas de Sp5i en animales intactos (negro) y decorticados (gris).

Figura 173. Función VS de los registros multiunitarios de Sp5i en animales intactos (negro) y decorticados (gris).
4.2.4. Núcleo Espinal Caudal

Caracterización general

Unitarios

Dadas la duración del protocolo de estimulación aplicado y las características de la zona, la obtención de registros unitarios en Sp5c ha sido de gran dificultad. De este modo sólo se ha podido obtener 4 registros completos para su estudio.

La frecuencia de disparo media de estos 4 registros en condiciones de reposo es de $3,3 \pm 1,85$ spigas/s, con un rango comprendido entre 0 y 7,6 spigas/s. Todas las neuronas registradas presentan una respuesta clara a la estimulación sensorial de las vibras. La respuesta evocada sobreviene, como media, $11,2 \pm 1,08$ ms después de moverse la vibrís (con un rango comprendido entre 9 y 14 ms). Dicha estimulación evoca en estas neuronas de 2 a 8 spigas durante los 100 ms que dura, con una media de $3,6 \pm 1,43$ spigas/estímulo; mientras que en los primeros 14 ms responden con $1,6 \pm 0,39$ spigas/estímulo de media (rango entre 1 y 3 spigas/estímulo). Se han encontrado dos registros fásicos y dos registros tónicos (tabla V).

Multiunitarios

Los 16 registros multiunitarios obtenidos en el núcleo Espinal Caudal en ausencia de influencia cortical presentan una latencia media de respuesta de $7,7 \pm 0,40$ ms (rango entre 5 y 11 ms), respondiendo con $15,3 \pm 2,54$ spigas/estímulo durante los 100 ms que dura la estimulación (rango entre 1 y 36 spigas/estímulo) y con $5,7 \pm 0,76$ spigas/estímulo durante los primeros 14 ms (rango entre 1 y 11 spigas/estímulo) (Tabla VI). Dos registros multiunitarios, ambos tónicos, presentan actividad rítmica (12,5%).
Resultado

Media de espigas por cada estímulo (SR)

Unitarios

En los cuatro registros se observa una caída exponencial de la función SR (desde 1,1 espigas/estímulo a 1 Hz hasta 0,4 espigas/estímulo a 40 Hz en el promedio de los 4), aunque en tres de ellos se produce un aumento puntual de dicha función entre 5 y 8 Hz (figura 176). De hecho, la media de los 4 registros muestra un aumento entre dichas frecuencias. Las dos neuronas tónicas muestran siempre valores SR mayores que las dos fásicas (desde 1,7 espigas/estímulo a 1 Hz hasta 0,6 espigas/estímulo a 40 Hz el promedio de las tónicas, y desde 0,6 espigas/estímulo a 1 Hz hasta 0,3 espigas/estímulo a 40 Hz el promedio de las fásicas).

Multiunitarios

El número de espigas evocadas por cada estímulo disminuye de forma exponencial con el aumento de la frecuencia de estimulación en los registros multiunitarios del núcleo Sp5c en ausencia de influencia cortical desde 4,5 espigas/estímulo a 1 Hz hasta 1,4 espigas/estímulo a 40 Hz en el promedio (figura 177). 13 registros (81,3%) presentan este comportamiento, mientras que en los 3 restantes (18,7%) pueden observarse aumentos puntuales para determinadas frecuencias de estimulación de las espigas evocadas por cada estímulo. Entre estos registros predomina los de tipo tónico (66,7% de registros tónicos, 2 de los 3). La media de estos 3 registros con aumentos puntuales del número de espigas por estímulo no presenta máximo alguno.
Resultados

Figura 176. Arriba Función SR de las neuronas de Sp5c en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Figura 177. Arriba Función SR de los registros multiunitarios de Sp5c en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores SR normalizados.
Resultados

Adaptación de la respuesta (RRTF)

Unitarios

En la función RRTF se observan diferencias notables entre fásicas y tónicas. Las primeras muestran una adaptación muy fuerte (RRTF alrededor de 0,3) y más o menos constante para todo el intervalo de frecuencias. En cambio, las tónicas potencian su respuesta entre 1 y 10 Hz (valores de RRTF prácticamente 1 en este rango de frecuencias), cayendo de forma exponencial, a partir de este valor de frecuencia, la función RRTF (a 40 Hz es igual a 0,4). Las dos neuronas tónicas presentan siempre valores RRTF mayores que las dos fásicas. En el promedio de todas las neuronas no hay diferencias con las funciones obtenidas de animales intactos (figura 178)

La proporción de estímulos que no son capaces de evocar respuesta en las unidades fásicas y tónicas es algo menor en estas últimas (40% y 60% de estímulos efectivos a 40 Hz respectivamente). La función RRTF utilizando únicamente los estímulos que evocan respuesta de las neuronas tónicas es similar a la RRTF original, aunque a partir de 10 Hz presenta valores mayores (a 40 Hz la función RRTF vale 1 en las fásicas y 0,7 en las tónicas). En las neuronas fásicas, la eliminación de los estímulos no efectivos conlleva que la función RRTF tome valores siempre muy cercanos a 1, esto es, toda la adaptación observada en estas neuronas es debida a los estímulos que no evocan respuesta.

Multiunitarios

La adaptación de la respuesta en los registros multiunitarios del núcleo Sp5c en ausencia de influencia cortical, medida mediante la función RRTF, aumenta, de forma exponencial, con la frecuencia de estimulación (figura 179). De este modo, la función RRTF pasa de 1 a 1 Hz a 0,3 a 40 Hz. La mayoría de los registros obtenidos presenta aumentos locales de la función RRTF a determinadas
Resultados
defrecuencias de estimulación (11 de 16, 68,8%), mientras que los 5 restantes (31,2%) adaptan su respuesta de forma exponencial. La media de los 11 registros con aumentos puntuales de la función RRTF muestra una leve potenciación de la respuesta a 12 Hz. Entre estos 11 registros la mayoría (9 de los 11, 81,8%) tiene respuestas de tipo tónico, como sucede en el conjunto de la población.

Figura 178. Función RRTF de las neuronas de Sp5c en animales intactos (negro) y decorticados (gris).

Figura 179. Función RRTF de los registros multiunitarios de Sp5c en animales intactos (negro) y decorticados (gris).
Resultados

Total de espigas (TSR)

Unitarios

En 3 de las cuatro neuronas (las dos tónicas y una fásica) se produce un aumento exponencial de la función TSR (pasando de 6 espigas a 1 Hz a 88 espigas a 40 Hz como promedio). La neurona fásica restante presenta un filtrado band-pass, esto es, presenta un máximo de respuesta entre 12 y 20 Hz. Los valores de esta función en las dos neuronas tónicas son siempre mayores que los de las dos neuronas fásicas (las tónicas pasan de 8 espigas a 116 espigas entre 1 y 40 Hz de media, mientras que las fásicas pasan de 3 espigas a 61 espigas entre 1 y 40 Hz de media). Como promedio, estas neuronas muestran un aumento exponencial de la función TSR (figura 180).

Multiunitarios

De entre los 16 registros obtenidos, 3 (18.8%) presentan un comportamiento diferente, con aumento de la respuesta a 8 y 12 Hz y filtrado de las frecuencias altas. En el resto, el número de espigas total para cada frecuencia aumenta de manera exponencial desde 23 espigas a 1 Hz hasta 270 espigas a 40 Hz (figura 185).
Resultados

Figura 180. Arriba Función TSR de las neuronas de Sp5c en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Figura 181. Arriba: Función TSR de los registros multiunitarios de Sp5c en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores TSR normalizados.
Resultados

Latencia de la respuesta

Unitarios

En las dos neuronas fásicas, la latencia no se ve apenas afectada por el aumento de la frecuencia de estimulación (10,6 ms a 1 Hz y 10,6 ms a 40 Hz). En las dos tónicas, en cambio, dicho aumento conlleva un aumento de la latencia (desde 10,0 ms a 1 Hz hasta 13,7 ms a 40 Hz). De este modo, entre 1 y 10 Hz la latencia de las neuronas tónicas es menor que la de las fásicas (en 10 Hz se igualan las dos a 11,7 ms), mientras que a frecuencias de estimulación mayores de 10 Hz, la frecuencia de las fásicas es menor que la de las tónicas. En el promedio, apenas hay variación de la latencia (figura 182).

Multiunitarios

La latencia media de los 16 registros multiunitarios aumenta de forma exponencial con la frecuencia de estimulación desde 8 ms a 1 Hz hasta 10,8 ms a 40 Hz (figura 183).
Figura 182. Arriba: Latencia de las neuronas de Sp5c en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Figura 183. Arriba Latencia de los registros multiunitarios de Sp5c en animales intactos (negro) y decorticados (gris). Abajo, idem, con los valores de latencia normalizados.
Consistencia temporal de la respuesta (VS)

Unitarios

Las dos neuronas tónicas apenas pierden consistencia temporal con el aumento de la frecuencia de estimulación (VS varía desde 1 hasta 0,8 entre 1 y 40 Hz), mientras que las dos fásicas alcanzan valores muy bajos de VS, sobre todo a partir de 8 Hz. De este modo, entre 1-8 Hz el valor de VS es prácticamente 1, siendo 0,3 a 40 Hz (figura 184).

Multiunitarias

Se produce una pérdida sustancial de la consistencia temporal de la respuesta de los registros multiunitarios con el aumento de la frecuencia de estimulación. Entre 1 y 12 Hz el valor de VS es prácticamente 1, disminuyendo hasta 0,6 a 40 Hz (figura 185).

Figura 184. Función VS de las neuronas de Sp5c en animales intactos (negro) y decorticados (gris).
Resultados

Figura 185. Función VS de los registros multiunitarios de Sp5c en animales intactos (negro) y decorticados (gris).
5. DISCUSIÓN
5.1 CARACTERIZACIÓN GENERAL

En general, los campos receptivos de las neuronas de los núcleos Pr5 y Sp5c son menores que los de las neuronas de los núcleos Sp5o y Sp5i (Gibson 1987; Jacquin 1989; Jacquin, Barcia y col. 1989; Jacquin, Golden y col. 1988; Jacquin, Golden y col. 1989; Jacquin, Mooney y col. 1986; Price, Greenspan y col. 2003; Veinante and Deschenes 1999). Como media, las neuronas del núcleo Pr5 responden a la estimulación de $2,9 \pm 0,32$ vibras, valor que es muy similar a las $2,7 \pm 0,50$ vibras de media a las que responden las neuronas del núcleo Sp5c. En el caso de Pr5 hay un mayor número de neuronas multivibratora que las que se encuentran con estimulación mecánica (Jacquin, Golden y col. 1988; Veinante and Deschenes 1999). Tanto la media como la variabilidad mostrada en el número de vibras que conforman el campo receptivo de las neuronas de los otros dos núcleos espiniales son netamente mayores. De este modo, las neuronas del núcleo Sp5o responden de media a $7,2 \pm 0,99$ vibras, y las del núcleo Sp5i a $7,6 \pm 1,14$ vibras de media. En cualquier caso, la tendencia general en todos los núcleos, es que las vibras accesorias se sitúan en la misma fila y/o columna que la principal, de manera que la organización de estos campos receptivos atiende más a razones topográficas que de mera cercanía física (Gibson 1987; Jacquin, Barcia y col. 1989; Jacquin, Golden y col. 1989).

