Publication:
Influence of yttrium doping on the structural, morphological and optical properties of nanostructured ZnO thin films grown by spray pyrolysis

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2019-04-15
Authors
Bazta, Otman
Piqueras de Noriega, Javier
Addou, M.
Calvino, J.J.
Hungría, A.B.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier science LTD
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This study reports on the deposition of highly transparent, n-type ZnO thin films on glass substrate at 450 C using spray pyrolysis processing, with the simultaneous insertion of yttrium (Y) at different percentages (0, 2, 5, 7 at%) as a dopant. The effect of Y doping on the structure, morphology and optical properties of Y doped ZnO (ZnO:Y) was investigated for optoelectronic applications. The obtained thin films were characterized by means of X-ray diffraction, field-emission scanning electron microscopy (FESEM), UV visible absorbance measurements, photoluminescence (PL) and cathodoluminescence (CL) spectroscopy. The as-prepared films exhibit well-defined hexagonal wurtzite structure grown along [002]. Field emission scanning electron microscope micrographs of the pure ZnO and ZnO:Y showed that the films acquired a dominance of hexagonal-like grains, the morphology was influenced by Y incorporation. All the films showed high transparency in the visible domain with an average transmittance of 83%. The band gap energy, Eg, increased from 3.12 eV to 3.18 eV by increasing the Y doping concentration up to 5 at% and then decreased to 3.15 eV for 7 at% Y content. The PL and CL measurements reveal a strong ultraviolet (UV) emission, suggesting that the as-prepared ZnO:Y thin films can potentially be used in optoelectronic devices.
Description
©2019 Elsevier Science This work was supported by MINECO/FEDER (MAT 2016-81118-P and MAT 2015-65274-R). O.B. thanks Aula del Estrecho fellowship.
Keywords
Citation
Collections