Publication:
Re-folded structure of syn-orogenic granitoids (Padrón dome, NW Iberia): Assessing rheological evolution of cooling continental crust in a collisional setting

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2019-03
Authors
Rubio Pascual, Francisco J.
Martín Parra, Luis Miguel
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This contribution discusses about the rheological, kinematic and dynamic frameworks necessary to produce recumbent and upright folds from syn-orogenic granitic massifs that were formed during an early stage of magma genesis related to the onset of a migmatitic dome. Syn-kinematic granitoids occurring within the high-grade infrastructure of the Padrón migmatitic dome (NW Iberia) are deformed into large-scale recumbent folds (D2) that are later affected by upright folds (D3). Petrostructural analysis of a selected area of this dome reveals that after a period of crustal thickening (D1), NNW-directed extensional flow gave way to recumbent folds and penetrative axial plane foliation (S2). Superimposed subhorizontal compression resulted in upright folds (D3). A closer view into the dynamics of the dome allows exploring the factors that may condition the nucleation of folds with contrasting geometries during progressive deformation of molten continental crust. The formation of folds affecting syn-kinematic granitoids suggests a cooling metamorphic path in migmatitic domes. Active and passive folding mechanisms require a crystallizing (cooling) magma to nucleate folds. A more competent metamorphic host inhibits fold nucleation from much less competent magmas. As it crystallizes, magma becomes more rigid (competent), and approaches viscosity values of its host. Passive folding is favored when no significant competence contrast exists between magma and host, so this folding mechanism is more likely shortly after magma genesis and emplacement. In such conditions, and under dominant subhorizontal flow accompanied by flattening (D2), passive folding would produce isoclinal recumbent geometries. Further magma cooling introduces a shift into the rheological behavior of partially molten crust. Thereon, crystallizing magma bodies would represent significant competence contrasts relative to their host. At this point, buckling is a more likely folding mechanism, and more regular, buckle folds re-fold previous structures after significant cooling. The geometry of resulting folds is upright due to dominant subhorizontal compression (D3) at this stage.
Description
Unesco subjects
Keywords
Citation
Collections