Las neuronas del CST asociadas al procesamiento de la información somatosensorial proveniente de las vibras presentan, al menos en nuestras condiciones de anestesia, una actividad en reposo muy baja. El núcleo Pr5, cuyas referencias conforman la principal entrada al núcleo Ventral Posteromedial del tálamo, es el que menos actividad espontánea muestra ($0,6 \pm 0,31$ espias/s). Curiosamente, las neuronas del otro núcleo implicado en el envío de información sensorial al tálamo, el núcleo Sp5i que la envía a través de la vía paralemniscal en este caso, muestran mucha más actividad espontánea ($3,0 \pm 1,08$ espias/s). En los otros dos núcleos, que apenas envían referencias al tálamo, también puede observarse esta disparidad, de manera que, mientras que el núcleo Sp5o muestra
una actividad espontánea muy baja (0,9 ± 0,57 espigas/s); el núcleo Sp5c muestra una actividad en reposo mayor (4,3 ± 2,16 espigas/s). Estas diferencias se deben a una mayor presencia de neuronas de alta frecuencia de disparo en espontánea en los núcleos Sp5i y Sp5c que, además, presentan actividad en reposo mayor en estos núcleos que en los núcleos Pr5 y Sp5o. Los datos sobre la baja actividad neuronal espontánea en los núcleos del CST obtenidos en este estudio concuerdan con la mayoría de los estudios realizados en animales anestesiados (Ahissar, Sosnik y col. 2000; Dallel, Raboisson y col. 1990; Gibson 1987; Jacquin, Golden y col. 1988; Sosnik, Haidarliu y col. 2001; Veinante and Deschenes 1999), exceptuando el trabajo de Minnery y Simons (2003) en Pr5, que describen una actividad espontánea en este núcleo mucho mayor. Esta diferencia puede deberse, como ya hacen constar dichos autores, al uso de una metodología experimental distinta.

En los núcleos Pr5, Sp5o y Sp5i, el número de neuronas que muestran una respuesta de tipo tónico supone alrededor de un tercio del total. De nuevo nuestros datos concuerdan con los descritos en la bibliografía (Dallel, Raboisson y col. 1990; Jacquin, Barcia y col. 1989; Jacquin, Golden y col. 1988; Jacquin, Golden y col. 1989; Shipley 1974; Veinante and Deschenes 1999), exceptuando el citado trabajo de Minnery y Simons (2003). En el núcleo Sp5c, por el contrario, casi la mitad de las neuronas muestran respuestas de tipo tónico, proporción que es distinta a la obtenida por Renehan y col. (1986). En este trabajo se utilizaron 10 neuronas y la estimulación era mecánica, por lo que el bajo número de registros y la diferente estimulación podrían ser la causa de las discrepancias. En todos los núcleos, la actividad espontánea de las unidades fásicas es superior a la de las tónicas. De nuevo, tanto si nos referimos a neuronas fásicas como a tónicas, las pertenecientes a los núcleos Pr5 y Sp5o tienen una actividad en reposo menor que las pertenecientes a los núcleos Sp5i y Sp5c. Desafortunadamente no existen datos al respecto en la bibliografía.

Las neuronas del núcleo Pr5 muestran cierta tendencia a responder con un mayor número de espigas ante un estímulo más o menos largo que las del resto de
núcleos. Esta diferencia entre núcleos, que es muy sutil si hablamos de unidades fásicas, es notable al comparar las neuronas tónicas. Sin embargo, al estudiar sólo el comienzo de la respuesta (los primeros 14 ms), la magnitud de la respuesta es similar en todos los núcleos. Incluso, la respuesta en este intervalo de las neuronas fásicas del núcleo Sp5c es mayor que las neuronas fásicas del resto de los núcleos. Como era de esperar, las neuronas tónicas de todos los núcleos presentan respuestas de mayor magnitud durante los 100 ms que dura la estimulación que las fásicas. Este hecho se repite si se tienen en cuenta sólo los primeros 14 ms de la estimulación, excepto en el núcleo Sp5c, donde fásicas y tónicas muestran respuestas de magnitud similar.

La respuesta durante los 100 ms de estimulación del conjunto de los registros multiunitarios del núcleo Sp5c es significativamente de mayor magnitud que la de los restantes núcleos. Dado que este núcleo es el que mayor densidad celular presenta (Avendaño, Machin y col. 2005) y en el que los barriletes están más desarrollados (Ma 1991) es de esperar que al registro multiunitario contribuya un mayor número de neuronas y, por tanto, que en la respuesta obtenida el número de espigas sea mayor. El comportamiento de los registros multiunitarios durante los primeros 14 ms de estimulación es muy similar a la obtenida durante los 100 ms. En conjunto, los registros del núcleo Sp5c responden con un mayor número de espigas que los del resto de núcleos. Entre Pr5, Sp5o y Sp5i no hay diferencias significativas, aunque este último presenta una respuesta media de mayor magnitud que los otros dos, cuya respuesta es similar.

La latencia media de la respuesta evocada por el estímulo sensorial del total de las neuronas del núcleo Pr5 es significativamente menor que la de las neuronas de cada uno de los núcleos espinales, que muestran latencias muy similares entre sí (Gibson 1987; Moreno, García-Gonzalez y col. 2005; Sosnik, Haidarliu y col. 2001). Sin embargo, al estudiar las unidades tónicas y fásicas por separado se observa que éstas últimas muestran latencias de igual magnitud en los cuatro núcleos mientras que las neuronas tónicas pertenecientes al núcleo Pr5 responden con una
Discusión

latencia mucho menor (casi la mitad) que las pertenecientes a los núcleos espinales. En los núcleos Pr5 y Sp5o, la latencia de respuesta de las neuronas fásicas es significativamente mayor que la de las tónicas. En los otros dos núcleos espinales, en cambio, la latencia de ambos tipos de neuronas es igual. En cuanto a la latencia de la respuesta de los registros multiunitarios, la de los pertenecientes al núcleo Pr5 es menor que la de los núcleos Sp5o e Sp5i (que presentan latencias similares), e igual a la del núcleo Sp5c.

Con todos estos datos podemos concluir que las características básicas de nuestra muestra de registros del CST se ajusta bien a las descritas en la bibliografía sobre la población de neuronas del CST.
5.2 ESTUDIO DE LA MAGNITUD DE LA RESPUESTA ANTE ESTÍMULOS REPETITIVOS DE FRECUENCIA FIJA

Número de espigas por estímulo (SR).

Las neuronas de los cuatro núcleos del Complejo Sensorial del Trigémino filtran, ateniéndonos al número de espigas evocadas por cada estímulo, las frecuencias altas de estimulación, esto es, cuanto mayor es la frecuencia de estimulación, menor es el número medio de espigas evocadas por cada estímulo de la serie. Este hecho podría deberse bien a una reducción del número de espigas en cada estímulo, bien a una disminución con el aumento de la frecuencia del número de estímulos capaces de evocar una respuesta. Los datos obtenidos indican que este filtrado se debe a una combinación de ambos fenómenos, si bien contribuyen de manera diferente en función del tipo de respuesta de la neurona analizada. En las neuronas fásicas el filtrado se debe sobre todo a una disminución del número de estímulos que evocan respuesta, mientras que en las tónicas se debe sobre todo a una disminución en el número de espigas evocadas por cada estímulo.

A pesar que en todos los núcleos se produce una caída exponencial del promedio del número de espigas evocadas por cada estímulo en la población de neuronas estudiadas con el aumento de la frecuencia de estimulación, dicha caída no es igual en cada núcleo. En el núcleo Pr5 siempre hay un mayor número de espigas por estímulo que en el resto de los núcleos, sea cual sea la frecuencia de estimulación, mientras que en el núcleo Sp5o siempre es menor dicho número. Los otros dos núcleos espinales presentan un número de espigas por estímulo muy similar hasta 10 Hz de estimulación y para frecuencias mayores las neuronas del núcleo Sp5c responden con un mayor número de espigas en cada estímulo. Si estudiamos los valores normalizados de estas funciones con respecto al máximo se comprueba que entre 1 Hz y 5 Hz, la disminución en el número de espigas con el aumento de la frecuencia es muy parecida, por no decir igual, en los cuatro núcleos. A partir de esta frecuencia, la caída en los núcleos Sp5o e Sp5i es idéntica y mucho más rápida que en los otros dos núcleos. En los núcleos Pr5 y Sp5c la caída es
Discusión

similar hasta los 15 Hz de estimulación, momento a partir del cual en el núcleo Sp5c se estabiliza dicha caída. En el núcleo Pr5 el número de espigas disminuye hasta igualarse con los de los núcleos Sp5o y Sp5i.

Dado que, como revelan los resultados obtenidos, las neuronas tónicas muestran una disminución menor en el número de espigas por estímulo que las fásicas, el comportamiento distinto en los cuatro núcleos podría deberse a la diferente proporción de neuronas fásicas y tónicas observada en dichos núcleos. Excepto en el caso de Sp5o, que presenta la menor proporción de neuronas tónicas y los valores más bajos de la función SR, en el resto de los núcleos no se cumple esta relación (Pr5 tiene una proporción de neuronas tónicas menor que Sp5i y que Sp5c y valores SR mayores que ambos, y Sp5i tiene menor proporción de neuronas tónicas y valores SR mayores que Sp5c). Entonces es razonable asumir que el comportamiento respecto al número de espigas evocadas por cada estímulo en cada frecuencia de estimulación de las neuronas fásicas y tónicas es distinto en cada núcleo. Mientras que el comportamiento de las unidades fásicas en los cuatro núcleos es muy parecido, el de las tónicas presenta varias diferencias. En primer lugar, el número medio de espigas evocadas en las neuronas tónicas por cada estímulo es mucho mayor en el núcleo Pr5 (para todas las frecuencias) que en el resto de núcleos. Los núcleos Sp5o y Sp5c presentan una respuesta media por estímulo similar a lo largo de todas las frecuencias de estimulación, mientras que las neuronas tónicas del núcleo Sp5i responden más que las de los otros dos núcleos hasta los 15 Hz, y a partir de este punto se iguala los anteriores. Si nos atenemos a los valores normalizados, se ve claramente que las neuronas tónicas del núcleo Pr5 son las que menos tendencia tienen a filtrar frecuencias altas, y las del núcleo Sp5i las que más. El comportamiento de las neuronas de los otros dos núcleos espinales es muy similar.

A pesar de que todas las neuronas registradas en estos núcleos filtran las frecuencias altas de estimulación, muchas muestran un aumento del número de espigas a determinadas frecuencias puntuales, más o menos altas. En los núcleos
Discusión

que proyectan al tálamo sensorial, esto es, Pr5 y Sp5i, la proporción de estas neuronas es mayor (40% y 44,7% respectivamente) que en los que apenas proyectan al tálamo y están más implicados en el procesamiento de la información nociceptiva (Sp5o, con un 34,6% y Sp5c con un 33,3%). En general, estos aumentos en el número de espigas se producen para frecuencias muy puntuales, y nunca para intervalos más o menos largos de frecuencias de estimulación.

Si bien hay cierta variabilidad entre las diferentes neuronas, al realizar la media de los registros que presentan este tipo de comportamiento se pone de manifiesto que las neuronas del núcleo Pr5 y las del núcleo Sp5o tienen cierta preferencia por las estimulaciones a 5 Hz, mientras que las del núcleo Sp5c responden más ante estimulaciones de 5 Hz y de 15 Hz. En el núcleo Sp5i cada neurona tiene preferencia por una frecuencia determinada, por lo que en la media no se puede observar ningún máximo.

