Original Article

New photocatalytic materials obtained from the recycling of alkaline and Zn/C spent batteries

Lorena Alcaraz a, Irene García-Díaz a, Laura González b, María Eugenia Rabanal c, Ana Urbieta d, Paloma Fernández d, Félix A. López a,∗

a Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid, Spain
b IMDEA-Nanociencia, Campus Universitario de Cantoblanco, Madrid 28049, Spain
c Universidad Carlos III de Madrid & IAAB, Dpto. de Ciencia e Ingeniería Química, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain
d Universidad Complutense de Madrid, Dpto. de Física de Materiales, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, 28040 Madrid, Spain

A R T I C L E I N F O

Article history:
Received 16 January 2019
Accepted 22 April 2019
Available online 18 May 2019

Keywords:
Spent batteries
Photocatalytic materials
Zn and Mn oxides
Methylene blue
Rhodamine B

A B S T R A C T

Several phases with variable stoichiometry Zn₃Mnₓ₋ₓO₄ (with x = 0.25, 0.85 and 1) and ZnO have been obtained from the black mass, a widely generated residue of wasted alkaline batteries. The obtained samples have been characterized by X-ray diffraction (XRD) and Raman spectroscopy showing results consistent with the stoichiometry obtained from chemical analysis. The study of the degradation of methylene blue (MB) and rhodamine B (RhB) under UV radiation demonstrates the photocatalytic behavior in all samples obtained, reaching degradation percentages higher than 70% and 50%, respectively.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The great development and continuous growth of the population have contributed to a considerable increase in global environmental pollution. For example, industries dump to wastewater between 300 and 400 million tons each year of different pollutants such as heavy metals, solvent and toxic sludge [1]. These residues cause significant environmental problems, so their elimination is of particular importance due to its potentially harmful effect [2].

The legal regulations impose ever stricter criteria to validate the quality of residual waters (maximum values of contaminant to be considered clean or decontaminated), hence the growing interest generated in the search for new methods for the efficient elimination of pollutants [3].

Traditionally the technologies used for cleaning water are mainly based on adsorption processes using activated carbon, or desorption in the air [4], however, these processes only transfer the pollutants from the aqueous solution to another phase, still contaminated, then the problem persists. This scenario has pushed the development of new technologies based on photocatalytic oxidation and consequently, the search for chemicals with a high oxidation power that could lead to an efficient degradation of the pollutants. In these processes, the
radicals generated in the oxidation, react with the pollutant, rendering products environmentally harmless [4]. The variety of contaminants that can be eliminated from water by catalytic oxidation assisted by solar radiation goes from organic substances like dyes or pesticides [5–7] to heavy metals [1,3].

The photocatalytic reaction is initiated when a photoexcited electron of a photocatalyst semiconductor is promoted from the valence band filled with a semiconductor photocatalyst to the empty conduction band being the energy of the absorbed photons (hv) is equal to or greater than the energy of the band gap of the photocatalyst [8]. The absorption of photons causes the excitation and transfer of electrons (e−) from the valence band (VB) to the conduction band (e−CB), leading to the generation of holes (h+) in the valence band (h+VB). Next, the migration of the charge carriers (e− and h+) to the surface of the photocatalyst occurs. Highly reactive electrons and holes tend to carry out reduction and oxidation reactions to produce hydroxyl radicals (•OH) and superoxide anion radicals (O2•−), respectively, which subsequently react by degrading the contaminant [2], as shown in the scheme of Fig. 1.

Different semiconductor materials, in particular oxides, have been used such as titanium dioxide (TiO2), zinc oxide (ZnO), tungsten oxide (WO3) or hematite (α-Fe2O3), proving to be effective photocatalyst [5]. Most of these semiconductors have wide band gaps (above 3.2 eV), showing photocatalytic activity after illumination with UV radiation [7]. However, this bandwidth limits its response under direct sunlight, that would be desirable, since the UV fraction is only around 3–5% of the whole spectrum. Another limiting factor is the rapid recombination of photogenerated electron-hole pairs (e−−h+), the catalytic photodegradation requires the generation of reactive oxygen species (ROS) such as hydroxyl (•OH) or superoxide (O2•−) radicals and H2O2, that cannot occur if the e−−h+ recombination is too fast [6]. Different routes such as semiconductor coupling [9] or doping [10] are currently being studied in order to overcome these limitations and improve the photoresponse of these materials.

