Publication:
Well posedness of an angiogenesis related integrodifferential diffusion model

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-05
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We prove existence and uniqueness of nonnegative solutions for a nonlocal in time integrodifferential diffusion system related to angiogenesis descriptions. Fundamental solutions of appropriately chosen parabolic operators with bounded coefficients allow us to generate sequences of approximate solutions. Comparison principles and integral equations provide uniform bounds ensuring some convergence properties for iterative schemes and providing stability bounds. Uniqueness follows from chained integral inequalities.
Description
Keywords
Citation
[1] D.G. Aronson, Bounds for the fundamental solution of a parabolic equations, Bull. of the AMS 73, 890-896, 1967. [2] D.G. Aronson, Nonnegative solutions of linear parabolic equations, Ann. Sci. Norm. Sup. Pisa 22, 607-694, 1968. [3] J.P. Aubin, Un théorème de compacité, C. R. Acad. Sci. 256, 5042-5044, 1963. [4] H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, Springer, 2011. [5] LL Bonilla, V Capasso, M. Alvaro, M. Carretero, Hybrid modelling of tumor induced angiogenesis, Phys. Rev. E 90, 062716, 2014. [6] V. Capasso, D. Morale, G. Facchetti, Randomness in self-organized phenomena. A case study: Retinal angiogenesis, BioSystems 112, 292-297, 2013. [7] V. Capasso, D. Morale, G. Facchetti, The role of stochasticity in a model of retinal angiogenesis, IMA J Appl Math 77 (6), 729-747 (2012). [8] A. Carpio, Long time behavior of solutions of the Vlasov-Poisson-FokkerPlanck equation, Math. Meth. Appl. Sc., 21, 985-1014, 1998. [9] T. Cazenave, A. Haraux, An introduction to semilinear evolution equations, Oxford University Press, 1998. [10] A. Friedman, Partial differential equations of parabolic type, Dover, 2008. [11] S. Kusuoka, Hölder continuity and bounds for fundamental solutions to nondivergence form parabolic equations, Analysis & PDE, 8, 1-32, 2015. [12] J.L. Lions, Quelques méthodes pour les problèmes aux limites nonlinéaires, Gauthier-Villards, 1969. [13] J.R. Norris, D.W. Stroock, Estimates on the fundamental solution to heat flows with uniformly elliptic coefficients, Proc. London Math. Soc. (3) 62, 373-402, 1991. [14] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44, Springer-Verlag 1983. [15] F.O. Porper, S.D. Eidel’man, Two-sided estimates of fundamental solutions of second order parabolic equations, and some applications, Russian Math. Surveys 39(3), 119-178, 1984. [16] M.H. Protter, H.F. Weinberger, Maximun principles in differential equations, Springer, 1999. [17] J. Simon, Compact sets in the space L p (0, T; B), Ann. Mat. Pura ed Applicata (IV) CXLVI, 65-96, 1987. [18] D.W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators, In Séminaire de Probabilités, XXII, vol. 1321 of Lecture Notes in Math., 316347, Springer, 1988. [19] D.W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, vol. 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1979. [20] H.D. Victory, B.P. O’Dwyer, On classical solutions of Vlasov-Poisson-Fokker-Planck systems, Ind. Univ. Math. Math. J., 3 (1), 105-155, 1990
Collections