Publication:
Modeling the two- and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications

Research Projects
Organizational Units
Journal Issue
Abstract
Land subsidence associated with overexploitation of aquifers is a hazard that commonly affects large areas worldwide. The Lorca area, located in southeast Spain, has undergone one of the highest subsidence rates in Europe as a direct consequence of long-term aquifer exploitation. Previous studies carried out on the region assumed that the ground deformation retrieved from satellite radar interferometry corresponds only to vertical displacement. Here we report, for the first time, the two- and three-dimensional displacement field over the study area using synthetic aperture radar (SAR) data from Sentinel-1A images and Global Navigation Satellite System (GNSS) observations. By modeling this displacement, we provide new insights on the spatial and temporal evolution of the subsidence processes and on the main governing mechanisms. Additionally, we also demonstrate the importance of knowing both the vertical and horizontal components of the displacement to properly characterize similar hazards. Based on these results, we propose some general guidelines for the sustainable management and monitoring of land subsidence related to anthropogenic activities
Description
Keywords
Citation
1. Galloway, D., Jones, D. R. & Ingebritsen, S. Land subsidence in the United States. (US Geological Survey Circular, 1999). 2. Dokka, R. K. Modern-day tectonic subsidence in coastal Louisiana. Geology 34, 281 (2006). 3. Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A. & Laczniak, R. J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27, 483 (1999). 4. González, P. J. & Fernández, J. Drought-driven transient aquifer compaction imaged using multitemporal satellite radar interferometry. Geology 39, 551–554 (2011). 5. Bonì, R. et al. Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentín Basin (Spain) case study. Eng. Geol. 198, 40–52 (2015). 6. Samsonov, S. V., Tiampo, K. F. & Feng, W. Fast subsidence in downtown of Seattle observed with satellite radar. Remote Sens. Appl. Soc. Environ. 4, 179–187 (2016). 7. Bru, G. et al. A-DInSAR Monitoring of Landslide and Subsidence Activity: A Case of Urban Damage in Arcos de la Frontera, Spain. Remote Sens. 9, 787 (2017). 8. Gourmelen, N., Amelung, F., Casu, F., Manzo, M. & Lanari, R. Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks. Geophys. Res. Lett. 34 (2007). 9. Ma, C. et al. Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of the Small Baseline Subset—Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China. Remote Sens. 8, 951 (2016). 10. Fokker, P. A., Wassing, B. B. T., van Leijen, F. J., Hanssen, R. F. & Nieuwland, D. A. Application of an ensemble smoother with multiple data assimilation to the Bergermeer gas field, using PS-InSAR. Geomech. Energy Environ. 5, 16–28 (2016). 11. Bakr, M. Influence of Groundwater Management on Land Subsidence in Deltas. Water Resour. Manag. 29, 1541–1555 (2015). 12. Gambolati, G. & Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 51, 3922–3955 (2015). 13. Chen, M. et al. Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry. Remote Sens. 8, 468 (2016). 14. de Luna, R. M. R., Garnés, S. JdosA., Cabral, J. JdaS. P. & dos Santos, S. M. Groundwater overexploitation and soil subsidence monitoring on Recife plain (Brazil). Nat. Hazards 86, 1363–1376 (2017). 15. Motagh, M. et al. Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Eng. Geol. 218, 134–151 (2017). 16. Vasco, D. W., Wicks, C., Karasaki, K. & Marques, O. Geodetic imaging: reservoir monitoring using satellite interferometry. Geophys. J. Int. 149, 555–571 (2002). 17. Stramondo, S. et al. Surface movements in Bologna (Po Plain — Italy) detected by multitemporal DInSAR. Remote Sens. Environ. 110, 304–316 (2007). 18. Motagh, M. et al. Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys. Res. Lett. 35, L16403 (2008). 19. Gutiérrez-Yurrita, P. J. Land subsidence, associated hazards and the role of natural resources development. In Land Subsidence, Associated Hazards and the Role of Natural Resources Development (Proceedings of EISOLS 2010) 396–401 (2010). 20. Sahu, P. & Sikdar, P. K. Threat of land subsidence in and around Kolkata City and East Kolkata Wetlands, West Bengal, India. J. Earth Syst. Sci. 120, 435–446 (2011). 21. Tiampo, K. F. et al. An Elliptical Model for Deformation Due to Groundwater Fluctuations. Pure Appl. Geophys. 169, 1443–1456 (2012). 22. Tosi, L., Teatini, P. & Strozzi, T. Natural versus anthropogenic subsidence of Venice. Sci. Rep. 3, 2710 (2013). 23. UNESCO. International Hydrological Program VIII (2014–2020). Available at: https://en.unesco.org/themes/water-security/hydrology (Accessed: 15th January 2018) (2017). 24. Geertsma, J. Land Subsidence Above Compacting Oil and Gas Reservoirs. J. Pet. Technol. 25, 734–744 (1973). 25. Geertsma, J. & Van Opstal, G. A numerical technique for predicting subsidence above compacting reservoirs based on the nucleus of strain concept. Verh. Kon. Ned. Geol. Mijnbouwk 28, 63–78 (1975). 26. Segall, P. Stress and subsidence resulting from subsurface fluid withdrawal in the epicentral region of the 1983 Coalinga Earthquake. J. Geophys. Res. 90, 6801 (1985). 27. Vasco, D. W., Karasaki, K. & Doughty, C. Using surface deformation to image reservoir dynamics. Geophysics 65, 132–147 (2000). 28. Walsh, J. B. Subsidence above a planar reservoir. J. Geophys. Res. Solid Earth 107, ETG 6-1–ETG 6-9 (2002). 29. Brown, N. J., Woods, A. W., Neufeld, J. A. & Richardson, C. Constraining Surface Deformation Predictions Resulting from Coal Seam Gas Extraction, https://doi.org/10.11636/Record.2014.044 (2014). 30. Camacho, A. G., González, P. J., Fernández, J. & Berrino, G. Simultaneous inversion of surface deformation and gravity changes by means of extended bodies with a free geometry: Application to deforming calderas. J. Geophys. Res. 116, B10401 (2011). 31. González, P. J., Tiampo, K. F., Palano, M., Cannavó, F. & Fernández, J. The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading. Nat. Geosci. 5, 821–825 (2012). 32. Cannavò, F. et al. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises. Sci. Rep. 5, 10970 (2015). 33. Camacho, A. G., Fernández, J. & Cannavò, F. PAF: A software tool to estimate free-geometry extended bodies of anomalous pressure from surface deformation data. Comput. Geosci. 111, 235–243 (2018). 34. AEMET. Agencia Estatal de Meteorología. Available at: www.aemet.es/es/datos_abiertos/AEMET_OpenData (Accessed: 15th January 2018) (2017). 35. Bourgois, J., Mauffret, A., Ammar, A. & Demnati, A. Multichannel seismic data imaging of inversion tectonics of the Alboran Ridge (western Mediterranean Sea). Geo-Marine Lett. 12, 117–122 (1992). 36. Martı́nez-Dı́az, J. J. Stress field variation related to fault interaction in a reverse oblique-slip fault: the Alhama de Murcia fault, Betic Cordillera, Spain. Tectonophysics 356, 291–305 (2002). 37. Palano, M., González, P. J. & Fernández, J. Strain and stress fields along the Gibraltar Orogenic Arc: Constraints on active geodynamics. Gondwana Res. 23, 1071–1088 (2013). 38. Cerón, J. C. & Pulido-Bosch, A. Groundwater problems resulting from CO 2 pollution and overexploitation in Alto Guadalentín aquifer (Murcia, Spain). Environ. Geol. 28, 223–228 (1996). 39. Confederación Hidrográfica del Segura. Plan Especial de Actuación en Situaciones de Alerta y Eventual Sequía. Tech. Rep. 298 (2006). 40. Tomas, R. et al. Study of the land subsidence in Orihuela City (SE Spain) using PSI data: Distribution, evolution and correlation with conditioning and triggering factors. Eng. Geol. 115, 105–121 (2010). 41. Herrera, G. et al. Analysis of subsidence using TerraSAR-X data: Murcia case study. Eng. Geol. 116, 284–295 (2010). 42. Zhu, L. et al. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng. Geol. 193, 243–255 (2015). 43. Pacheco-Martínez, J. et al. Application of InSAR and Gravimetry for Land Subsidence Hazard Zoning in Aguascalientes, Mexico. Remote Sens, 7, 17035–17050 (2015).
Collections