Es interesante que en los núcleos Pr5 y Sp5o, la proporción de neuronas fásicas y tónicas que presentan preferencia por alguna frecuencia de estimulación es justamente la inversa de la proporción de la población total. De este modo, en el núcleo Pr5 presentan este tipo de comportamiento 14 neuronas, 10 de las cuales son tónicas (71,4%) y 4 fásicas (28,6%), y en el núcleo Sp5o, de las 9 con preferencia por una frecuencia, 6 son tónicas (66,7%) y 3 fásicas (33,3%). En cambio en los núcleos Sp5i y Sp5c la proporción de neuronas fásicas y tónicas entre las que siguen este comportamiento es similar a la de la población total (35,3% de neuronas tónicas en el Sp5i y 50% de tónicas en el Sp5c).

Los registros multiunitarios también sufren, en los cuatro núcleos estudiados, un descenso en el número medio de espigas evocado por cada estímulo según aumenta la frecuencia de la estimulación, descenso que se ajusta a una función exponencial. En este caso, no hay grandes diferencias entre las medias de los registros obtenidos en los cuatro núcleos, ni en el número de espigas, ni en la tasa de descenso para las diferentes frecuencias de estimulación.
La proporción de registros que presentan aumentos puntuales del número de espigas es muy similar en los cuatro núcleos (45,5%, 45,0%, 50,0% y 47,6% en los núcleos Pr5, Sp5o, Sp5i y Sp5c respectivamente). De nuevo, la media de estos registros es prácticamente idéntica entre los cuatro núcleos y en todos se puede apreciar un aumento relativo del número de espigas para 15 Hz.

Adaptación de la respuesta (RRTF).

El análisis realizado a partir de la media de espigas evocadas por cada estímulo no deja de ser algo grosero y limitado. Obviamente, la disminución del número de espigas al aumentar la frecuencia de estimulación se debe a que ante una serie de estímulos a una determinada frecuencia, las neuronas no responden de igual manera al primer estímulo que al resto de estímulos de la serie. Para estudiar este comportamiento se ha utilizado la función RRTF, que indica si a lo largo de una serie de estímulos, la respuesta se mantiene siempre igual, se adapta o se potencia, siempre en relación al primer estímulo de la serie.

Al analizar el conjunto de neuronas de cada núcleo por medio de la función RRTF, se aprecia cómo en todos se produce una disminución de dicha función al aumentar la frecuencia de estimulación, actuando las neuronas del CST, al menos en lo que concierne al número de espigas evocadas por cada estímulo, como filtros de altas frecuencias o filtros low-pass.

Cuando se estimula entre 1 Hz y 3 Hz, el comportamiento medio de los cuatro núcleos es muy parecido. Sin embargo, a frecuencias de estimulación mayores, cada núcleo presenta ciertas peculiaridades. Los núcleos Sp5o y Sp5i tienen un comportamiento idéntico y son los que más filtran en el rango comprendido entre 10 Hz y 40 Hz. El otro núcleo espinal se comporta como éstos hasta los 10 Hz y a partir de aquí la adaptación de su respuesta se estabiliza. En el núcleo Pr5 se produce muy poca adaptación de la respuesta hasta los 10-12 Hz y a frecuencias mayores, aumenta la adaptación con la frecuencia de estimulación,
Discusión

alcanzando valores de adaptación muy similares, aunque algo menores, a los de los núcleos Sp5o y Sp5i.

Analizadas por separado, el comportamiento de las neuronas fásicas es muy parecido al poblacional, mientras que el de las tónicas presenta varias diferencias entre los cuatro núcleos. La población de neuronas tónicas del núcleo Pr5 es la que menos adaptación muestra en todo el rango de frecuencias de estimulación. Además, estas neuronas potencian su respuesta entre 1 y 3 Hz y a 8 Hz. Las neuronas tónicas del núcleo Sp5o también potencian su respuesta a 8 Hz, presentando valores RRTF muy similares a los del núcleo Sp5c en el resto de frecuencias de estimulación. Las neuronas tónicas del núcleo Sp5i son las que más adaptan su frecuencia.

En las neuronas fásicas de los núcleos espinales la adaptación que se ha observado es sobre todo consecuencia de la pérdida de efectividad de los estímulos sobre dichas neuronas. La función RRTF media de las neuronas fásicas tomando únicamente los estímulos que provocan respuesta es mucho mayor para todas las frecuencias que la función RRTF con todos los estímulos. Es decir, aquellos estímulos que producen una respuesta, prácticamente evocan el mismo número de espigas sea cual sea la frecuencia de estimulación. Sin embargo, en las neuronas fásicas del núcleo Pr5 la adaptación depende más de la reducción en el número de espigas en cada estímulo, ya que la función RRTF media tomando únicamente los estímulos que producen espigas es muy similar a la función RRTF con todos los estímulos. En las neuronas tónicas, en cambio, apenas hay estímulos que no provoquen respuesta, por lo que la adaptación depende casi exclusivamente de la reducción en el número de espigas evocadas por cada estímulo de la serie.

A pesar de que el comportamiento poblacional indica un filtrado de las frecuencias más altas, al estudiar los registros individuales por separado aparecen aumentos puntuales de la función RRTF para determinadas frecuencias. Estos aumentos indican que estas neuronas muestran cierta preferencia a la hora de responder por dichas frecuencias de estimulación, potenciando su respuesta ante
Discusión

ellas, al menos con respecto a las frecuencias circundantes. La proporción de neuronas que muestran estos aumentos puntuales de la función RRTF es muy parecida entre los distintos núcleos (57,1%, 53,8%, 47,4% y 54,1% en Pr5, Sp5o, Sp5i y Sp5c respectivamente).

No hay un predominio claro de ninguna frecuencia en ningún núcleo. De hecho, la función RRTF media de los registros con aumentos puntuales de la potenciación es muy similar a la función RRTF media de la población entera en todos los núcleos. El único hecho reseñable es una pequeña potenciación de la respuesta en el núcleo Sp5o para estimulaciones de 2 Hz. Sin embargo, la función RRTF media de estos registros teniendo en cuenta únicamente los estímulos en los que hay respuesta, muestra una potenciación clara de ésta ante estimulaciones de 2 Hz en los tres núcleos espinales, muy evidente en el núcleo Sp5o y menos en los núcleos Sp5i y Sp5c. En este último núcleo también se puede apreciar una pequeña potenciación a 12 Hz.

En los núcleos Pr5, Sp5o y Sp5c entre las neuronas que presentan potenciaciones puntuales de la respuesta hay una mayor proporción de neuronas tónicas que en la población total (50% en los núcleos Pr5 y Sp5o y 61,5% en el Sp5c). En el núcleo Sp5i hay un 27,8% de neuronas tónicas entre las que presentan potenciaciones puntuales, que es muy similar al poblacional. Las neuronas fásicas de los cuatro núcleos presentan un comportamiento medio muy parecido, no presentando predilección por ninguna frecuencia en concreto. Las neuronas tónicas por contra, muestran preferencia por frecuencias bajas en los núcleos Pr5 y Sp5o (entre 1 Hz y 3 Hz y para 8 Hz en ambos casos) y por las altas en los núcleos Sp5i y Sp5c (a 30 Hz).

Las funciones RRTF media de los registros multiunitarios de los cuatro núcleos estudiados son idénticas, no presentando potenciación para ninguna frecuencia de estimulación. Sin embargo, prácticamente todos los registros muestran potenciación para una o varias frecuencias puntuales (100% en el núcleo Pr5, el 90% en el Sp5o, el 85% en el Sp5i y el 85,7% en el Sp5c). El hecho de que
no haya una frecuencia dominante en cada núcleo, sino que en cada registro hay preferencia por una o una combinación de frecuencias hace que en la media no sobresalga ninguna en particular.

Número de espigas total (TSR).

Con esta función se analiza, no el número de espigas por estímulo, sino el número total de espigas en una serie. En principio, y dado que las series de estimulación duran todas el mismo tiempo sea cual sea la frecuencia de estimulación, las estimulaciones a frecuencias más altas deberían tener un valor TSR mayor que las demás (ya que hay más estímulos en el mismo tiempo).

La media de las funciones TSR de todas las neuronas muestra un aumento exponencial de dicha función en los cuatro núcleos estudiados, lo que indica que existe cierta preferencia por las frecuencias más bajas ya que este aumento debería ser lineal si no existiese esta preferencia. El número de espigas total es siempre mayor en el núcleo Pr5, seguido del Sp5c, el Sp5i y, por último, el Sp5o.

En algunas de las neuronas estudiadas, se ha observado que la respuesta es mayor para frecuencias intermedias (filtrado Band-pass). En los núcleos Pr5 y Sp5i, que son los dos que proyectan a tálamo somatosensorial, la proporción de éstas neuronas es muy similar (42,8% y 42,1% respectivamente). En el núcleo Sp5o la proporción es algo mayor (57,7%), mientras que en el núcleo Sp5c las neuronas con preferencia por frecuencias intermedias constituyen una minoría (el 28,8% del total). En todos los núcleos, la mayoría de las neuronas con este comportamiento son de tipo fásico (el 93,3% en el núcleo Pr5, el 86,7% en el Sp5o, el 81,2% en el Sp5i y el 100% en el Sp5c). Teniendo en cuenta que el núcleo Sp5c es el que menor proporción de neuronas fásicas presenta, es lógico que también sea el que menor proporción de neuronas band-pass tenga.
Discusión

La media de las funciones TSR de las neuronas band-pass muestra en todos los núcleos una preferencia en torno a los 15 Hz de estimulación. De este modo, en el núcleo Pr5 se observa una potenciación de la respuesta entre 15 y 25 Hz, en el Sp5o entre 8 y 15 Hz, en el Sp5i entre 8 y 20 Hz y en el Sp5c entre 10 y 25 Hz; todos ellos con un máximo en 15 Hz.

Obviamente, y dado que la mayoría de las neuronas con comportamiento band-pass son de tipo fásico, existen ciertas diferencias entre las neuronas fásicas y tónicas respecto a sus respectivas funciones TSR. En todos los núcleos, las neuronas fásicas tienden a potenciar su respuesta ante frecuencias intermedias de estimulación, pero en las tónicas se observa un aumento exponencial de la respuesta. Las neuronas tónicas del núcleo Sp5i muestran una tendencia a filtrar frecuencias altas.

El comportamiento de los registros multiunitarios es muy similar al de los unitarios. La media de la función TSR de estos registros muestra un aumento exponencial con la frecuencia de la estimulación. En este caso, la respuesta de todos los núcleos, excepto del Sp5c, es muy similar en magnitud para todas las frecuencias estudiadas. En éste núcleo la respuesta es siempre menor, especialmente ante frecuencias de estimulación altas (mayores de 10 Hz). Dado que los registros unitarios de este núcleo muestran respuestas de mayor magnitud que la de los otros núcleos espinales, este dato podría indicar un menor número de neuronas implicadas en los registros multiunitarios, bien porque estén más dispersas dentro del barríte, bien porque los campos receptivos sean menores. Teniendo en cuenta los datos obtenidos de los campos receptivos, esta última explicación parece la más plausible.

Entre los registros multiunitarios se ha encontrado también comportamientos que se ajustan a un filtrado de tipo band-pass: el 31,8% en el núcleo Pr5, el 25% en el Sp5o, el 40% en el Sp5i y el 23,8% en el Sp5c. El hecho de que haya menos registros multiunitarios con comportamiento band-pass en todos los núcleos Pr5 y Sp5o podría explicarse porque las neuronas de un mismo barríte
fuesen selectivas a una determinada frecuencia. Sin embargo, la media de los registros con comportamiento band-pass muestra que, en todos los núcleos, hay una preferencia muy clara por estimulaciones de 15 Hz.

El comportamiento de las unidades fásicas en los cuatro núcleo es muy parecido, tanto si comparamos la respuesta media por cada estímulo (SR), la adaptación de la respuesta con respecto al primer estímulo de la serie (RRTF), o la respuesta total durante toda la serie de estimulación (TSR). En cambio, el de las tónicas muestra notables diferencias entre los distintos núcleos, sobre todo si comparamos las de Pr5 con las de los núcleos espinales. Se ha propuesto que las unidades fásicas y tónicas juegan un papel diferente en la codificación de las características de los estímulos tanto en el sistema táctil de primates como en el ganglio trigeminal (Blake, Hsiao y col. 1997; Johnson 2000; LaMotte, Friedman y col. 1998; Leiser and Moxon 2005; Leiser and Moxon 2006; Shoykhet, Doherty y col. 2000; Wheat and Goodwin 2000). De este modo las unidades fásicas codificarían la localización del objeto, mientras que las tónicas lo discriminan, codificando sus características de forma y textura. En este contexto, la mayor adaptación a las frecuencias altas de las neuronas fásicas, así como su homogeneidad entre los cuatro núcleos estaría plenamente justificada. Para definir un objeto, la rata mueve sus vibrissas de forma rítmica a una determinada frecuencia (whisking) (Carvell and Simons 1990; Welker 1964). Una serie de estímulos de frecuencia fija simularía este comportamiento, de manera que el primer estímulo de la serie constituiría el contacto con el objeto o superficie, y los siguientes estímulos equivaldrían a los subsiguientes ciclos de “whisking” necesarios para obtener las características del objeto. Las neuronas fásicas, por tanto, estarían optimizadas para responder sobre todo al primer estímulo de la serie, disminuyendo su respuesta ante el resto de estímulos pues el objeto ya estaría localizado. Esta función de localizar el objeto no requeriría un procesamiento diferente en cada núcleo, sino que sería un requisito previo para su posterior análisis, por lo que las características de las neuronas fásicas son muy parecidas en los cuatro núcleos. En cambio, en cada núcleo se produciría un análisis
Discusión

distinto de las características del estímulo, por lo que las propiedades de las unidades tónicas son diferentes en cada uno de ellos. A esto hay que añadir que, según algunos autores, la mayoría de las neuronas que proyectan al tálamo, y por lo tanto llevan información a SI, son de tipo tónico (Minnery and Simons 2003). La información que llega a SI desde las vibras lo hace por dos vías diferenciadas (lemniscal y paralemniscal) y hay que suponer que el procesamiento que se hace de la información a lo largo de cada vía es distinto. De este modo, las diferentes características de adaptación de las neuronas tónicas en cada núcleo del CST reflejarían el distinto tratamiento que la información sufriría en función de la vía por la que va a llegar a SI.

Tanto VPM como Pom presentan un filtrado low-pass de la información si tenemos en cuenta la adaptación de la respuesta (Ahissar, Sosnik y col. 2000; Castro-Alamancos 2002b; Castro-Alamancos 2002a; Chung, Li y col. 2002; Deschenes, Timofeeva y col. 2003; Diamond, Armstrong-James y col. 1992; Fanselow and Nicolelis 1999; Hartings, Temereanca y col. 2003; Moore 2004; Sosnik, Haidarliu y col. 2001), mientras que VPM funciona como un filtro high-pass si tenemos en cuenta la respuesta total a lo largo de la serie de estímulos (para esta función no existen datos en Pom). Las neuronas tónicas de Pr5 y Sp5i, que son los núcleos que proyectan de forma mayoritaria a VPM y a Pom respectivamente, también son low-pass para la adaptación y high-pass para la respuesta total. Teniendo en cuenta todo lo expuesto con anterioridad, el filtrado observado en los núcleos talámicos no se realiza allí, sino en los núcleos del CST. Se sabe, de hecho, que la adaptación de la función SR observada en el VPm depende de la depresión sináptica de los EPSPs provenientes del tronco encefálico (Castro-Alamancos 2002a; Castro-Alamancos 2002b; Deschenes, Timofeeva y col. 2003). Además, el filtrado low-pass observado en Pom es mayor que en VPM y comienza a frecuencias más bajas (Moore 2004), igual que el filtrado realizado por las neuronas tónicas de Sp5i comparadas con las tónicas de Pr5. En SI se mantiene el filtrado low-pass para la adaptación, pero para la respuesta total (TSR) se realiza un filtrado band-pass. Este mismo filtrado se observa en las neuronas fásicas de los núcleos del
CST, sobre todo en los del Sp5i. De este modo, en las estaciones superiores del procesamiento sensorial de la vía somatosensorial de las vibrisas (tálamo y SI) no se produciría el filtrado de determinadas frecuencias, sino que se refinaría éste. De hecho, si se comparan los perfiles obtenidos de las funciones SR, RRTF y TSR obtenidas en este estudio con las de los estudios en tálamo y corteza, estos presentan un filtrado más suave y paulatino, mientras que los del CST son muy abruptos.
5.3 ESTUDIO DEL TIEMPO DE LA RESPUESTA ANTE ESTÍMULOS REPETITIVOS DE FRECUENCIA FIJA

Latencia

La media de los registros unitarios indica que al aumentar la frecuencia de estimulación, se produce un aumento de la latencia de la respuesta en todos los núcleos. Este aumento es muy rápido hasta los 20 Hz aproximadamente y a partir de este punto tiende a estabilizarse. La latencia en el núcleo Pr5 es siempre menor que en el resto de los núcleos, sea cual sea la frecuencia de estimulación. Entre los núcleos espinales hay un gradiente de latencia de más Sp5c a más rostral, de manera que el núcleo Sp5c es el que menor latencia presenta de los tres, y el Sp5o es el que más.

En los cuatro núcleos, las neuronas fásicas aumentan su latencia de forma muy rápida hasta los 20 Hz, y a partir de este momento la latencia tiende incluso a disminuir. La magnitud de la latencia de las neuronas fásicas es muy similar en los cuatro núcleos. El aumento de las tónicas es prácticamente lineal y muy similar en los cuatro núcleos. La latencia de las neuronas tónicas del núcleo Pr5 es siempre mucho menor que la del resto de núcleos, los cuales presentan valores de latencia muy similares entre ellos para todas las frecuencias.

El comportamiento de los registros multunitarios en función de su latencia de respuesta es muy similar al descrito para los registros unitarios. En general, y en los cuatro núcleos, se produce un aumento de la latencia con la frecuencia de estimulación; de forma muy brusca para frecuencias bajas, y más suave para frecuencias altas. La latencia de los registros del núcleo Pr5 es menor que la de los núcleos Espinales, que muestran latencias muy similares entre los tres.
Discusión

Función Vector Strength (VS)

En los cuatro núcleos existe una pérdida de la consistencia temporal de la respuesta respecto del estímulo para las frecuencias altas de estimulación (sobre todo a partir de los 10 Hz). Las neuronas del núcleo Pr5 son las que más mantienen la consistencia temporal, seguidas de las del núcleo Sp5o y las de los núcleos Sp5i y Sp5c, que presentan descensos en la consistencia muy similares. En todos los núcleos, las neuronas fásicas muestran mayores pérdidas de consistencia que las tónicas.

La pérdida de consistencia entre los registros multiunitarios es mayor que la de los unitarios y muy similar entre los cuatro núcleos.

Por lo observado en los resultados, parece que el filtrado realizado por VPM y SI en función del tiempo en que sobreviene la espiga no depende de los núcleos del CST. En VPM, la modulación relativa del tiempo de respuesta aumenta rápidamente entre 1 y 12 Hz, mostrando aumentos más modestos a estimulaciones de mayor frecuencia (Hartings, Temereanca y col. 2003), mientras que en SI, la fidelidad del tiempo al que sucede la espiga, medida con la función VS, muestra características de filtrado band-pass, con un pico entre 5 y 12 Hz (Garabedian, Jones y col. 2003). Por el contrario, el tiempo en el que sucede la espiga en los núcleos del CST muestra características de filtrado low-pass. Es interesante observar que las neuronas tónicas, las que supuestamente proyectan más a tálamo, muestran un filtrado de este tiempo muy suave, mientras que las neuronas fásicas a frecuencias mayores de 10-12 Hz responden de manera casi aleatoria. En cualquier caso, el filtrado high-pass y band-pass de este parámetro observado en VPM y SI respectivamente, tiene que producirse mediante mecanismos que involucren un loop talamo-cortical de retroalimentación. Ciertos estudios han demostrado que el comienzo de la sincronía de la entrada talámica a SI es crucial en la conducción de la actividad excitatoria evocada por la estimulación de las vibrissas (Pinto, Brumberg y col. 2000; Swadlow 2003; Swadlow, Beloozerova y col. 1998; Temereanca and Simons 2003). De este modo, según se aumenta la...
frecuencia de estimulación, la entrada de retroalimentación desde el tálamo mantendrá una alta sincronía en el tiempo de llegada de los potenciales de acción a la corteza (Moore 2004).

Ciertamente es difícil saber el papel que juegan los diferentes tipos de filtrados en el procesamiento de la información en el sistema sensorial de las vibrisas. Podría optimizar el sistema tanto para la detección como para la discriminación de la información sensorial como función de la entrada sensorial (Moore 2004; Moore, Nelson y col. 1999). En el rango entre 4 y 12 Hz (el rango de frecuencias del whisking), el sistema debería estar optimizado para la discriminación espacial y temporal de las características de los estímulos sensoriales, mientras que a frecuencias más bajas debería estarlo para la detección de un contacto. En los núcleos del CST la respuesta media por estímulo, la adaptación y la fidelidad del tiempo al que aparece la espiga se mantienen en valores altos hasta los 12-15 Hz, mientras que en VPM y en SI, la fidelidad temporal muestra un pico entre 4-12 Hz (Garabedian, Jones y col. 2003; Hartings, Temereanca y col. 2003). De este modo, en los núcleos del CST tanto la detección como la discriminación estarían potenciadas, pero por igual, mientras que en estaciones superiores se potenciaría la discriminación de las características del estímulo. Es más, las neuronas fásicas en todos los núcleos del CST filtran a partir de frecuencias más bajas que las tonicas, por lo que podrían estar implicadas sobre todo en la detección del estímulo. Una vez que esta información (la detección del estímulo) ha sido detectada en el CST, no sería necesario optimizar las estaciones superiores del sistema (VPM y SI) para esta función, sino para la discriminación. De este modo, las frecuencias menores de 4 Hz, que no son filtradas por el CST, se eliminan en SI.

