Global Standard Stratotype-Section and Point (GSSP) for the conterminous base of the Miaolingian Series and Wuliuan Stage (Cambrian) at Balang, Jianhe, Guizhou, China

The International Commission on Stratigraphy and the IUGS Executive Committee have recently ratified a Global Standard Stratotype-section and Point (GSSP) defining the conterminous base of the third series and the fifth stage of the Cambrian System. The series and the stage are respectively named the Miaolingian Series and Wuliuan Stage, after the Maioling Mountains in southeastern Guizhou and the Wuliu sidehill, Jianhe County, in eastern Guizhou Province, South China, where the GSSP is located. The GSSP is exposed in a natural outcrop near the Balang Village at a position of 26°44.843′N latitude and 108°24.830′E longitude. It is defined at the base of a silty mudstone layer 52.8 m above the base of the Kaili Formation in the Wuliuzengjiayan section, coinciding with the first appearance of the cosmopolitan oryctocephalid trilobite Oryctocephalus indicus (base of the O. indicus Zone). Secondary global markers at or near the base of the series and stage include the peak of a rather large negative carbon isotopic excursion (ROECE excursion), the simultaneous appearance of many acanthomorphic acritarch forms, a transgressive phase of a major eustatic event, and the last appearance of intercontinental polymerid trilobites, either Bathynotus or Ovatoryctocara. Faunal turnovers close to the base of the Miaolingian Series and Wuliuan Stage have been recognized as being at the base of the Oryctocephalus indicus Zone of Amgan Stage in Siberia, the Delamaran Stage in Laurentia, the Oryctocephalus indicus Zone in the Indian Himalaya and North Greenland, near the base of the Delamaran Stage in Australia, and within the Eccaparadoxides sdzyi Zone in Iberia and the Ornamentaspis frequens Zone in Morocco.

Introduction

The International Subcommission on Cambrian Stratigraphy (ISCS) has recommended a subdivision of the Cambrian System into four series (Peng, 2004, 2006; Babcock et al., 2005; Peng et al., 2006; Babcock and Peng, 2007). Within each series it is expected that two or three stages will be recognized with their boundaries corresponding to horizons that can be precisely correlated with confidence through almost all palaeocontinents. Cambrian boundary positions ratified by the International Union of Geological Sciences (IUGS) and International Commission on Stratigraphy (ICS) (Figs. 1, 2) are: 1, the base of the Terreneuvian Series and Fortunian Stage, which is also the base of Cambrian System, Paleozoic Erathem and Phanerozoic Eonothern, corresponding to the base of Treptichnus pedum Zone in Newfoundland (Brasier et al., 1994; Landing, 1994; Gehling et al., 2001; Landing et al., 2007); 2, the base of Drumian Stage corresponding to the base of the Ptychagnostus atavus Zone in Utah, USA (Babcock et al., 2007); 3, the base of the Guzhangian Stage corresponding to the base of the Lejopyge laevigata Zone in Hunan, South China (Peng et al., 2009a); 4, the base of the Furongian Series and Paibian Stage corre-
The purpose of this paper is to announce ratification of the GSSP for the conterminous base of the Miaolingian Series and the Wuluan Stage, which coincides with the FAD of the intercontinental oryctocephalid trilobite *Oryctocephalus indicus*. The Miaolingian Series and the Wuluan Stage are newly named Cambrian chronostratigraphic units, replacing in concept and content the provisional Series 3 and Stage 5 (Figs. 1, 2, 5, 7, 9). The GSSP for the base of the new series and new stage lies within Bed 9 at 52.8 m above the base of the Kaili Formation in the Wuliu-Zengjiayan section that is about 0.5 km North of Balang Village, Jianhe County, eastern Guizhou Province, South China (Figs. 3, 4). This point fulfills all of the geological and biostratigraphic requirements for a GSSP (see Remane et al., 1996). The section is easily accessible, and access for research is unrestricted. It is located within the Jianhe Natural Reserve of Paleontological Fossils and the Miaoling National Geopark, both have been under permanent protection by the government of Guizhou Province since the natural reserve was approved in 2002 and by the Ministry of Land and Mineral Resources of China since the geopark was approved in 2009.

Systems

<table>
<thead>
<tr>
<th>Systems</th>
<th>Series</th>
<th>Stages</th>
<th>Boundary horizons (GSSPs) or provisional stratigraphic tie points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordovician</td>
<td>Lower</td>
<td>Tremadocian</td>
<td>FAD of Tapeinognathus flutivagus (GSSP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAD of Lotagnostus americanus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAD of Agnostotes orientalis (GSSP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAD of Glyptagnostus reticulatus (GSSP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAD of Leijaoyice laevigata (GSSP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAD of Phyagnostus atavus (GSSP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAD of Oryctocephalus indicus GSSP position</td>
</tr>
</tbody>
</table>

Figure 1. Chart showing working model for global chronostratigraphic subdivision of the Cambrian System, indicating the lower boundary of the newly ratified Miaolingian Series and Wuluan Stage (modified from Peng et al., 2009a, 2012b).

responing to the base of *Glyptagnostus reticulatus* Zone in Hunan, South China (Peng et al., 2004a); 5, the base of the Jiangshanian Stage corresponding to the base of the *Agnostotes orientalis* Zone in Zhejiang, Southeast China (Peng et al., 2012a); and 6, the base of Miaolingian Series and Wuluan Stage, ratified recently, in Southwest China.

