Publication:
Constructing solutions for a kinetic model of angiogenesis in annular domains

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2017-05
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present an iterative technique to construct stable solutions for an angiogenesis model set in an annular region. Branching, anastomosis and extension of blood vessel tips is described by an integrodifferential kinetic equation of Fokker-Planck type supplemented with nonlocal boundary conditions and coupled to a diffusion problem with Neumann boundary conditions through the force field created by the tumor induced angiogenic factor and the flux of vessel tips. Convergence proofs exploit balance equations, estimates of velocity decay and compactness results for kinetic operators, combined with gradient estimates of heat kernels for Neumann problems in non convex domains.
Description
Keywords
Citation
[1] L.L. Bonilla, V. Capasso, M. Alvaro, M. Carretero, Hybrid modeling of tumor induced angiogenesis, Phys. Rev. E 90, 062716, 2014. [2] F. Terragni, M. Carretero, V. Capasso, L. L. Bonilla, Stochastic model of tumor-induced angiogenesis: Ensemble averages and deterministic equations, Phys. Rev. E 93, 022413, 2016. [3] L.L. Bonilla, H.T. Grahn, Non-linear dynamics of semiconductor superlattices, Rep. Prog. Phys. 68, 577-683, 2005 [4] F. Bouchut, J. Dolbeault, On long time asymptotics of the Vlasov-FokkerPlanck equation and of the Vlasov-Poisson-Fokker-Planck system with coulombic and newtonian potentials, Diff. Int. Eqs. 8, 487-514, 1995. [5] F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal. 111, 239-258, 1993. [6] H. Br´ezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, 2011. [7] R.M. Brown, The initial Neumann problem for the heat equation in Lipschitz cylinders, Trans. Amer. Math. Soc. 320, 1-52, 1990. [8] V. Capasso and D. Morale, Stochastic modelling of tumour-induced angiogenesis, J. Math. Biol. 58, 219-233, 2009. [9] V. Capasso, D. Morale, G. Facchetti, Randomness in self-organized phenomena. A case study: Retinal angiogenesis, BioSystems 112, 292-297, 2013. [10] P. F. Carmeliet, Angiogenesis in life, disease and medicine, Nature 438, 932-936, 2005. [11] P. Carmeliet and R. K. Jain, Molecular mechanisms and clinical applications of angiogenesis, Nature 473, 298-307, 2011. [12] A. Carpio, G. Duro, Well posedness of an integrodifferential kinetic model of Fokker-Planck type for angiogenesis, Nonlinear Analysis: Real World Applications 30, 184-212, 2016. [13] J.A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Meth. Appl. Sc. 21, 907-938, 1998. [14] C. Cercignani, On the initial-boundary value problem for the Boltzmann equation, Arch. Rat. Mech. Anal. 116, 307-315, 1992. [15] S. L. Cotter, V. Klika, L. Kimpton, S. Collins, and A. E. P. Heazell, A stochastic model for early placental development, J. R. Soc. Interface 11, 20140149, 2014. [16] J.C. Chen, C. He, On local existence of the Vlasov-Fokker-Planck equations in a 2D anisotropic space, Boundary value problems, 2013:233, 2013. [17] P. Degond, Global existence of smooth solutions for the Vlasov-FokkerPlanck equation in 1 and 2 space dimensions, Ann. Sci. Ec. Norm. Super., 19(4), 519-542, 1986. [18] R.J. DiPerna, P.L. Lions, On the Fokker-Planck-Boltzmann equation, Comm. Math. Phys. 120, 1-23, 1988. [19] R. Duan, S. Liu, Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force, Kinetic and Related Models 4(4), 687-700, 2013. [20] M.H. Giga, Y. Giga, J. Saal, Nonlinear partial differential equations, Birkhauser, 2010. [21] K. Hamdache, Initial-boundary value problems for the Boltzmann equation: global existence of weak solutions, Arch. Rat. Mech. Anal. 119, 309-353, 1992. [22] T.A.M. Heck, M.M. Vaeyens, H. Van Oosterwyck, Computational models of sprouting angiogenesis and cell migration: towards multiscale mechanochemical models of angiogenesis, Math Model Nat Phenom 10, 09735348, 2015 [23] H.J. Hwang, J. Jung, J.L.L Velazquez, On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains, Discrete Cont Dyn S 33 (2), 723-737, 2012. [24] F. Milde, M. Bergdorf, P. Koumoutsakos, A hybrid model for threedimensional simulations of sprouting angiogenesis, Biophys J. 95, 3146-3160, 2008. [25] P.A. Raviart, J.M. Thomas, Introduction a l’Analyse numérique des équations aux deriv´ees partielles, 1998 [26] J.L. Lions, Quelques m´ethodes pour les problèmes aux limites nonlinéaires, Gauthier-Villards, 1969. [27] P. Li, Geometric analysis, Cambridge Studies in Advanced Mathematics 134, Cambridge University Press, 2012. [28] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44, Springer-Verlag 1983. [29] S.M. Peirce, Computational and mathematical modeling of angiogenesis, Microcirculation 15(8), 739-751, 2008. [30] P.L. Lions, B. Perthame, Propagation of moments and regularity for the three dimensional Vlasov-Poisson system, Invent. Math. 105, 415-430, 1991. [31] G. Rein, J. Weckler, Generic global classical solutions of the Vlasov-FokkerPlanck-Poisson system in three dimensions, J. Diff. Eq. 99, 59-77, 1992. [32] M. Scianna, L. Munaron, and L. Preziosi, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies, Prog. Biophys. Mol. Biol. 106, 450-462, 2011. [33] M. Scianna, C.G. Bell, L. Preziosi, A review of mathematical models for the formation of vascular networks, J. Theor. Biol. 333, 174-209, 2013. [34] S. Sun, M.F. Wheeler, M. Obeyesekere, Ch. Patrick Jr., Multiscale angiogenesis modeling using mixed finite element methods, Multiscale Model. Simul. 4(4), 1137-1167, 2005. [35] K. R. Swanson, R. C. Rockne, J. Claridge, M. A. Chaplain, E. C. Alvord Jr., and A. R. A. Anderson, Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology, Cancer Res 71, 7366-7375, 2011. [36] S. R. S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients. Comm. Pure Appl. Math. 20 (2), 431-455, 1967. [37] S. R. S. Varadhan, Diffusion processes in a small time interval, Comm. Pure Appl. Math. 20, 659-685, 1967. [38] H.D. Victory, On the existence of global weak solutions for Vlasov-PoissonFokker-Planck systems, J. Math. Anal. Appl., 160, 525-555, 1991. [39] H.D. Victory, B.P. O’Dwyer, On classical solutions of Vlasov-PoissonFokker-Planck systems, Ind. Univ. Math. Math. J., 3 (1), 105-155, 1990. [40] L. Yadav, N. Puri, V. Rastogi, P. Satpute, V. Sharma, Tumour angiogenesis and angiogenic inhibitors: a review, J. Clin. Diagn. Res. 9, XE01-XE05, 2015. [41] F.Y. Wang, L. Yang, Gradient estimate on the Neumann semigroup and applications, arXiv:1009.1965
Collections