En primates la integración del número total de espigas a lo largo de múltiples estímulos es importante para la discriminación de frecuencias (Romo, Hernandez y col. 2002). El número total de espigas durante la serie de estimulación muestra características high-pass en el CST. Cuando una vibrisa se
mueve sobre una superficie rugosa en el rango del whisking (4-12 Hz), vibra a frecuencias mayores de 80 Hz (Neimark, Andermann y col. 2003). De hecho, las vibríspas muestran resonancia a frecuencias muy altas (de varios cientos de herzios) (Hartmann, Johnson y col. 2003), que podría facilitar tanto la detección como la discriminación (Neimark, Andermann y col. 2003). De este modo, el sistema sensorial de las vibríspas dispondría de dos modos de procesamiento diferentes, uno de baja frecuencia y otro de alta frecuencia (Moore 2004) ya desde las estaciones más bajas de procesamiento (los núcleos del CST). Si bien no se ha podido demostrar, existen ciertas evidencias para estos dos modos de operación. El modo a bajas frecuencias es evidente teniendo en cuenta que a lo largo de la vía se tiende a potenciar los estímulos menores de 12 Hz. Sin embargo, en estudios recientes con estímulos senosíduales se ha observado respuesta en SI a estimulaciones mayores de 100 Hz (Arabzadeh, Petersen y col. 2003; Goldberg and Brown 1969). Este fenómeno no se ha observado en VPM, por lo que podría llegar a SI por la vía paralemniscal.
Discusión

5.4 ESTUDIO DEL EFECTO CORTICAL SOBRE LAS NEURONAS DEL CST

5.4.1 Efecto sobre las características generales

El efecto de la corteza sobre los núcleos del CST parece ser diferente en cada núcleo. De este modo, mientras que en el núcleo Pr5 tiene un efecto inhibidor sobre la actividad media en ausencia de estimulación externa (0,6 ± 0,31 espigas/s en animales intactos por 4,3 ± 1,69 espigas/s en animales decorticados, p = 0,02), en el núcleo Sp5i, por el contrario, tiene un efecto excitador (3,0 ± 1,08 espigas/s en animales intactos por 0,4 ± 0,24 espigas/s en animales decorticados, p = 0,012). En los núcleos Sp5o y Sp5c, que no envían su información al tálamo, la corteza no influye sobre su actividad en reposo (0,9 ± 0,57 espigas/s en animales intactos por 0,5 ± 0,38 espigas/s en animales decorticados, p = 0,53 en Sp5o, y 4,3 ± 2,16 espigas/s en animales intactos por 3,3 ± 1,85 espigas/s en animales decorticados, p = 0,86 en Sp5c). Este efecto también se observa en relación a la actividad oscilatoria en estos núcleos. En el núcleo Pr5, en ausencia de la influencia cortical aumenta de manera significativa la proporción de unidades con actividad rítmica (de 8,6% en animales intactos se pasa a 36,8% en animales decorticados, p = 0,011); mientras que en el núcleo Sp5i la decorticación desajusta o desincroniza la actividad de las neuronas, reduciendo el número de éstas que presentan una actividad rítmica más o menos consistente en el tiempo; actividad que es bastante frecuente en animales intactos (21,1%). En el núcleo Sp5o la actividad rítmica es poco frecuente, tanto en animales intactos (7,7%) como en animales decorticados (11,1%, p = 0,7).

Sin embargo, el efecto de la corteza sobre la magnitud de la respuesta en estos núcleos es netamente excitador, al menos sobre los que envían su información al tálamo. La aplicación de aire durante 100 ms sobre una vibrissa evoca en el núcleo Pr5 7,9 ± 2,21 espigas en animales intactos y 4,2 ± 0,60 espigas en animales decorticados (p = 0,05); en el núcleo Sp5o 6,3 ± 1,80 y 3,6 ± 0,44 espigas respectivamente (p = 0,08) y en el núcleo Sp5i 7,2 ± 1,29 y 4,0 ± 0,64 espigas (p =
Discusión

0,016). Más marcada es aún la diferencia de los núcleos que proyectan al tálamo (Pr5 y Sp5i) con el núcleo Sp5o si sólo se tienen en cuenta los primeros 14 ms de estimulación. En este caso, la corteza tiene un claro efecto excitador sobre los primeros (3,0 ± 0,56 espigas/estímulo y 1,8 ± 0,20 espigas/estímulo en animales intactos y decorticados respectivamente en Pr5, p = 0,03, y 2,8 ± 0,36 espigas/estímulo y 1,9 ± 0,26 espigas/estímulo respectivamente en el núcleo Sp5i, p = 0,02); mientras que no tiene efecto alguno sobre el núcleo Sp5o (2,4 ± 0,40 espigas/estímulo y 2,1 ± 0,19 espigas/estímulo en animales intactos y decorticados respectivamente, p = 0,41). Es muy interesante que, además de una reducción en el número de espigas, la decorticación produce una disminución de su dispersión alrededor de la media.

Este efecto facilitador sobre la respuesta en los núcleos Pr5 y Sp5i también se observa en la latencia de las respuestas evocadas. De este modo, en ambos núcleos la ausencia de la influencia cortical aumenta dicha latencia (7,3 ± 0,58 ms y 11,5 ± 0,81 ms para animales intactos y decorticados respectivamente en Pr5, p = 0,0, y 8,7 ± 0,53 ms y 10,6 ± 0,78 ms respectivamente en el núcleo Sp5i, p = 0,026); mientras que no tiene efecto alguno sobre el núcleo Sp5o (9,0 ± 0,47 ms y 9,4 ± 1,08 ms en animales intactos y decorticados respectivamente, p = 0,70). Tanto en este caso, como en la magnitud de la respuesta, el efecto de la corteza es mayor sobre el núcleo Pr5 que sobre el Sp5i.

Además de sobre la magnitud y latencia de la respuesta, la corteza tiene influencia sobre el tipo de respuesta evocada, es decir, sobre si la respuesta es fásica o tónica. En este caso parece que la corteza tiene un claro efecto sobre los núcleos Pr5 y Sp5i, ya que en ausencia de influencia cortical aumenta de forma notable la proporción de unidades de tipo tónico (34,3% y 57,9% de unidades tónicas en animales intactos y decorticados respectivamente en Pr5, p = 0,09, y 39,5% y 52,9% en Sp5i, p = 0,35). En el núcleo Sp5o, de nuevo, no parece que la corteza tenga alguna influencia al respecto (30,8% y 27,8% de unidades tónicas en animales intactos y decorticados respectivamente, p = 0,83).
Discusión

La influencia cortical sobre la actividad en reposo, en los dos casos donde se ha detectado, es mayor sobre las unidades fásicas que sobre las tónicas. Así, en Pr5 las unidades fásicas en ausencia de estimulación cortical muestran una FMD en reposo de $3,5 \pm 0,93$ espigas/s frente a las $0,8 \pm 0,46$ espigas/s en animales intactos ($p = 0,003$); mientras que las tónicas muestran una FMD en reposo de $4,9 \pm 2,89$ y $0,2 \pm 0,14$ espigas/s respectivamente ($p = 0,07$). En el núcleo Sp5i la diferencia es aún mayor, con $0,2 \pm 0,18$ espigas/s en ausencia de influencia cortical y $3,7 \pm 1,71$ en animales intactos ($p = 0,025$) para las unidades fásicas y $0,6 \pm 0,43$ y $1,9 \pm 0,82$ espigas/s respectivamente ($p = 0,09$) para las tónicas.

En el Pr5, la corteza sólo influye sobre la magnitud de la respuesta de las unidades tónicas, disminuyendo ésta significativamente en animales decorticados, tanto durante los 100 ms que dura la estimulación como durante los primeros 14 ms. Sin embargo, en el Sp5i la corteza aumenta el número de espigas evocadas por cada estímulo tanto en las unidades tónicas como en las fásicas.

En cuanto a la latencia de las unidades fásicas y tónicas, la corteza influye de forma diferente en estos dos núcleos, aunque en ambos casos la decorticación aumenta de manera significativa la latencia. En el núcleo Pr5, la decorticación hace que dichas latencias se igualen, a pesar de que en los animales intactos la latencia de las unidades fásicas es mucho mayor que la de las tónicas. En el núcleo Sp5i, en cambio, mientras que en los animales intactos ambas latencias son muy parecidas, en animales decorticados la latencia de las unidades fásicas pasa a ser mucho mayor. En este núcleo, la decorticación no afecta a la latencia de las unidades tónicas, mientras que aumenta de manera significativa la de las unidades fásicas. En el Sp5o no existe ninguna influencia cortical sobre la latencia. En Sp5c la latencia en condiciones de ausencia de SI es mayor que en condiciones normales, aunque el tamaño tan pequeño de la muestra no permite extraer conclusiones definitivas.

La corteza no influye sobre el comportamiento oscilatorio de los registros multiunitarios de los núcleos Pr5 y Sp5 del CST, mientras que parece aumentar la
actividad rítmica en el núcleo Sp5i (50% de registros oscilatorios en animales intactos y 29,4% en animales decorticados, p = 0,2).

El efecto de la corteza sobre la magnitud de la respuesta en estos núcleos es netamente excitador. La aplicación de aire durante 100 ms sobre una vibrissa evoca en el los registros multiunitarios del núcleo Pr5 10,6 ± 2,56 espigas en animales intactos y 7,0 ± 0,80 espigas en animales decorticados (p = 0,09); en el núcleo Sp5o 11,5 ± 2,41 y 6,0 ± 1,52 espigas respectivamente (p = 0,03) y en el núcleo Sp5i 13,0 ± 1,99 y 6,8 ± 1,88 espigas (p = 0,017). También se observa esto si sólo se tienen en cuenta los primeros 14 ms de estimulación (4,4 ± 0,63 espigas/estímulo y 2,8 ± 0,28 espigas/estímulo en animales intactos y decorticados respectivamente en Pr5, p = 0,013; 4,3 ± 0,54 espigas/estímulo y 2,5 ± 0,37 espigas/estímulo respectivamente en el núcleo Sp5o, p = 0,005, y 5,5 ± 0,60 espigas/estímulo y 2,7 ± 0,60 espigas/estímulo respectivamente en el núcleo Sp5i, p = 0,001). Además de una reducción en el número de espigas, la decorticción produce una disminución de la dispersión de dicho número en los núcleos Pr5 y Sp5o.

Este efecto facilitador sobre la respuesta de los registros multiunitarios también se observa en la latencia de las respuestas evocadas. De este modo, en todos los núcleos la ausencia de influencia cortical aumenta la latencia de la respuesta de los registros multiunitarios (7,2 ± 0,56 ms y 9,8 ± 0,66 ms en animales intactos y decorticados respectivamente en Pr5, p = 0,002; 8,0 ± 0,56 ms y 9,4 ± 0,54 ms respectivamente en el núcleo Sp5o, p = 0,045, y 8,6 ± 0,64 ms y 11,0 ± 0,83 ms respectivamente en el núcleo Sp5i, p = 0,013).
5.4.2 Efecto sobre la magnitud de la respuesta ante estímulos repetitivos de frecuencia fija

Número de espigas por estímulo (SR).

En Pr5, Sp5i y Sp5c, la supresión de la influencia cortical provoca una disminución para todas las frecuencias de estimulación del número de espigas medio evocadas por cada estímulo de la serie. Este efecto sólo puede observarse en el núcleo Sp5o para frecuencias muy altas (a partir de 15 Hz), y en menor medida que en los otros dos núcleos mencionados. Sin embargo, si se analizan los valores normalizados de la función SR no se observan diferencias entre los datos provenientes de animales intactos y los provenientes de animales decorticados. Este hecho indica que, si bien la corteza modula la magnitud de la respuesta, no influye sobre la forma en que estos núcleos filtran las diferentes frecuencias de estimulación.

La influencia de la corteza sobre el filtrado de las neuronas de cada núcleo se observa mejor al analizar cada registro por separado. En los núcleos Pr5 y Sp5o la influencia cortical tiende a eliminar los aumentos de la función SR puntuales a determinadas frecuencias. De este modo, mientras que el 40% de las neuronas registradas en el núcleo Pr5 muestra dichos aumentos puntuales, en animales decorticados esta cifra aumenta hasta el 57,9% (p = 0,1), mientras que en el núcleo Sp5o pasa de 34,6% en animales intactos al 44,4% en animales decorticados (p = 0,26). A pesar del pequeño tamaño de la muestra de animales decorticados en Sp5c, parece que la tendencia es la misma que en Pr5 y Sp5o, ya que en ausencia de la influencia cortical los cuatro registros obtenidos muestran un aumento puntual de la función SR, todos ellos en 5 Hz, mientras que en animales intactos sólo un 33,3% de los registros muestran aumentos puntuales de la función SR. En el núcleo Sp5i el efecto es el opuesto, de manera que en animales intactos el 44,7% de las neuronas muestra este comportamiento, mientras que en animales decorticados sólo lo hace el 23,5% de las neuronas (p = 0,07).
La media de la función SR a cada frecuencia de estimulación de la población de neuronas que presenta estos aumentos puntuales indica que la corteza también modula los rangos de las frecuencias a las que se producen dichos aumentos. De este modo, en el núcleo Pr5, la media de las susodichas neuronas en animales decorticados muestra un aumento muy claro de la función SR a 8 Hz, y en el núcleo Sp5i un aumento a 2 Hz; aumentos que no aparecen en la media de animales intactos. La dispersión de la media en estos puntos (8 Hz en el núcleo Pr5 y 2 Hz en el Sp5i) es mucho menor en animales decorticados que en animales intactos. Así, estas neuronas presentan una preferencia por dichas frecuencias, modulada por la corteza, que hace que aumente el espectro de frecuencias a las que se producen aumentos de la función SR.

Al analizar los datos obtenidos de las unidades fásicas y tónicas por separado también puede observarse la influencia de la corteza sobre el filtrado. En general, la corteza no influye sobre el modo de filtrar de las neuronas fásicas en ninguno de los núcleos estudiados (de hecho, en los núcleos Pr5 y Sp5o ni siquiera afecta a la magnitud de la respuesta evocada por cada frecuencia de estimulación). En cambio, en las neuronas tónicas en ausencia de la influencia cortical disminuye notablemente la magnitud de las respuestas evocadas por cada frecuencia de estimulación en todos los núcleos estudiados y en el Pr5, además, aumenta la tasa de filtrado; es decir, en el núcleo Pr5, la corteza hace que sus neuronas tónicas filtren menos las frecuencias altas.

En los registros multiunitarios de todos los núcleos estudiados, la supresión de la influencia cortical provoca una disminución para todas las frecuencias de estimulación del número de espigas medio evocadas por cada estímulo de la serie, si bien esta disminución es muy leve en Sp5c. Sin embargo, si se analizan los valores normalizados de la función SR no se observan diferencias entre los datos provenientes de animales intactos y los provenientes de animales decorticados en el núcleo Sp5i. En el núcleo Sp5o, la función SR media de los registros de animales decorticados disminuye más rápidamente con el aumento de frecuencia que la
Discusión

misma de animales intactos. En el núcleo Pr5, por el contrario, dicha función en animales decorticados disminuye con la frecuencia de estimulación más lentamente que en animales intactos, apareciendo, además, un aumento puntual de la función SR a 10 Hz. En el caso de los registros multiunitarios parece claro que la corteza influye de forma definitiva sobre el tipo de filtrado que realizan.

Sin embargo, y al contrario de lo que sucede en los registros unitarios, en ninguno de los núcleos estudiados, excepto en Sp5c, la corteza influye sobre el número de registros que tienen aumentos puntuales de la función SR a determinadas frecuencias. En Sp5c la corteza aumenta la proporción de este tipo de registros, de manera que en animales intactos hay un 47,6% de registros con aumentos puntuales de la función SR, mientras que en animales decorticados sólo aparece un 18,7% de registros con este comportamiento.

La media de la función SR a cada frecuencia de estimulación de la población de neuronas que presentan estos aumentos puntuales indica que la corteza también modula las frecuencias a las que se producen dichos aumentos. De este modo, en el núcleo Pr5, la media de los registros de este tipo en animales decorticados muestra un aumento muy claro de la función SR a 10 Hz, aumento que no aparece en la media de animales intactos. En los núcleos Espinales, por el contrario, los aumentos en la media de dichos registros de los animales intactos desaparecen en animales decorticados.

Adaptación de la respuesta (RRTF).

La influencia de la corteza sobre las propiedades de adaptación de las neuronas de los núcleos del CST es diferente en cada núcleo. En los tres núcleos Espinales la media de las funciones RRTF con y sin corteza son idénticas, por lo que la corteza no debería ejercer ningún tipo de influencia sobre estos núcleos. En cambio, en el núcleo Pr5, en ausencia de influencia cortical hay una mayor adaptación, sobre todo entre 5 y 35 Hz. En este núcleo la corteza limitaría la
adaptación de la respuesta al aumentar la frecuencia de estimulación y, por tanto, el filtrado de las frecuencias más altas.

Sin embargo, la influencia sobre las unidades tónicas y fásicas es diferente, excepto en el núcleo Sp5o. En el núcleo Pr5, las funciones RRTF de las unidades fásicas a cada frecuencia de estimulación en animales intactos y decorticados son iguales, excepto a 8 Hz, donde en animales decorticados se produce una pequeña potenciación de la respuesta. En cambio, las unidades tónicas en ausencia de influencia cortical muestran mucha más adaptación que en presencia de la misma. En el núcleo Sp5i, a partir de 5 Hz, las unidades fásicas muestran más adaptación en ausencia de influencia cortical, mientras que las tónicas muestran menos adaptación en ausencia de influencia cortical hasta los 30 Hz. En este núcleo, por tanto, la influencia cortical es opuesta según se trate de una unidad fásica o tónica.

El número de unidades en Pr5 y Sp5o que muestran potenciaciones puntuales a determinadas frecuencias es el mismo en presencia o en ausencia de la influencia cortical. Quizás en los núcleos Sp5i y Sp5c aparezcan más de estas unidades en ausencia de influencia cortical (47,4% en presencia y 64,7% en ausencia de estimulación cortical en Sp5i y 54,1% y 100% respectivamente en Sp5c), pero la muestra no es lo suficientemente grande como para llegar a conclusiones definitivas. Sin embargo, el comportamiento de estas unidades no es igual en presencia y ausencia de la influencia cortical. De este modo, en los núcleos Pr5 y Sp5i, en la media de los registros con potenciaciones puntuales aparecen potenciaciones en 8 Hz y en 2 Hz respectivamente. De nuevo parece que la corteza modula la frecuencia a la que se potencia la respuesta, ampliando el espectro de frecuencias a las que se produce esta potenciación.

El número de unidades tónicas con potenciaciones puntuales en el núcleo Sp5i es, de nuevo, mucho mayor en ausencia que en presencia de influencia cortical (72,7% y 27,8% respectivamente, p = 0,009), mientras que en los otros dos núcleos (Pr5 y Sp5o) la proporción es idéntica en ambas condiciones.
La corteza también influye sobre el número de estímulos capaces de generar una respuesta en las neuronas de los núcleos del CST. En el Pr5, la influencia cortical disminuye el número de estímulos que generan respuesta a partir de los 20 Hz. En Sp5o y Sp5c, por el contrario, la corteza aumenta siempre el número de estímulos efectivos, mientras que en Sp5i no hay evidencia de ningún efecto de la corteza al respecto. La influencia sobre las unidades fásicas y tónicas por separado es bastante parecida en todos los núcleos.

La influencia de la corteza sobre las propiedades de adaptación de los registros multiunitarios de los núcleos del CST es diferente en cada núcleo. En los núcleos Sp5o y Sp5c la corteza disminuye la adaptación de la respuesta de manera que la función RRTF en ausencia de influencia cortical presenta valores más bajos. En el núcleo Pr5 parece tener el efecto contrario, aumentando la adaptación de la respuesta, mientras que en Sp5c la corteza no ejerce efecto alguno sobre la ésta.

En todos los núcleos el número de registros que muestra potenciaciones puntuales a determinadas frecuencias es diferente en presencia o en ausencia de influencia cortical. En general, la presencia de la corteza aumenta la proporción de dichos registros, de manera que, al eliminarla en el núcleo Pr5 hay un 80% de estos registros (frente al 100% obtenido en animales intactos, p = 0,014), en el núcleo Sp5o un 63,2% (frente al 90% en animales intactos, p = 0,024), en el núcleo Sp5i un 47,1% (frente al 85% en animales intactos, p = 0,007), y en el núcleo Sp5c un 68,8% (frente al 85,7% en animales intactos, p = 0,1). Además, en ausencia de la influencia cortical, en el núcleo Pr5 aparece potenciación a 8 Hz y en el núcleo Sp5i a 5 y 10 Hz, lo que indica que la corteza modula la frecuencia a la que se potencia la respuesta, ampliando el espectro de frecuencias a las que se produce la potenciación de la respuesta.

La ausencia de influencia cortical reduce notablemente el número de estímulos capaces de generar una respuesta en los núcleos Espinales, a todas las frecuencias estudiadas. En el núcleo Pr5, por el contrario, la corteza no tiene ninguna influencia sobre la efectividad de los estímulos.
Número de espigas total (TSR).

La función TSR en ausencia de influencia cortical alcanza siempre valores mucho menores en los cuatro núcleos, sea cual sea la frecuencia de estimulación. De este modo, las neuronas filtran más las frecuencias altas, pero la ausencia de corteza tiene una influencia excitadora que atenúa este filtrado.

Este comportamiento se repite en las neuronas tónicas de Pr5, Sp5o y Sp5i. Sin embargo, la influencia sobre las neuronas fásicas es distinta en función del núcleo en el que se encuentren. En los núcleos Pr5 y Sp5i, la banda de frecuencias que en presencia de la influencia cortical no es filtrada por las neuronas fásicas desaparece. De este modo, el comportamiento band-pass observado en estas neuronas es debido claramente a la influencia cortical. En el núcleo Sp5o, el comportamiento de las neuronas fásicas tanto en presencia como en ausencia de estimulación cortical es idéntica hasta los 20 Hz. A frecuencias de estimulación mayores en los animales decorticados la función TSR alcanza valores menores que en animales intactos.

Dado que la mayoría de las neuronas con comportamiento band-pass son fásicas, lo expuesto anteriormente se repite en la función TSR media de los registros con este comportamiento. Así, en los núcleos Pr5, Sp5i y Sp5c desaparece la banda que no se filtra en ausencia de influencia cortical, mientras que en el núcleo Sp5o la corteza no tiene influencia alguna al respecto.

Además de sobre la magnitud de la respuesta, la corteza influye sobre el aumento de la misma con la frecuencia de estimulación. En los tres núcleos, a frecuencias bajas (menores de 10 Hz), el aumento de la función TSR es idéntico tanto en animales intactos como en animales decorticados. A frecuencias mayores, la función TSR aumenta mucho más lentamente en los animales decorticados que en los animales intactos.

A pesar de que la ausencia de influencia cortical aumenta la proporción de unidades tónicas, que no están involucradas en el filtrado band-pass observado con
la función TSR, en el núcleo Pr5 hay un leve aumento de unidades con comportamiento band-pass en animales decorticados (del 42,9% de este tipo de neuronas en animales intactos de pasa al 57,9% en animales decorticados, p = 0,15). De hecho, la proporción de neuronas fásicas entre las que presentan filtrado band-pass disminuye en animales decorticados (93,3% y 72,7% en animales intactos y decorticados respectivamente, p = 0,08). En los núcleos Espinales, en cambio, la proporción de unidades con filtrado band-pass no se ve afectada por la eliminación de la influencia cortical; aunque dicha eliminación trae consigo que todas las unidades con dicho comportamiento sean de tipo fásico.

Los registros multiunitarios reflejan el comportamiento general de los unitarios. La función TSR en ausencia de influencia cortical alcanza siempre valores mucho menores, sea cual sea la frecuencia de estimulación, que en presencia de influencia cortical en todos los núcleos. Los registros multiunitarios de estos núcleos filtran más las frecuencias altas, pero la ausencia de la corteza tiene una influencia excitadora que atenúa este filtrado. En los valores de la función TSR normalizados se observa de forma clara que entre 1 y 8 Hz el aumento de dicha función con la frecuencia de estimulación es similar en ambas condiciones (con y sin influencia cortical) en todos los núcleos. A partir de este valor, en el núcleo Pr5 los valores TSR en animales decorticados aumentan más deprisa que en animales intactos, por lo que la corteza parece ejercer una influencia inhibitoria a estas frecuencias de estimulación, modulando el filtrado que se realiza a frecuencias medias y altas. En el núcleo Sp5o el efecto es el contrario, creciendo más lentamente la función TSR en los animales decorticados. En los núcleos Sp5i y Sp5c el aumento de las funciones TSR de animales intactos y decorticados es similar.

La media de las funciones TSR de los registros con comportamiento band-pass indica que en ausencia de influencia cortical la banda de filtrado se estrecha en todos los núcleos. De hecho, se pueden observar máximos muy puntuales a 12 Hz en el núcleo Pr5 y a 8 Hz en los núcleos Sp5o y Sp5i. En los dos núcleos que proyectan al tálamo somatosensorial (Pr5 y Sp5i) hay un leve descenso de la
proporción de registros con comportamiento band-pass en ausencia de influencia cortical, mientras que en el núcleo Sp5o hay un aumento de la proporción de este tipo de registros. En Sp5c la proporción en animales intactos y decorticados se mantiene.
5.4.3 Efecto sobre el tiempo de la respuesta ante estímulos repetitivos de frecuencia fija

Latencia

La corteza también influye sobre la latencia de la respuesta en los núcleos Pr5, Sp5i y Sp5c. En estos tres núcleos para todas las frecuencias de estimulación la latencia en ausencia de la influencia cortical es siempre mayor. Sin embargo, la influencia cortical sobre el cambio de la latencia al aumentar la frecuencia de estimulación es diferente. En el núcleo Pr5, entre 1 y 15 Hz se produce un aumento de la latencia similar en ambas condiciones. Para frecuencias mayores de 15 Hz, en las ratas intactas la latencia sigue aumentando, pero en ratas decorticadas se produce una disminución de la misma. El comportamiento en ambas condiciones en el núcleo Sp5i es similar hasta 10 Hz. A partir de este valor, el aumento de la latencia en ausencia de influencia cortical es siempre menor que en su presencia. Los valores normalizados en Sp5c son similares en aminales intactos y decorticados. En el núcleo Sp5o, en cambio, las latencias son idénticas en ambas condiciones.

En las neuronas fásicas de los núcleos Pr5 y Sp5i, la latencia entre 1 y 30 Hz es mayor en ausencia de influencia cortical, igualándose a partir de este momento a la condición natural. Esto se debe a que, si bien hasta 15 Hz en ambas condiciones la latencia aumenta con el aumento de la frecuencia de estimulación, a partir de 15 Hz en ausencia de influencia cortical disminuye de forma brusca. De nuevo, el comportamiento de las neuronas fásicas del núcleo Sp5o es muy parecido en ambas condiciones.

En las neuronas tónicas del núcleo Pr5, la latencia sin influencia cortical es siempre mayor. Hasta 15 Hz, aumenta de forma parecida en ambas condiciones; pero a partir de este valor, la latencia en ausencia de influencia cortical se estabiliza, mientras que en su presencia sigue aumentando. En el núcleo Sp5o, la influencia cortical sobre las neuronas tónicas es algo diferente. Hasta 10 Hz
Discusión

parece no influir en absoluto (ni siquiera en magnitud), aumentando, la latencia, mucho más rápido en condiciones de ausencia de influencia cortical a partir de este valor. Este comportamiento es similar al observado a las neuronas tónicas del núcleo Sp5i, aunque las diferencias entre las latencias en ambas condiciones a partir de 10 Hz son menores.

La corteza disminuye la latencia de la respuesta de los registros multiunitarios de los núcleos Pr5 y Sp5o a todas las frecuencias de estimulación. En cambio, en el núcleo Sp5i, esto sólo se produce hasta los 25 Hz. A partir de este punto, las latencias en ambas condiciones se igualan. El cambio de la latencia con la frecuencia de estimulación también se ve afectado por la corteza de forma diferente en cada núcleo. Así, mientras que la corteza no tiene ningún efecto en el núcleo Pr5, en el núcleo Sp5i hay un aumento de la latencia que se debe por entero a la influencia cortical. En el núcleo Sp5o, la corteza aumenta la tasa de crecimiento de la latencia con la frecuencia de estimulación, pero muy poco. En Sp5c, la corteza no influye de ninguna manera sobre la latencia de la respuesta.

Función Vector Strength (VS)

La corteza aumenta la consistencia temporal de la respuesta con respecto al estímulo en el núcleo Pr5, mientras que no tiene ninguna influencia en los núcleos Espinales. De este modo, en ausencia de estimulación cortical, la función VS en el núcleo Pr5 disminuye de forma muy brusca desde frecuencias muy bajas (3-5 Hz), alcanzado valores muy bajos a los 40 Hz; mientras que en los núcleos Espinales la función VS es idéntica en ambas condiciones. Esto se cumple tanto para el conjunto de espigas evocadas por un estímulo como sólo para la primera espiga evocada.

El comportamiento de las neuronas fásicas en los tres núcleos es idéntico al descrito anteriormente, así como el de las neuronas tónicas del núcleo Pr5. En cambio, el comportamiento de las neuronas tónicas de los núcleos Espinales es algo diferente. Las eferencias corticales tienden a disminuir la consistencia temporal
Discusión
de las neuronas tónicas, de manera que la función VS de estas en ausencia de influencia cortical alcanza siempre valores mayores para todas las frecuencias de estimulación.

La corteza no tiene efecto sobre la consistencia temporal de los registros multiunitarios de los núcleos Pr5 y Sp5c. En los núcleos Sp5o y Sp5i, la ausencia de influencia cortical reduce dicha consistencia temporal. Esto se cumple tanto para el conjunto de espigas evocadas por un estímulo como sólo para la primera espiga evocada.

Aunque en todos los núcleos del CST se han observado terminales de fibras de origen cortical (Brodal, Szabo y col. 1956; Dunn and Tolbert 1982; Kawana 1969; Killackey, Koralek y col. 1989; Martin and West 1967; Mizuno, Sauerland y col. 1968; Tashiro 1982; Welker, Hoogland y col. 1988; Wise, Murray y col. 1979), el efecto de SI sobre las neuronas del CST se limita a los núcleos de proyección talámica, esto es, Pr5 y Sp5i. Posiblemente esto se deba a que nuestro protocolo está dirigido a determinar el procesamiento producido ante un estímulo táctil, mientras que Sp5o y Sp5c están más involucrados en el procesamiento de información nociceptiva (Bereiter, Hirata y col. 2000; Dalleg, Raboisson y col. 1990; Takemura, Sugimoto y col. 1991).

En los datos obtenidos mediante estimulación cortical se describe una influencia inhibidora mediante depolarización presináptica mayoritaria en Pr5 y una influencia excitadora mediante hiperpolarización presináptica mayoritaria en Sp5i (Darian-Smith and Yokota 1966a; Dubner and Sessle 1971). Sin embargo, nuestro estudio indica que la corteza produce un aumento neto de excitabilidad en las neuronas de estos dos núcleos, que se traduce en una disminución de la magnitud de la respuesta y un aumento de su latencia al eliminarla. Se supone que la entrada corticotrigeminal juega un papel importante maximizando el contraste de los contornos y bordes de los estímulos, aumentando la relación señal/ruido y, a la vez, inhibiendo la respuesta central ante estímulos débiles o inefectivos (Dubner, Sessle y col. 1978). Este hecho sí está de acuerdo con nuestros resultados.
hecho de que haya una organización somatotópica muy precisa, de manera que la zona de corteza que envía a una determinada región del CST recibe información de la misma vibrissa o vibrissas que inervan dicha región del CST (Wise, Murray y col. 1979) y de que existan diferentes efectos en función de si el campo receptivo de ambas regiones (la cortical y la del CST) solape o no (Jacquin, Wiegand y col. 1990; Woolston, LaLonde y col. 1983) o de que la neurona del CST sea de proyección o interneurona (Darian-Smith and Yokota 1966b) puede influir en el efecto observado al estimular una región más o menos restringida de SI.

En Pr5 la corteza ejerce su influencia casi exclusivamente sobre las neuronas tónicas. En éstas provoca un aumento de la respuesta y una disminución de la latencia. Ante estimulaciones repetitivas de frecuencia fija, la corteza parece no influir sobre el filtrado que se realiza sobre la magnitud de la respuesta, ya que la disminución del número medio de espigas por cada estimulo y el aumento de la adaptación y del número total de espigas no se ve afectado por la eliminación de la misma. En cambio, ejerce una influencia muy fuerte sobre el tiempo de la respuesta, tanto sobre la latencia (en ausencia de corteza no se produce un aumento de la latencia con el aumento de la frecuencia de estimulación, mientras que en animales intactos si se observa este efecto) como sobre la consistencia temporal (en ausencia de corteza la función VS disminuye de forma mucho más brusca y rápida, alcanzando valores mucho menores que en presencia de influencia cortical). La influencia cortical sobre la magnitud de la respuesta de las neuronas tónicas de Sp5i es menor que sobre la de las tónicas de Pr5. En cambio, su influencia sobre las fásicas de Sp5i es mucho mayor. Sobre el tiempo de la respuesta (latencia y consistencia temporal), el efecto en Sp5i es sobre todo en las neuronas tónicas, aunque es menor que en Pr5.
6. CONCLUSIO[NES
1. En los núcleos del Complejo Sensorial del Trigémino se produce un procesamiento de la información dependiente de la frecuencia de estimulación, de manera que las neuronas de estos núcleos presentan un comportamiento de filtrado pasa bajo, pasa alto y pasa banda en función de las características del estímulo estudiadas: respuesta inicial, respuesta total, tiempo de respuesta y consistencia temporal.

2. El procesamiento dependiente de la frecuencia es diferente en función del núcleo y, dentro de cada núcleo, en función de que el tipo de respuesta de las neuronas sea tónico o fásico. En general, las neuronas fásicas funcionan como filtros pasa bajo para la respuesta inicial (RRTF/SR) y pasa banda para la respuesta total (TSR), mientras que las tónicas para la respuesta inicial mezclan características pasa bajo y pasa banda y para la respuesta total se comportan como filtros pasa alto. De este modo, en cada núcleo hay dos canales diferentes para el procesamiento de la información: uno, a través de las neuronas fásicas, encargado de la detección y localización del objeto, y otro, a través de las tónicas, encargado de extraer las características del objeto.

3. El comportamiento de las neuronas fásicas es similar en los cuatro núcleos, mientras que el de las tónicas presenta diferencias sustanciales, sobre todo entre Pr5 y los núcleos espinales, de manera que las neuronas tónicas de Pr5 presentan respuestas de mayor magnitud y menor latencia y filtran menos las frecuencias entre 3 y 15 Hz que las de los núcleos espinales. Este rango de frecuencias corresponde al del whisking, proceso que la rata utiliza para explorar de forma activa su medio. De este modo, parte del filtrado observado en estaciones superiores de la vía trigeminal (VPM, POm y SI) tanto de la magnitud de la respuesta como de su latencia se realizaría en Pr5 y Sp5i. En cambio, estos núcleos apenas aportan nada al filtrado realizado sobre la consistencia temporal (función VS).

4. En conclusión, en los núcleos del CST se produce una optimización de la respuesta tanto para la detección como para la discriminación del objeto, a
Conclusiones

través de dos canales (neuronas tónicas y fásicas), mientras que en las estaciones superiores de tálamo y corteza el sistema está optimizado para la discriminación del objeto.

5. El filtrado realizado en el CST es una propiedad intrínseca de las neuronas y redes de estos núcleos, si bien existe una cierta modulación del mismo por parte de la corteza somatosensorial. De este modo, la corteza aumenta la magnitud de la respuesta y atenúa el filtrado realizado sobre las frecuencias más altas. Además, aumenta los rangos de potenciación y diversifica las frecuencias a las que se produce ésta. También disminuye el tiempo de la latencia y aumenta la consistencia temporal, sobre todo de las frecuencias altas.

6. La corteza ejerce su influencia especialmente sobre aquellas neuronas involucradas en la discriminación de las características de los objetos, esto es, sobre las neuronas tónicas de los núcleos de proyección talámica (Pr5 y Sp5i), controlando de este modo el flujo de información que utiliza.
7. BIBLIOGRAFÍA
Bibliografia

331

Falls, W.M. (1984a) "Axonal Endings Terminating on Dendrites of Identified Large Trigeminospinal Projection Neurons in Rat Trigeminal Nucleus Oralis.". Brain Research, 324: 335-341.

Falls, W.M. (1986) "Morphology and Synaptic Connections of Myelinated Primary Axons in the Ventrolateral Region of Rat Trigeminal Nucleus Oralis.". Journal of Comparative Neurology, 244: 96-110.

Bibliografía

Kyriazi, H.T.; Carvell, G.E.; Brumberg, J.C. and Simons, D.J. (1996b) "Quantitative Effects of GABA and Bicuculline Methiodide on Receptive Field Properties of
Neurons in Real and Simulated Whisker Barrels". *Journal of Neurophysiology*, 75: 547-560.

Leiser, S.C. and Moxon, K.A. (2006) "Relationship Between Physiological Response Type (RA and SA) and Vibrissal Receptive Field of Neurons Within the Rat Trigeminal Ganglion.". *Journal of Neurophysiology*, 95: 3129-3145.

Bibliografía

Welker, W.I. (1964) "Analysis of Sniffing of the Albino Rat.". Behavior, 12: 223-244.

Bibliografía

8. APÉNDICE I: TABLAS
Apéndice I

TABLA I

FMD (espigas/estímulo) de los registros unitarios durante los 100 ms de estimulación

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>S</th>
<th>AF</th>
<th>F</th>
<th>T</th>
<th>F_s</th>
<th>F_Af</th>
<th>T_s</th>
<th>T_Af</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr5</td>
<td>7,9±0,21</td>
<td>8,4±0,26</td>
<td>5,4±0,87</td>
<td>2,3±0,36</td>
<td>18,6±5,25</td>
<td>1,8±0,18</td>
<td>5,0±1,30</td>
<td>21,1±6,03</td>
<td>-</td>
</tr>
<tr>
<td>SpO5</td>
<td>6,3±1,80</td>
<td>7,0±2,21</td>
<td>3,4±0,49</td>
<td>2,4±0,26</td>
<td>15,0±4,67</td>
<td>2,1±0,24</td>
<td>3,4±0,49</td>
<td>15,0±4,67</td>
<td>x</td>
</tr>
<tr>
<td>SpI5</td>
<td>7,2±1,29</td>
<td>6,8±1,67</td>
<td>8,0±1,96</td>
<td>3,4±0,49</td>
<td>13,0±2,54</td>
<td>3,2±0,64</td>
<td>3,7±0,72</td>
<td>12,6±3,60</td>
<td>13,9±3,03</td>
</tr>
<tr>
<td>SpC5</td>
<td>7,6±2,04</td>
<td>7,6±2,85</td>
<td>7,7±2,48</td>
<td>4,1±1,42</td>
<td>11,8±3,84</td>
<td>2,4±0,46</td>
<td>6,7±3,51</td>
<td>12,7±5,20</td>
<td>9,4±3,74</td>
</tr>
</tbody>
</table>

(-) No existen datos suficientes para hacer la media. (x) No existen registros de este grupo

TABLA II

FMD (espigas/estímulo) de los registros unitarios durante los primeros 14 ms de estimulación

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>S</th>
<th>AF</th>
<th>F</th>
<th>T</th>
<th>F_s</th>
<th>F_Af</th>
<th>T_s</th>
<th>T_Af</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr5</td>
<td>3,0±0,56</td>
<td>3,1±0,68</td>
<td>2,5±0,32</td>
<td>1,5±0,13</td>
<td>5,8±1,31</td>
<td>1,3±0,08</td>
<td>2,4±0,47</td>
<td>6,4±1,51</td>
<td>-</td>
</tr>
<tr>
<td>SpO5</td>
<td>2,4±0,40</td>
<td>2,5±0,49</td>
<td>2,0±0,39</td>
<td>1,6±0,14</td>
<td>4,4±0,99</td>
<td>1,4±0,10</td>
<td>2,0±0,39</td>
<td>4,4±0,99</td>
<td>x</td>
</tr>
<tr>
<td>SpI5</td>
<td>2,8±0,36</td>
<td>2,8±0,44</td>
<td>2,9±0,66</td>
<td>1,7±0,17</td>
<td>4,6±0,67</td>
<td>1,7±0,21</td>
<td>1,7±0,30</td>
<td>4,5±0,87</td>
<td>4,7±1,13</td>
</tr>
<tr>
<td>SpC5</td>
<td>2,8±0,50</td>
<td>2,6±0,65</td>
<td>3,1±0,81</td>
<td>2,1±0,50</td>
<td>3,6±0,88</td>
<td>1,5±0,25</td>
<td>3,0±1,20</td>
<td>3,7±1,17</td>
<td>3,2±1,12</td>
</tr>
</tbody>
</table>

(-) No existen datos suficientes para hacer la media. (x) No existen registros de este grupo

TABLA III

LMR (ms) de los registros unitarios

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>S</th>
<th>AF</th>
<th>F</th>
<th>T</th>
<th>F_s</th>
<th>F_Af</th>
<th>T_s</th>
<th>T_Af</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr5</td>
<td>7,3±0,58</td>
<td>7,2±0,65</td>
<td>7,6±1,28</td>
<td>8,6±0,70</td>
<td>4,8±0,51</td>
<td>8,5±0,80</td>
<td>8,8±1,57</td>
<td>4,7±0,61</td>
<td>-</td>
</tr>
<tr>
<td>SpO5</td>
<td>9,0±0,47</td>
<td>8,7±0,55</td>
<td>10,2±0,71</td>
<td>9,7±0,42</td>
<td>7,4±1,06</td>
<td>9,5±0,51</td>
<td>10,2±0,71</td>
<td>7,4±1,06</td>
<td>x</td>
</tr>
<tr>
<td>SpI5</td>
<td>8,7±0,53</td>
<td>9,1±0,68</td>
<td>7,8±0,79</td>
<td>8,5±0,61</td>
<td>8,9±1,00</td>
<td>9,0±0,79</td>
<td>7,5±0,80</td>
<td>9,2±1,31</td>
<td>8,3±1,64</td>
</tr>
<tr>
<td>SpC5</td>
<td>8,6±0,82</td>
<td>8,2±0,80</td>
<td>9,5±1,92</td>
<td>8,7±1,07</td>
<td>8,5±1,31</td>
<td>8,8±1,48</td>
<td>8,6±1,69</td>
<td>7,6±0,64</td>
<td>10,8±4,86</td>
</tr>
</tbody>
</table>

(-) No existen datos suficientes para hacer la media. (x) No existen registros de este grupo
Apéndice I

TABLA IV

FMD (espigas/estímulo) y LMR (ms) de los registros multiunitarios

<table>
<thead>
<tr>
<th></th>
<th>FMD_{100}</th>
<th>FMD_{14}</th>
<th>LMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr5</td>
<td>10,6±2,56</td>
<td>4,4±0,63</td>
<td>7,2±0,56</td>
</tr>
<tr>
<td>SpO5</td>
<td>11,5±2,41</td>
<td>4,3±0,54</td>
<td>8,0±0,56</td>
</tr>
<tr>
<td>SpI5</td>
<td>13,0±1,99</td>
<td>5,5±0,60</td>
<td>8,6±0,64</td>
</tr>
<tr>
<td>SpC5</td>
<td>18,5±2,07</td>
<td>6,7±0,64</td>
<td>7,2±0,40</td>
</tr>
</tbody>
</table>

FMD_{100} Frecuencia media de disparo durante los 100 ms de estimulación; FMD_{14} Frecuencia media de disparo durante los primeros 14 ms de estimulación; LMR Latencia media de respuesta

TABLA V

FMD (espigas/estímulo) y LMR (ms) de los registros unitarios en ausencia de influencia cortical

<table>
<thead>
<tr>
<th></th>
<th>FMD_{100}</th>
<th>FMD_{14}</th>
<th>LMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr5</td>
<td>Total 4,2±0,60 F 2,8±0,33 T 5,2±0,91 & 1,8±0,20 F 1,7±0,17 T 1,9±0,33</td>
<td>& 11,5±0,81 F 11,7±0,88 T 11,3±1,29</td>
<td></td>
</tr>
<tr>
<td>SpO5</td>
<td>Total 3,6±0,44 F 2,6±0,27 T 6,0±0,52 & 2,1±0,19 F 1,7±0,15 T 2,9±0,41</td>
<td>& 9,4±1,08 F 10,1±1,40 T 7,7±1,26</td>
<td></td>
</tr>
<tr>
<td>SpI5</td>
<td>Total 4,0±0,64 F 2,1±0,31 T 5,8±0,84 & 1,9±0,26 F 2,4±0,41 T 3,2±0,64</td>
<td>& 10,6±0,78 F 11,6±0,85 T 9,7±1,23</td>
<td></td>
</tr>
<tr>
<td>SpC5</td>
<td>Total 3,6±1,43 F - T -</td>
<td>& 1,6±0,39 F - T -</td>
<td>& 11,2±1,08 F - T -</td>
</tr>
</tbody>
</table>

FMD_{100} Frecuencia media de disparo durante los 100 ms de estimulación; FMD_{14} Frecuencia media de disparo durante los primeros 14 ms de estimulación; LMR Latencia media de respuesta. (-) No existen datos suficientes para hacer la media

TABLA VI

FMD (espigas/estímulo) y LMR (ms) de los registros multiunitarios en ausencia de influencia cortical

<table>
<thead>
<tr>
<th></th>
<th>FMD_{100}</th>
<th>FMD_{14}</th>
<th>LMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr5</td>
<td>7,0±0,80</td>
<td>2,8±0,28</td>
<td>9,8±0,66</td>
</tr>
<tr>
<td>SpO5</td>
<td>6,0±1,52</td>
<td>2,5±0,37</td>
<td>9,4±0,54</td>
</tr>
<tr>
<td>SpI5</td>
<td>6,8±1,88</td>
<td>2,7±0,60</td>
<td>11,0±0,83</td>
</tr>
<tr>
<td>SpC5</td>
<td>15,3±2,54</td>
<td>5,7±0,76</td>
<td>7,7±0,40</td>
</tr>
</tbody>
</table>

FMD_{100} Frecuencia media de disparo durante los 100 ms de estimulación; FMD_{14} Frecuencia media de disparo durante los primeros 14 ms de estimulación; LMR Latencia media de respuesta