The purpose of this paper is to announce ratification of the GSSP for the conterminous base of the Miaolingian Series and the Wuluan Stage, which coincides with the FAD of the intercontinental oryctocephalid trilobite *Oryctocephalus indicus*. The Miaolingian Series and the Wuluan Stage are newly named Cambrian chronostratigraphic units, replacing in concept and content the provisional Series 3 and Stage 5 (Figs. 1, 2, 5, 7, 9). The GSSP for the base of the new series and new stage lies within Bed 9 at 52.8 m above the base of the Kaili Formation in the Wulius-Zengjiayan section that is about 0.5 km North of Balang Village, Jianhe County, eastern Guizhou Province, South China (Figs. 3, 4). This point fulfills all of the geological and biostratigraphic requirements for a GSSP (see Remane et al., 1996). The section is easily accessible, and access for research is unrestricted. It is located within the Jianhe Natural Reserve of Paleontological Fossils and the Miaoling National Geopark, both have been under permanent protection by the government of Guizhou Province since the natural reserve was approved in 2002 and by the Ministry of Land and Mineral Resources of China since the geopark was approved in 2009.

Figure 2. Correlation chart of the interval of Cambrian Stage 4 through Wuluan Stage (Miaolingian Series). Chart compiled from numerous sources, summarized principally in Yuan and Ng. (2014), Geyer (2015), Zhao et al. (2015, 2017), Hughes (2016), Sundberg et al. (2016), Peng et al. (2017) and Esteve et al. (2017).
Stratigraphic Rank of the Boundary

The Miaolingian Series is the third series of the Cambrian System, and the Wuliuan Stage is the lowermost stage of the Miaolingian Series (Figs. 1, 2). The base of the series and stage defines automatically the top of provisional Cambrian Series 2 and its uppermost stage, the provisional Stage 4, both of which are unnamed yet. The boundary will be a standard series/epoch and stage/age GSSP. The upper boundary of the series is defined by the base of the Furongian Series, and the

Figure 3. (a) Location of Guizhou in China (outlined blue area); (b) Cambrian palaeogeography of Guizhou with the Wuliu-Zengjiayan GSSP section indicated by a red star; (c) Geological map of the part of eastern Guizhou province, showing the study area and the location of the GSSP section for the Miaolingian Series and Wuliuan Stage (modified from Geological Survey of Guizhou Province, 1966); (d) Topographic map of the Balang and Tunzhou area, indicating location of the Wuliu-Zengjiayan GSSP section with the FAD of *Oryctocephalus indicus* (red line; modified from topographic map G-49-37-55, Dagaowu Sheet, issued by Surveying and Mapping Bureaus of Guizhou and Shaanxi, 1991; 1:10000 scale); the Wuliu-Zengjiayan section is named after the Wuliu sidehill and Zengjiayan hill (indicted by red stars).
upper boundary of the stage is defined by the base of the Drumian Stage of the Miaolulingian Series (Fig. 1).

The names Wulian and Miaolulingian are derived from geographic localities in eastern, where the GSSP is located, and southeastern Guizhou. The name of Wulian Stage (and Age) is derived from Wuliu, a side-hill that the Wuliu-Zengjiayan section crosses, and the name Miaolulingian Series (and Epoch) is derived from the Miaoling Mountains, which traverse the southeastern part of the Guizhou Province. These mountains are inhabited primarily by the Miao ethnic minority.

Geography and Physical geology of the GSSP

Geographic Location

The Wuliu-Zengjiayan section (Yuan et al., 1997, 1999, 2002; Zhao et al., 2001a, b, 2004, 2007, 2012a, c) is exposed along a hill ridge, which is about 0.5 km northeast of Balang Village, Jianhe County (formerly the village was administered by Taijiang County), Guizhou Province, China (Fig. 3). The studied area lies in the southwest of the Miaoling National Geopark (Fig. 3(c)). The Balang Village is located 2.5 km from the township of Jianhe County, which is easily accessible via the Guiyang-Kaili-Yuping Express Highway. The position of the Wuliu-Zengjiayan section is on topographic map G-49-37-55, Dagaowu Sheet, 1:10000 sale (Fig. 3(d)). The GSSP is exposed near the ridge crest at a position of 26°44.843'N latitude and 108°24.830'E longitude at an elevation of approximately 795 m.

Geological Location

The Cambrian geology of eastern Guizhou, the site of the GSSP section, has been summarized in a number of papers, among which the most notable are the monographs on the Regional Geology of Guizhou Province published by the Guizhou Bureau of Geology and Mineral Resources (1987), and articles by Yin (1987), Yuan et al. (2002), and Zhao et al. (2011).

The Miaoling Mountains in southeastern Guizhou consist of a series of folds and thrust slices resulting from post-Devonian compressional tectonics that affected the area between the Duliujiang and Qingshuijiang river system of eastern Guizhou (Yin, 1987). The Balang area of Jianhe County, eastern Guizhou, is located on the northwestern limb of the Tunzhou Syncline (Fig. 3(c)), which belongs to the Shansui Composite Syncline in the Nanhua fold belt. The lower half of the Cambrian System in this area was deposited on the lower part of the Jiangnan Slope (mostly shale facies), which was located between the Yangtze carbonate platform to the northwest and deeper water facies of the Jiangnan Basin to the southeast (e.g., Yin, 1987; Peng and Babcock, 2001) (Fig. 3(b)). Exposure of Neoproterozoic and Cambrian strata in the Jianhe area is highly favorable. The Precambrian succession there consists of several formations, which, in ascending order, are the Liangjiehe, Tiesiao, Datangpo, Nantuo, Toushantuo (=Doushan-tuo), and Tongying (=Dengying) formations (the former three units are marked as C yer on Fig. 3(c)). The Cambrian succession in this area comprises seven units. In ascending order these are the Niutitang, Bianmachong, Balang, Tsinghsutung, Kaili, Jialao and Loushankuan (=Loushanguan) formations (Fig. 3(c)). Detailed descriptions of these units have been presented in a number of papers (Zhou et al., 1980; Yin, 1987; Pu and Ye, 1991; Zhao et al., 2001a, b). An overview of Cambrian paleogeography, biotic provinces, and geologic history of the region was provided by Peng and Babcock (2001).

The Kaili Formation is exposed widely in eastern and southeastern Guizhou, showing a SW–NE trend across the Danzhai, Tiaojiang, Jianhe, Zhenyuan and Yuping counties to the Tongren area. The Kaili Formation was deposited in an open-shelf to slope setting (Zhou et al., 1980; Zhang et al., 1996; Zhao et al., 2001a, b; Yuan et al., 2002; Gaines et al., 2011), where it overlies either the Wuxun Formation or the Tsinghsutung Formation and is overlain by the Jialao Formation (Figs. 4(a), 5). The formation is typically about 250 m thick, and strands the boundary of the provisional Cambrian Series 2 and the Miaolulingian Series. The Kaili Formation crops out extensively in the Balang and Chuandong areas (Fig. 3(c)), where it overlies the Tsinghsutung Formation in conformity. The Wuliu-Zengjiayan section contains strata extending from the top part of the Tsinghsutung Formation to the basal part of the Jialao Formation with the GSSP occurring in the lower part of the Kaili Formation. The Kaili Formation contains a total of 47 trilobite genera (subgenera) with 16 genera occurring below the GSSP level, 20 genera above, and 11 genera ranging through the boundary (Zhao et al., 2001a, b; Yuan et al., 2002). Trilobites are commonly articulated and thin shelled, indicating a relatively deep, quiet water sedimentary environment (Zhang et al., 1996; Zhu et al., 1999; Yuan et al., 2002; Gaines et al., 2011).

Location of Level and Specific Point

The boundary interval of the Wuliu-Zengjiayan section consists primarily of silty and calcareous mudstones (Fig. 5) that are abundantly fossiliferous and bear the first appearance datum (FAD) of the widely distributed oryctoccephalid trilobite Oryctocephalus indicus (Fig. 6(a)–(d)), which is selected as primary marker to define the provisional Stage 5 of Cambrian by the International Subcommission on Cambrian Stratigraphy, at 52.8 m above the base of the Kaili Formation (Zhao et al., 2001a, b). The species O. indicus is associated with a large number of trilobites, such as Pagetia, Euarthriccephalus, Burlingia and Olenoides. Below GSSP level, the Bathynotus kueichouensis–Ovarytocyrtocara sinensis Assemblage-Zone is recognized (Figs. 4(a), 5, 6), which is characterized by the presence of many trilobites with broad geographic ranges, e.g. Bathynotus, Redlichia, Oryctocephalus, Ovarytocyrtocara, and Oryctocephalites (Yuan et al., 1997, 2002; Zhao et al., 2001a, b, 2007, 2012a, c; Sundberg et al., 2011; Fig. 6(e)–(h)).

Stratigraphic Completeness

Detailed bed-by-bed correlation of the Miaolulingian strata through eastern Guizhou, coupled with detailed biostratigraphy (Yuan et al., 1997, 1999, 2002; Yin and Yang, 1999; Yang and Yin, 2001; Zhao et al., 2001a, b, 2004, 2005, 2007, 2012a, b, c, 2014, 2015, 2017; Yin et al., 2010; Sundberg et al., 2010, 2011), sedimentology (Zhang et al., 1996; Gaines et al., 2011), carbon isotope chemostratigraphy (Yang et al., 2003; Guo et al., 2005, 2010a, b), sulphur isotope chemostratigraphy (Guo et al., 2014) and biomarkers (Wang et al., 2014) clearly demonstrate the stratigraphic continuity of the basal interval of the Wulian
Figure 4. Exposure of the Wuliu-Zengjiayan GSSP for the base of the Wuliuan Stage (coinciding with the FAD of Oryctocephalus indicus in the Kaili Formation) near Balang, Jianhe County, Guizhou Province, South China. Strata underlying the Wuliuan GSSP belong to the upper part of undefined Cambrian Stage 4 of provisional Series 2. (a) View of the Wuliu-Zengjiayan section showing three trilobite zones of the Kaili Formation; (b) The boundary interval of the GSSP in Wuliu-Zengjiayan section, showing the FAD of O. indicus in the lower part of the Kaili Formation; (c) and (d) close-up views of the rectangle areas in (b). (c) Showing the bed numbers in yellow (Bed 9 and 10), the numbers of collecting interval in red on the white marble, and the FAD of O. indicus, which lies at 52.8 m above the Kaili Formation and defines the base of Wuliuan Stage; (d) The “Wuliu Quarry”, studied by Sundberg et al. (2011), with identical succession and fossil ranges as the Wuliu-Zengjiayan GSSP section; (e) Partial outcrop of the O. indicus Zone, where the rocks yield the Kaili Biota, along with a walk terrace leading to the GSSP site.
Stage (Miaolingian Series) in the Wuliu-Zengjiayan section. Biostratigraphic studies of eastern Guizhou and other countries have revealed a consistent succession of trilobite species and acritarch taxa (e.g., Tchernysheva, 1962; Zhang et al., 1980; Whittington, 1988, 1995; Astashkin et al., 1991; Moczydłowska, 1991; Palmer and Repina, 1993; Jell and Hughes, 1997; Yuan et al., 1997, 2002; Sundberg and McCollum, 1997, 2003; Palmer, 1998; Hughes and Jell, 1999; Yin and Yang, 1999; Sundberg et al., 1999, 2011; Shergold and Whittington, 2000; Yang and Yin, 2001; Korovnikov, 2001, 2006; Zhao et al., 2001a, b, 2004, 2007, 2012a, b, 2014, 2015; Geyer, 2005; Fletcher, 2007; McCollum and Sundberg, 2007; Shabanov et al., 2008; Kruse et al., 2009; Peng et al., 2009b; Yin et al., 2009, 2010; Moczydłowska and Yin, 2012; Hughes, 2016; Singh et al., 2016; Sundberg et al., 2016) as observed in the Wuliu-Zengjiayan section. This section is interpreted to represent continu-

Figure 5. Observed stratigraphic distribution of trilobites in the Wuliu-Zengjiayan section near Balang, Jianhe, Guizhou, South China. The GSSP coincides with the base of the Oryctocephalus indicus Zone in this section, lying 52.8 m above the base of the Kaili Formation.
The exposure containing the GSSP in the Balang area has received
principal correlation event (marker) at GSSP level

Principal Correlation Event (marker) at GSSP level

The oryctocephalid trilobite *Oryctocephalus indicus* (Reed, 1910)
(Fig. 6(a)–(d)) has an intercontinental distribution and its first appearance
has been acknowledged as one of the most favorable level for the
GSSP defining the base of a global stage (e.g. Jell and Hughes, 1997;
Yuan et al., 1997; Hughes and Jell, 1999; Sundberg et al., 1999, 2010,
2011, 2016; Geyer and Shergold, 2000; Korovnikov, 2001, 2006; Peng
and Babcock, 2001; Shergold and Geyer, 2001, 2003; Zhao et al., 2001a,
b, 2004, 2006, 2007, 2012a, b, c, 2014, 2017; Yuan et al., 2002; Peng,
2003; Sundberg and McCollum, 2003; Babcock et al., 2005, 2014;
McCollum and Sundberg, 2005, 2007; Peng et al., 2006, 2012b; Geyer
and Peel, 2011; Hughes, 2016; Singh et al., 2016; Esteve et al., 2017;
Zhao et al., 2017). Besides South China, the species has been identified
from northern India (Indian Himalaya) (Reed, 1910; Jell and Hughes,
1997; Peng et al., 2009b; Hughes, 2016; Singh et al., 2016), western USA
(Sundberg and McCollum, 1997, 2003), North Greenland (Geyer
and Peel, 2011), North Korea (Saito, 1934), and more possibly from
Siberia (Korovnikov, 2001, 2006; Zhao et al., 2006; Fletcher, 2007;
Shabanov et al., 2008; Hughes, 2016; Esteve et al., 2017).

Oryctocephalus indicus provides the best and most precise tool for
intercontinental correlation in the lower part of Cambrian Series 3
(Zhao et al., 2001a, b, 2012a, c; Yuan et al., 2002, 2010, 2011, 2016;
Geyer and Peel, 2011; Yuan and Ng, 2014; Hughes, 2016). Some widely distributed trilobites in the *O. indicus*
Zone also provide fine tools for intercontinental correlation.

The primitive form of *Oryctocephalus indicus* makes its first appearance in the lower–middle part of the Kaili Formation in the
Balgang-Chuangdong area, Jianhe County, Guizhou Province. Specimens of *O. indicus* with the primitive morphology possess only two pairs of marginal spines on the pygidium. These forms are succeeded and replaced by the advanced morphotype, characterized by three pairs of pygidial marginal spines (Yuan et al., 2002). The advanced form of *O. indicus* occurs in the *O. indicus* Zone of Nevada and California, USA (Sundberg and McCollum, 1997, p. 1075), and the interval of its occurrence can be correlated with the middle–upper part of the *O. indicus* Zone of South China. *Oryctocephalus americanus* from the Amecephalus arrojosensis Zone in Nevada, USA (Sundberg and McCollum, 2003), also shows the primitive feature of *O. indicus*. Specimens assigned to *O. americanus* lack connected translabellar furrows (S2, S3), apparently as a result of taphonomic bias. Sundberg (personal communication, 2008) suggested that it gave rise to the advanced form of *O. indicus* but Zhao et al. (2006, 2007) and Esteve et al. (2017) preferred to regard it as a junior synonym of *O. indicus*. The FAD of *O. indicus* always succeeds the disappearance of *Olenellus* in Laurentia and *Redlichia* in the Indo-Pacific faunal province, allowing precise correlation among these levels in different faunal realms.

Stratigraphically, the first appearance of the primitive form of *Oryctocephalus indicus* at the Wuliu-Zengjiayan section lies 1.2 m above the LAD of the redlichiid trilobite *Bathygnosus* and 0.2 m above the LAD of *Redlichia* (Sundberg et al., 2011). In the western United States, the first appearance of *O. indicus* (= *O. americanus*) succeeds...
the disappearance of *Olenellus*. The combination of the FAD of *O. indicus*, the narrow stratigraphic range of *O. indicus*, the stratigraphically abrupt disappearance of redlichiids and olenellid trilobites, and evolutionary advances in oryctoccephalids and ptychopariids allows the base of the Wuliuan Stage to be tightly constrained. *Bathynotus*, which occurs at the top of Cambrian Stage 4, is a guide fossil found in the western United States, Siberia, Australia and South China (Webster, 2009; Peng et al., 2014). Its distribution overlaps that of *Olenellus* and *Redlichia*, and this taxon has been treated as the most effective secondary tool for intercontinental correlation.

As discussed previously (Babcock et al., 2004, 2007; Peng et al., 2004b, 2006), the selection of a GSSP in open-shelf to slope deposits, and particularly in one from a low-latitude region such as the South China Platform, is desirable. Slope settings of the Cambrian favored a combination of cosmopolitan trilobites including agnostoids, oryctoccephalids and polymorphids, such as *Pagetia significans*, *Euarthricocephalus* and *Curvoryctocephalus* in the *Oryctocephalus indicus* Zone, *Bathynotus*, *Ovatoryctocara* and *Redlichia* in the *Bathynotus kuichouensis-Ovatoryctocara sinensis* Assemblage-Zone, and *Olenoides* and *Burlingia* in that zone and the *Oryctocephalus indicus* Zone as well. This combination of taxa enables a precise stratigraphic correlation into the Siberia, Greenland, and Laurentia (Geyer and Peel, 2011; Sundberg et al., 2016). In addition, based on the important trilobite taxa *Acadoparadoxides*, *Eccaparadoxides* and *Miemacca*, the base of the Wuliuan Stage can be correlated across the Mediterranean region (e.g., Morocco, Turkey and Spain) and also to Siberia and Australia (Liñán et al., 2004, 2008; Gozalo et al., 2007, 2011a, b; Geyer, 2016) although direct correlation of Mediterranean successions to other continents is difficult (Alvaro et al., 2003, 2013; Gozalo et al., 2007; Sundberg et al., 2010, 2016; Geyer and Peel, 2011; Zhao et al., 2012a). However, with the aid of Siberian taxa, the base of the Wuliuan Stage can be correlated, more or less confidently, with that of the Mediterranean region.

Stratotype Section and Point

The stratotype Wuliu-Zengjiayan section consists mainly of the Kaili Formation that rests conformably on the Tsinghsutung Formation and is overlain conformably by the Jia-
The Kaili Formation in the Wuliu-Zengjiayan section is a mostly monofacial succession of silty mudstone, mudstone, calcareous mudstone and shale with subordinate gray limestone-marlstone in the basal part and limestone in the uppermost parts of the formation (Zhao et al., 2001a, b; Gaines et al., 2011). Soft-sediment deformation, truncation surfaces, and slide surfaces are rare in the section and absent near the GSSP, suggesting deposition on a gentle slope. The interval of the FAD of *O. indicus* is inferred to be a maximum flooding stage of the major eustatic transgression (Zhu et al., 1999; Gaines et al., 2011; Fig. 7).

The Kaili Formation embraces three trilobite zones, including two polymerid zones and one agnostoid zone (Zhao et al., 2012a, c, 2015, 2017; Fig. 5), in ascending order: the *Bathynotus kueichouensis-Ovatoryctocra sinensis* Assemblage-Zone (4.0–52.8 m above the base of the Kaili Formation), the *Oryctocephalus indicus* Zone (52.8–143.78 m above the base of the Kaili Formation), and the *Peronopsis taijianensis* Zone (143.78–214.2 m above the base of the Kaili Formation).

As mentioned above, the trilobite zonal succession of the Kaili Formation in the Wuliu-Zengjiayan section reveals a complete, tectonically undisturbed, marine succession. *Oryctocephalus indicus* makes its first appearance at 52.8 m above the base of the Kaili Formation (Fig. 6(a)), a level defining the base of the Miaolingian Series and Wuliuan Stage (Zhao et al., 2001a, b, 2006, 2007, 2008, 2012a, 2014; Sundberg et al., 2010, 2011). This point in the Wuliu-Zengjiayan section demonstrates a major change in faunal assemblages with the extinction of redlichiids and *Bathynotus* and the appearance of several new ptychoparid taxa, although some oryctocephalid taxa exhibit ranges that cross this horizon (Fig. 5). Current stratigraphic resolution suggests that the FAD of *O. indicus* in
the major Cambrian realms is equivalent in age. In the Wuliu-Zengjiayan section, *O. indicus* ranges across a 90.98 m interval, which is well fossiliferous, especially in its lower portion. The high-resolution data on distributions of trilobite taxa through the stratigraphic interval containing the GSSP in the Wuliu-Zengjiayan section are summarized in Fig. 5. In addition to *O. indicus*, a number of other guide fossils, which have utility for correlation on either an intercontinental or an interregional scale, help to constrain the position of the boundary. The major faunal changes below and above the FAD of *O. indicus* provide excel-

lent data for global correlation of the boundary interval of the Wuliuan Stage. Among the key trilobite levels in the boundary interval, the LADs of *Ovatoryctocara sinensis* (48.8 m above the base of the Kaili Formation, Figs. 5, 6(f)) and *Bathynotus kueichouensis* (48.8 m above the base of the Kaili Formation, Figs. 5, 6(g–h)) can serve as second-

ary biostratigraphic correlation tools for identifying, with more or less precision, the base of the Miaolingian Series and the Wuliuan Stage (Zhao et al., 2001a, b, 2007, 2012c, 2014; Geyer, 2005; Fletcher, 2007; Peng et al., 2009; Sundberg et al., 2011).

The Wuliu-Zengjiayan section bears exceptionally preserved Burgess-type biota, termed the Kaili Biota. The biota occurs slightly above the FAD of *Oryctocephalus indicus*, containing representatives of at least 11 phyla that include algae, sponges, chancelloriids, cnidarians, “worms”, lobopodia, medusiform fossils, brachiopods, molluscs, arthropods, echinoderms and various problematic fossils, of which some of the taxa are non-biomineralizing (Zhao et al., 2005, 2011; Fig. 8). This important biota can serve to constrain the position of the base of the Miaolingian Series and Wuliuan Stage at least in South China.

Besides trilobites and the exceptionally preserved taxa of the Kaili

Figure 8. Some metazoan taxa from the exceptionally preserved Kaili Biota in Balang Area, Jianhe, Guizhou. (a) Angulosuspongia sinensis Yang, Babcock et Peng, 2017 attached to Glyptacrothele bohemica, GTBM-9-2-1973; (b) Haplophrentis cf. H. carinatus Matthew, 1899, GTBM-9-3162; (c) Acrethele sp., GTBM-9-5-3665; (d) Palaeoscolecid, gen. et sp. indet., GTBM-9-1b; (e) Ottoia guizhouensis Yang, Zhao et Zhang, 2016, GTBM-9-4166; (f) Marrella sp., ventral view, GTBM-9-5-1075; (g) Naraea cf. N. compacta Walcott, 1912, showing thin vessels in cephalic area, GTBM-9-3-5098; (h) Sinococrinus lui Zhao, Huang et Gong, 1994, GTB-9-5-3495; (i) Tuzoia bispinosa Yuan et Zhao, 1999, GM 9-5-1248; (j) Pararotadiscus guizhouensis Zhao and Zhu, 1994, GTBJ-13-3-220; (k) Wiwaxia taijiangensis Zhao, Qian et Li., 1994, with articulated specimen, GTBM-9-5-8888a. Scale bars equal 5 mm for (a), (b), (e), (g), (i); 10 mm for (h), (j) and 2 mm for others.
The acritarch assemblage from the Wuliu-Zengjiayan section shows a prominent change close to the FAD of *Oryctocephalus indicus* (Yin and Yang, 1999; Yang and Yin, 2001; Yin et al., 2009, 2010). The *Leiomarginata simplex-Fimbriaglomerella membra-
ancea* assemblage (0–52 m above the base of the Kaili Formation) below the datum is clearly replaced by the *Cristallinium cambricus-Heliosphaeridium nodosum-Globosphaeridium cerinum* assemblage (52–140 m above the base of the Kaili Formation). This turnover in microfossil assemblages closely corresponds with the major change in trilobite assemblages (Yin and Yang, 1999; Yin et al., 2009). This
Regional and Global Correlation

The FAD of *Oryctocephalus indicus* in the stratotype Wuliu-Zengjiayan section is one of the most easily recognizable horizons in the Cambrian (see Geyer and Shergold, 2000; Fig. 2). In South China, it is used for defining the base of the regional Wulingian Series and Taijiangian Stage (Peng et al., 2000; Peng and Babcock, 2001). Possible suitability of the FAD of this species for marking a global stage and series boundary has been summarized principally by Shergold and Geyer (2003), and Peng et al. (2004a, b, 2006). Key correlation tools are biostratigraphic ranges of polymerid trilobites, agnostoid trilobites, acritarchs; carbon isotopic ratios; sulfur isotopic ratios; and organic chemostratigraphy; and sequence stratigraphy.

Polymerid Trilobite Biostratigraphy

Two polymerid biozones are recognized in the lower-middle part of the Wuliu-Zengjiayan section (Zhao et al., 2001a, b, 2012a, c, 2015, 2017; Yuan et al., 2002), the lower Bathynotus kweichowensis-Ovatoryctocara sinensis Assemblage-Zone and the overlying Oryctocephalites indicus Zone (the lowermost zone of the Wuliuan Stage) with their boundary defined by the FAD of *O. indicus* (Figs. 4(a), 5). These two zones have been recognized in a number of sections of the Kaili Formation in eastern Guizhou, for example, the Miaobanpo (Zhao et al., 2001a, b, 2005, 2011), the Jianshan (Zhao et al., 2008), the Fujichong (Zhao et al., 2012a), the Sanwan (Zhao et al., 2012b) and the Pingzhai (Yuan et al., 2002; Zhao et al., 2012a) sections. The level coinciding with FAD of *O. indicus* may correlate to the base of the Tianpeng Formation of platform facies in Mengxi County of Yunnan Province, South China (Zhao et al., 2014), the base of *Ameccephalus arrojosensis* Zone of Emigrant Formation in Great Basin, USA, and occurs in the Parahio Formation, Spiti area, Indian Himalaya (see Singh et al., 2016; Hughes et al., 2018), and the corresponding level in northwestern Korea (Saito, 1934).

Although most of the polymerid trilobites from the biozones are endemic, a few of them provide, more or less, correlation tools of regional or intercontinental scale and allow tineiines to be established into some other Cambrian faunal realms. Particularly useful guide fossils are the pandemic forms such as *Oryctocephalus indicus*, *Ovatoryctocara*, *Oryctocephalos*, *Oryctocephalites*, and *Burlingia* (Reed, 1910; Saito, 1934; Lermontova, 1940; Shergold, 1969; Lu et al., 1974; Zhang et al., 1980; Whittington, 1994; Jell and Hughes, 1997; Sundberg and McCollum, 1997, 2003; Yuan et al., 1997, 2002; Zhao et al., 2001a, b, 2006, 2012b, 2014; Sundberg et al., 2011, 2016; Geyer and Peel, 2011; Yuan and Esteve, 2015; Hughes, 2016; Singh et al., 2016; Esteve et al., 2017), the nektobenthic forms such as *Redlichia* and *Bathynotus* (Kobayashi, 1935; Lu, 1950; Lu and Chien, 1964; Öpik, 1970; Zhang et al., 1980; Whittington, 1988; Gao et al., 1999; Shergold and Whittington, 2000; Yuan et al., 2002; Kruse et al., 2004; Peng et al., 2009, 2014; Webster, 2009; Goryaeva et al., 2012; Hughes, 2016; Laurie, 2016), and the benthic trilobite *Olenoides* that has an intercontinental distribution (Yuan et al., 1997, 2002; Wang et al., 2016).

Agnostoid Trilobite Biostratigraphy

A single agnostoid biozone, the *Peronopsis taijiangensis* Zone, is recognized in the upper part of the Wuliu-Zengjiayan section (Yao et al., 2009), replacing the previous *Oryctocephalus orientalis* Zone of Yuan et al. (2002). It lies immediately above the *Oryctocephalus indicus* Zone (Fig. 5), and in eastern Guizhou and western Hunan it is overlain by the agnostoid *Psychagnostus praecurrens* Zone of the Huqiao Formation (Peng, 2009, 2018). The *Peronopsis taijiangensis* Zone is correlatable with the *Psychagnostus praecurrens* Zone of Laurentia, where the agnostoid *Psychagnostus praecurrens* Zone, together with the overlying *Psychagnostus gibbus* Zone, correlates with the upper half of the polymerid *Oryctocephalus* Zone (Robison and Babcock, 2011; Babcock et al., 2017). *Psychagnostus praecurrens* is a widespread agnostoid trilobite, known from Sweden (Westergard, 1946; Weidner and Ebbesdahl, 2014; Ahlberg et al., 2019), England (Rushdon, 1966), Russia (Siberia) (Egorova et al., 1976; Naimark, 2008; Shabanov et al., 2008), Australia (Laurie, 2004; Kruse et al., 2009), the USA (Utah and Nevada) (Robison, 1982; McCollum and Sundberg, 2007, Sundberg, 2011), and probably from Kazakhstan (Egaliev and Egaliev, 2008).

Although *Psychagnostus praecurrens* has not been recorded in South China (likely due to fauces restriction), strata corresponding to the *P. praecurrens* Zone are apparently present, i.e. the Aoxi Formation in northwestern Hunan, which is composed of grey to light grey, thin- to thick-bedded dolomites but stratigraphically is overlain by the *P. gibbus*-bearing Huqiao Formation (Peng and Robison, 2000). In the Wuliu-Zengjiayan section, the eodiscid trilobite *Pagetia significans* makes its first appearance slightly below the FAD of *O. indicus* (Sundberg et al., 2016; Fig. 5). *Pagetia significans* has been recorded from the Miolinigian strata of Australia (Jell, 1975), North Korea (Kobayashi, 1944), and Indian Himalaya (Jell and Hughes, 1997; Singh et al., 2016).

Acritarch Biostratigraphy

As phytoplanktic microfossils, Cambrian acritarchs are of significance to assist in delineating faunal zones, for indicating changes in the depositional environment, and even defining geological or biological events.

The taxonomic change in organic-walled microfossils (acritarchs) in the Wuliu-Zengjiayan section has been intensively studied (Yin et al., 2010). As discussed above, two acritarch assemblages, the *Leiomarginata simplex*-Fimbriaglomerella membranacea assemblage and the *Cristallinium cambriense*-Heliosphaeridium nodusum-Globosphaeridium cerinum* assemblage are recognized below and above the GSSP respectively (Fig. 9). These acritarch assemblage zones are based on continuous sampling of the whole section, and more intensive sampling across a 4 m interval (50.8–54.8 m above the base of the Kaili Formation). Many acanthomorphic acritarch forms, such as *Helios-
phaeridium dissimilare, H. nodosum, H. serridentatum, Globosphaeridium cerinum, and Solisphaeridium flexipilosum (Fig. 10), exhibit a first appearance at 52.3–52.7 m above the base of the Kaili Formation, which is slightly below the GSSP for the base of Miaolingian Series and Wuliuan Stage.

Heliosphaeridium nodosum, H. dissimilare, H. serridentatum, Globosphaeridium cerinum, Solisphaeridium flexipilosum also mark the base of the traditional middle Cambrian in Baltica, and Gondwana (Volkova, 1990; Moczydłowska, 1998, 1999; Moczydłowska and Yin, 2012; Palacios, 2015). On the basis of the present record and existing data, it is noted that many species referred to Heliosphaeridium range from the provisional Cambrian Series 2 through the Miaolingian Series are even restricted to the Miaolingian Series. Therefore, certain species of Heliosphaeridium, such as H. dissimilare and H. serridentatum, appear to characterize the Miaolingian Series.

More recently, acritarch assemblages and cryptospore-like microfossils have been obtained from stratigraphic successions spanning the Oryctocephalus indicus Zone in the Parahio Valley (Spiti), Indian Himalaya, and the Log Cabin Mine section, eastern Nevada, USA (Yin et al., 2013), showing the obvious change in acritarch taxonomy near the FAD of Oryctocephalus indicus. Such a change is significant and indicates an important geobiological event (Yin et al., 2016).

Carbon Isotope Chemostratigraphy

The carbon isotopic composition of carbonate rocks varies between –2.7 and +3.1‰ in the Wuliu-Zengjiayan section (Yang et al., 2003; Guo et al., 2005, 2010a, b). There is a stepwise decline from the base of the Kaili Formation towards the GSSP level, which is marked by peak negative values. Subsequently, there is a long relative stable interval with average seawater values between 0 and 1, and then the formation top (last sample) has a minor positive excursion. The base of the Oryctocephalus indicus Zone is marked by a distinctive peak of a rather long negative δ¹³C_carb excursion with minimum values of –2.7‰ (Fig. 7). Thus, a distinct negative excursion in the carbon isotopic composition occurs from the Bathynotus kueichouensis–Ovatoryctocara sinensis Assemblage-Zone through the O. indicus Zone. This excursion, near the conterminous base of the Miaolingian Series and Wuliuan Stage, can also be recognized at the Jianshan section nearby (Guo et al., 2010a, b), at other localities on the Yangtze Platform, South China (Zhu et al., 2004), in Siberia (Shabanov et al., 2008), and North America (Montañez et al., 2000; Dilliard et al., 2007).

Sulfur Isotope Chemostratigraphy

The sulfur isotopic composition of sedimentary pyrite displays a similar variation across the provisional Cambrian Series 2 through the Miaolingian Series in the Wuliu-Zengjiayan section (Guo et al., 2014). A shift from δ³⁴S values around 1.3‰ to more positive values of 19.8‰ through the lower part of Kaili Formation. An excursion towards less δ³⁴S enriched values is located slightly below the level of the Cambrian Series 2 to Cambrian Series 3 transition. There are two separate positive excursions in the middle and upper Kaili Formation, and an additional third one occurs at the formation top. The evolution towards more positive δ³⁴S values could reflect the development of closed system conditions in the early burial environment with respect to sulfate availability in the pore water realm. Comparably ³⁴S enriched pyrite sulfur isotope values and a somewhat similar variation across this stratigraphic transition have been observed in other sections of northwest Spain (Wotte et al., 2012), southern France (Wotte et al., 2012), the

Figure 10. Acritarchs from the Kaili Formation of the Wuliu-Zengjiayan section. Sample numbers are prefixed with either FZX or K. (a) Heliosphaeridium nodosum Moczydłowska, 1998, FZX25; (b), (c) Globosphaeridium cerinum (Volkova) comb. Moczydłowska, 1991, FZX25b, FZX24c; (d) Solisphaeridium flexipilosum (Slavicova) comb. Moczydłowska, 1998, FZX26; (e) Comasphaeridium molliculum Moczydłowska and Vidal, 1988, K69; (f) Synsphaeridium sp., K51. All scale bars equal 10 µm.
Siberian Platform (Wotte et al., 2011), the USA (Wotte et al., 2011), and Mexico (Loyd et al., 2012).

Organic Chemostratigraphy

Organic geochemical investigations for the boundary interval of the Wuliu-Zengjiayan GSSP section (Bed 8–12) shows that all the geochemical proxies, such as TOC content, δ\text{13}C\text{carb}, atomic H/C value of kerogen, as well as biomarker parameters, co-vary across the section and change rather sharply across the boundary between the provisional Cambrian Series 2 and the Miaolingian Series at the top of Bed 9 (Wang et al., 2014). For example, the relative abundance of isoprenoid hydrocarbons to n-alkanes (or the absolute concentration to TOC) shows an upward increase across the boundary with the (Pr+Ph)/(nC\text{17}+nC\text{18}) values ranging in 0.31–0.56 in the provisional Stage 4 sediments, as compared to 0.98–1.24 in the Wuliuan Stage. The δ\text{13}C\text{carb} trend is also in accord with the abrupt change in δ\text{13}C\text{carb} across the boundary (Guo et al., 2010a, b; Figs. 7).

In general, changes observed are interpreted to reflect primary depositional values, notably variations in the composition of primary productivity and the marine redox condition (Wang et al., 2014). These, in turn, are linked to biological changes (i.e. trilobites and acritarchs respectively; Figs. 5, 6, 9, 10) and a possible regional and global anoxia-extinction event across the transition from the Series 2 to the Miaolingian Series. The extinction of multiple trilobite species at the end of Series 2 is probably related to global anoxia as evidenced by carbon isotopes (Gaines et al., 2011). The remaining thickness of the middle and upper Kaili Formation is interpreted as a highstand system tract with gradual shallowing and accompanying seaward progradation of the Yangtze carbonate platform, manifested an overall increase in the presence of thin, interbedded carbonates upsection toward the contact with the overlying mixed-siliciclastic carbonate Jialao Formation. The Kaili-Jialao succession has been interpreted to be a complete 3rd order depositional cycle, representing transgression, maximum flooding, and a protracted period of regression accompanied by basin filling (Wang et al., 2006).

Other Regional Reference Sections

For comparative purposes, the Jianshan and Sanwan sections in eastern Guizhou have been studied in detail (Zhao et al., 2008, 2012b). Both sections bear the FAD of *Oryctocephalus indicus* and also fulfill, more or less, the biostratigraphic requirements for a GSSP. Both sections are available with unrestricted access for research purposes. The Sanwan section appears to be a good auxiliary to the Wuliu-Zengjiayan GSSP section if it could receive intensive study in future. The Jianshan section is similar to the Wuliu-Zengjiayan section in litho- and bio-stratigraphic features, but it bears a small tectonic fold within the O. indicus Zone (at ca. 78.5 m above the base of the Kaili Formation) (Zhao et al., 2008).

Best Estimate of Age for the Base of the Proposed Miaolingian Series and Wuliuan Stage

The age for the base of Miaolingian Series and Wuliuan Stage is estimated at 509.1 ± 0.22 Ma. This age is based on an ash bed in the Upper Comley Sandstone of Shropshire, United Kingdom, which has given a weighted mean 206Pb/238U age of 509.02 ± 0.79 Ma on four (of six) single grain fractions (Harvey et al., 2011). This age was newly recalibrated to 509.1 ± 0.62 (with λ errors) by the Isotope Geology Laboratory of Boise State University, USA, as one of the high-resolution radiometric ages of zircon crystals determined by TIMS for the International Commission on Stratigraphy (Peng et al., 2012b; Schmitz, 2012). From immediately overlying beds, trilobites including *Paradoxides harlani* indicate the P. harlani Zone of Newfoundland, which is correlative with the *Oryctocephalus indicus Zone* of South China and Laurentia (Geyer, 2005; Fletcher, 2007), and the base of the traditional ