Universidad Complutense de Madrid
E-Prints Complutense

Physiological study of pulmonary involvement in adults with cystic fibrosis through simulated modeling of different clinical scenarios

Impacto

Downloads

Downloads per month over past year

Rodríguez Sousa, Antonio Alberto and Barandica Fernández, Jesús María and Miller, Jonathan and Mir Montejano, Matías (2018) Physiological study of pulmonary involvement in adults with cystic fibrosis through simulated modeling of different clinical scenarios. Medical and Biological Engineering and Computing, 57 (2). pp. 413-425. ISSN 0140-0118, ESSN: 1741-0444

[img] PDF
Restringido a Repository staff only

1MB

Official URL: https://link.springer.com/article/10.1007/s11517-018-1885-1



Abstract

Cystic fibrosis is an inherited disorder of the cystic fibrosis transmembrane conductance regulator gene (CFTR) that affects the respiratory system. Current treatment is palliative, but there is a gene therapy under investigation which involves inserting a functional CFTR gene into affected cells. Given the clinical variety of the disease, it is necessary to characterize key indicators in its evolution (e.g., the number of functional alveolar sacs and its relationship with a healthy lung function), to anticipate its advancement. A dynamic model was used to evaluate the evolution of cystic fibrosis over time. We considered the application of conventional medical treatments and evaluated the benefits of the application of an experimental gene therapy that would reverse lung damage. Without treatment the life expectancy of the patient is low, but it is increased with the application of conventional treatments, being the progressive loss of the lung function inevitable. Simulating the application of a gene therapy, the life expectancy of patients would not be limited, given the recovery of all altered cellular processes. With this model we can make predictions that demonstrate the need for a curative treatment, in addition to presenting the evolution of pathology in a specific clinical setting.


Item Type:Article
Uncontrolled Keywords:CFTR protein (cystic fibrosis transmembrane conductance regulator); Dynamic modeling; Genetic therapy; Pulmonary function; Respiratory physiology
Subjects:Medical sciences > Medicine > Physiology
Medical sciences > Medicine > Medical genetics
Medical sciences > Medicine > Pneumology
ID Code:54896
Deposited On:04 Apr 2019 11:08
Last Modified:05 Apr 2019 07:23

Origin of downloads

Repository Staff Only: item control page