Doping the semiconductor materials with metals, in particular transition metals (TM), increases the number of surface defects [11] and therefore affects the optical and electronic properties [12]. The incorporation of a TM in the oxide does not, in principle modify its band gap, but introduces defect levels in the mid-gap that enable transitions at energies below the band gap, then extending the usable fraction of solar spectrum [2,13,14].

In the present work, the photocatalytic activity of Zn and binary Zn/Mn oxides obtained from the black mass of spent alkaline batteries has been studied. The recovery process has been described elsewhere [14–16]. Doping with manganese is very promising due to different oxidation states are possible for this ion (Mn2+, Mn3+ and Mn4+) and the consequent ability to act as electron or hole trap [17–19].

2. Materials and methods

2.1. Sample preparation

2.1.1. Obtaining of phases of stoichiometry Zn₉Mn₃₋ₓO₄ (with x = 0.25, 0.85 and 1)

The black starting mass for obtaining the different binary oxides was provided by Environat España, S.A. (Guadalajara, Spain). This black mass comes from the dismantling of alkaline and Zn–C batteries.

To obtain the different oxides, 100, 200 or 300 g of black mass were dissolved in 1 l of a solution of: miliQ water (500 mL), 7.5 M HCl (250 mL) and 0.7 M H2O2 (250 mL). The mixtures were homogenized and, after 1 h at room temperature (RT), were filtered using a Millipore Holder filter at 7 bar pressure. The liquids collected (pH ~ 0) were treated adding 6 M NaOH until reaching a pH value between 12 and 14, and the solids obtained were discarded. Finally, the mixtures are filtered obtaining the corresponding binary oxides of stoichiometries Zn₉Mn₃₋ₓO₄ (with x = 0.25, 0.85 and 1) for the solid/liquid ratios of 100, 200 and 300 g/L, respectively.

2.1.2. Obtaining of the phases of stoichiometry ZnO

ZnO samples were obtained by two different routes: precipitation (ZnOp) and thermal decomposition (ZnOc). In the first case, after the alkaline precipitation described above, HCl is added to the collected liquids, until pH decreases from the initial value (12–14) to a value of 9.5. From this step, a white precipitate (ZnOp), that will be separated by filtration and subsequently dried, is obtained. In the second route (ZnOc), the precursor Zn5(CO3)2(OH)6 obtained after the leaching of the
black mass with a solution of \((\text{NH}_4)_2\text{CO}_3/\text{NH}_3\) is calcined at 800 °C for 5 h under constant air flow [14].

2.2. Characterization

The structural characterization was carried out by means of X-ray diffraction (XRD) using a Siemens D5000 diffractometer equipped with a Cu anode (Cu Kα radiation) and a LiF monochromator. Rietveld method was applied for the calculation of structural parameters from XRD patterns. We have used the version 4.2 of the Rietveld analysis program TOPAS (Bruker AXS) and crystallographic information of the different phases obtained from Pearson’s crystal structure database for inorganic compounds release [20].

Micro-Raman spectra were obtained using a confocal Horiba Jovin-Yvon Lab RAM HR800 system. The samples were excited by a 633 nm He–Ne laser on an Olympus BX 41 confocal microscope with a 10× objective. A charge coupled device detector was used to collect the scattered light dispersed by 600 lines mm⁻¹ grating (micro-Raman). The spectral resolution of the system used was 1.5 cm⁻¹ for the measurements.
All samples were characterized by UV–visible diffuse reflectance spectroscopy (DRS) measuring in the range of 350–500 nm and 450–650 for methylene blue (MB) and rhodamine B (RhB) at RT using a UV–visible Spectrophotometer (Varian Cary 100 with DRA-CA-30I Diffuse Reflectance Accessory).

The photocatalysis experiments were carried out in a Pyrex glass reactor at RT. 5 mg of solid catalyst was dispersed in 600 mL of MB and RhB solutions of concentration 2.5 mg/L, and the mixture was magnetically stirred during 20 min without illumination, to obtain a homogeneous suspension and reach the adsorption equilibrium. The photocatalytic degradation was carried out for until equilibrium is reached, in continuous stirring under UV-light irradiation (365 nm) in a dark room with 125 W high-pressure mercury vapor lamp (linfei Company, Shanghai). Aliquots (3 mL) of the solution extracted every 10 min (every 15 min for times larger than 75 min) are studied by UV–Vis absorption in a Lambda 14P UV–visible Spectrophotometer to monitor the degradation of both methylene blue and rhodamine B solutions.

3. Results and discussion

3.1. Ray diffraction

The structure and phase distribution of the obtained samples were determined by XRD. Fig. 2 shows the analysis of X-ray diffraction patterns after application of the Rietveld method for the samples investigated.

In the case of mixed binary oxides (Zn/Mn) the majority of the more intense reflections observed can be indexed based on a tetragonal symmetry of space group P4_1amd compatible with a spinel type structure of Zn and Mn, and with the stoichiometry indicated in each plot. In all cases purities of approximately 95% were obtained in all samples.

In the case of pure zinc oxide samples, the diffraction patterns show reflections that can be indexed to a hexagonal symmetry of a P6_3mc space group with a wurtzite structure.

From the X-ray patterns, the average crystallite size (Φ) was estimated using the Scherrer equation [21] (Eq. (1)):

\[\Phi = \frac{0.89 \lambda}{\beta \cos \theta} \]

(1)

where \(\Phi \) is the average crystallite size, 0.89 is the shape factor assuming spherical particles, \(\lambda \) is the X-ray wavelength, \(\beta \) is the full-width at half-maximum (FWHM) of the experimental diffractions and \(\theta \) is the Bragg’s angle.

The calculated average size for the Zn\(_x\)Mn\(_{3-x}\)O\(_4\) samples were 55, 43 and 38 nm for \(x = 0.25 \), 0.85 and 1, respectively, as well as 72 and 85 nm for the ZnOp and ZnOc samples. In binary oxides the size decreases with the increase in the Zn content in the stoichiometry of the samples obtained according to previous studies carried out in similar phases [22]. In the case of the ZnO phases, the ZnOc sample has a larger particle size compared to ZnOp, what is expected due to the preparation method followed to synthesize [23].

![Fig. 3 - Normalized Raman spectra obtained from the samples with the different stoichiometries: (a) Zn\(_x\)Mn\(_{3-x}\)O\(_4\) and (b) ZnO.](image)

3.2. Raman spectroscopy

Fig. 3 shows the normalized Raman spectra recorded for the different samples obtained. The oxides of stoichiometry Zn\(_x\)Mn\(_{3-x}\)O\(_4\) with spinel-like crystalline structure and spatial group I4_1/amd could present, according to group theory, 10 Raman active modes in Raman: \(I' = 2A_{1g} + 3B_{1g} + B_{2g} + 4E_g \) [24], however only a few of them are usually observed. The vibration modes with frequencies above 600 cm\(^{-1}\) correspond to the movement of the oxygen atoms in the tetrahedral groups AO\(_4\) while the low frequency modes are characteristic of the octahedral sites (BO\(_4\)) [24].

In our case, all spectra corresponding to the binary oxides present a maximum around 670 cm\(^{-1}\), typical of the symmetry A\(_{1g}\) related to the movement of oxygen (bonding and repulsion effect) of the tetrahedral AO\(_4\) groups [25,26]. It can be seen how, as the manganese content increases, the maxima move toward lower values of Raman shift. In addition, as the Mn content decreases a progressive broadening of the Raman bands is observed showing a loss of crystallinity in the samples (Fig. 3a).
Regarding non-doped ZnO samples, a wurtzite structure, space group C\textsubscript{6v} with two unit formulas per primitive cell is observed, where all the atoms occupy the C\textsubscript{3v} sites. In this case, we have four Raman active modes (A\textsubscript{1} + E\textsubscript{1} + 2E\textsubscript{2}) are possible. A\textsubscript{1} and E\textsubscript{1} modes are polar phonons, and therefore have different frequencies for the transverse optical (TO) and longitudinal optical (LO) modes of vibration because the LO phonons are associated with the macroscopic electric field. On the other hand, the non-polar modes with E\textsubscript{2} symmetry have two different vibration frequencies, associated with the oxygen atoms (E\textsubscript{2,high}) and the Zn sublattice (E\textsubscript{2,low}) [22,27]. These modes are observed at frequencies of 437 cm-1 for E\textsubscript{2,high}; 379 cm-1 and 410 cm-1 for A\textsubscript{1} (TO) and E\textsubscript{1} (TO) respectively; and 541 cm-1, 577 cm-1 and 592 cm-1 for A\textsubscript{1} (LA), A\textsubscript{1} (LO) and E\textsubscript{1} (LO) respectively [22,28,29].

In the present work, the maxima of the corresponding Raman bands (Fig. 3b) appear close to the reported values, although not all the active modes are observed. As shown in Fig. 3b, the Raman peaks appear at 438 cm-1 (E\textsubscript{2,high}), 380 and 411 cm-1 (A\textsubscript{1} (TO) and E\textsubscript{1} (TO) respectively). Additional peak at 331 cm-1 attributable to E\textsubscript{2}(high)-E\textsubscript{2}(low) mode is also observed [30]. These results are in agreement with previous studies performed in samples of ZnO obtained by ceramic method and also with those found for thin films [29,30]. On the other hand, the peak broadening observed in ZnOp respect to ZnOc is consequent with lower crystallinity degree observed from the XRD patterns.
3.3. Optical band gap measurements

Optical band gap has been obtained from UV–Vis absorption experiments in DRS mode. In order to obtain the energy of the band gap for each of the samples, the Kubelka-Munk and Tauc approaches were used [31,32].

The Kubelka-Munk equation (Eq. (2)) is first used to obtain absorption data from the diffuse reflectance spectrum:

$$F(R_\infty) = \frac{(1 - R_\infty)^2}{2R_\infty}$$

where the term $$R_\infty$$ represents the reflectance of an infinite film and the function $$F(R_\infty)$$ is equivalent to the absorption coefficient, $$a$$. Then the Tauc plot can be carried out to represent $$(\alpha h\nu)^2$$ versus $$h\nu$$, and obtain the optical band gap ($$E_{\text{gap}}$$) by extrapolation of the linear part of this curve, as shown in Fig. 4. The estimated band gap values obtained decrease when the Mn content increase. The values are similar to those previously reported by other authors in the bibliography, both for the ZnO [33–35], and for Mn doped ZnO samples [36–38].

3.4. Photocatalysis

The photocatalytic activity of the samples obtained (both the binary oxides and the zinc oxides) were realized using a UV light lamp and MB and RhB solutions to mimic the

Fig. 5 – Absorption spectra obtained at different illumination times for MB.
pollutants [39]. To monitor the dye degradation, absorption spectra of aliquot fractions of the solutions are recorded every 10–15 min, and the degradation fraction (δ) and the apparent reaction constants (k) were estimated, according to equations:

$$\delta(\%) = 100 \frac{C_0 - C}{C_0}$$ \hspace{1cm} (3)

$$k = \frac{1}{t} \ln \frac{C_0}{C}$$ \hspace{1cm} (4)

where C_0 is the initial MB or RhB solution concentration and C is the MB or RhB solution concentration at the time t.

The optical absorbance spectra of all samples are presented in Figs. 5 and 6. Two absorption maxima are observed in both cases, centered around 610 and 660 nm and 510 and 550 nm, characteristic of the absorption spectra of methylene blue [40] and rhodamine B [41]. It can be seen how an increase in the photodegradation reaction time leads to a decrease in absorption bands. As

Fig. 6 – Absorption spectra obtained at different illumination times for RhB.
carried out using the pseudo-zero-order linear models (Eq. (5)), pseudo-first-order (Eq. (6)) and pseudo-second-order (Eq. (7)) [42]. Table 1 summarized the obtained results.

\[
\text{pseudo-zero-order: } [C]_t = [C]_0 - k_{obs,0} \cdot t \\
\text{pseudo-first-order: } \ln \left(\frac{[C]_t}{[C]_0} \right) = k_{obs,1} \cdot t \\
\text{pseudo-second-order: } \frac{1}{[C]_t} = \frac{1}{[C]_0} + k_{obs,2} \cdot t
\]

where \([C]_t\) is the concentration of MB or RhB at the time \(t\); \([C]_0\) is initial MB or RhB solution concentration and \(k_{obs,0}, k_{obs,1}\) and \(k_{obs,2}\) are the kinetics constants to the pseudo-zero, pseudo-first and pseudo-second order, respectively.

The correlation coefficients \(R^2\) show that reaction kinetics fit better to the pseudo-second-order model. With this model, the experimental kinetic constant can be obtained from the slope of the straight line when \(1/[C]_t\) is plotted against the reaction time. The results summarized in Table 1 show that \(k_{obs}\) increases with the Zn content, which indicates that the degradation occurs more easily.

Fig. 8 shows the degradation rate of MB and RhB. The maximum degradation is obtained after 60 and 195 min of illumination for MB and RhB, respectively. Thereafter, the degradation percentage remains practically constant. The photocatalytic degradation of RhB is lower than MB similarly to previously reported by others authors to TiO$_2$ [43] and ZnO [44] samples. Also, the percentage of degradation increases with the increase in the Zn content of the samples (see Table 2). Previous studies carried out on samples of ZnO doped with Mn [2] have shown an increase in photocatalytic activity with the decrease in particle size, agglomeration and the increase in the surface area of the photocatalyst. The results obtained are in good agreement with these studies [2], where the samples with a smaller average size of the crystalline domain obtained from the XRD data present a higher percentage of degradation.

<table>
<thead>
<tr>
<th>Table 1 – Kinetics constants and correlation coefficients from the different models used for both MB and RhB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>x = 0.25</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>k${obs}$ & R2 & k${obs}$ & R2 & k${obs}$ & R2 & k${obs}$ & R2 & k$_{obs}$ & R2</td>
</tr>
<tr>
<td>Pseudo-zero-order</td>
</tr>
<tr>
<td>Pseudo-first-order</td>
</tr>
<tr>
<td>Pseudo-second-order</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>x = 0.25</td>
</tr>
<tr>
<td>k${obs}$ & R2 & k${obs}$ & R2 & k${obs}$ & R2 & k${obs}$ & R2</td>
</tr>
<tr>
<td>Pseudo-zero-order</td>
</tr>
<tr>
<td>Pseudo-first-order</td>
</tr>
<tr>
<td>Pseudo-second-order</td>
</tr>
</tbody>
</table>

Fig. 7 – Pictures of the corresponding MB and RhB solution of ZnOp sample. An example, Fig. 7 shows the pictures of the ZnOp sample remaining solution of MB and RhB every 30 min and 60 min, respectively, until reaching the photocatalytic equilibrium. The study of the kinetics of both pollutants degradation under UV excitation with the different materials was
greater than 70% and 50%, respectively, increasing with the decrease in particle size which leads to an increase in the surface area of the photocatalyst. The band gap values obtained for the analyzed samples are in the range of 1.32–1.38 eV for the samples ZnxMn3−xO4 and between 3.10 and 3.20 eV for the ZnO samples. In the Mn doped samples, these values increase as the Zn content of the samples increases. The study of the degradation of both MB and RhB under UV radiation was carried out, showing a photocatalytic activity for the possible degradation of pollutants under UV radiation in all the samples investigated.

4. Conclusions

From the residue obtained of wasted batteries, Mn doped ZnO and ZnO phases have been obtained. The characterization carried out by XRD and Raman spectroscopy show phases consistent with stoichiometries ZnxMn3−xO4 (with x = 0.25, 0.85 and 1) and ZnO for the samples. In all cases, the samples show a photocatalytic behavior due to the decrease in MB and RhB absorbance in the recorded spectra. The kinetics of the photodegradation reaction are fitted to a pseudo-second-order model. The percentages of degradation for MB and RhB are

Table 2 – Degradation percentage and E_{gap} values obtained to the different analyzed samples.

<table>
<thead>
<tr>
<th>Stoichiometry</th>
<th>% MB degradationa</th>
<th>% RhB degradationb</th>
<th>E_{gap} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 0.25$</td>
<td>72</td>
<td>56</td>
<td>1.32</td>
</tr>
<tr>
<td>$x = 0.85$</td>
<td>87</td>
<td>62</td>
<td>1.33</td>
</tr>
<tr>
<td>$x = 1$</td>
<td>89</td>
<td>70</td>
<td>1.38</td>
</tr>
<tr>
<td>ZnOp</td>
<td>93</td>
<td>90</td>
<td>3.20</td>
</tr>
<tr>
<td>ZnOc</td>
<td>90</td>
<td>89</td>
<td>3.10</td>
</tr>
</tbody>
</table>

a Degradation percentage at 120 min reaction time.

b Degradation percentage at 240 min reaction time.

Conflicts of interest

The authors declare no conflicts of interest.

REFERENCES

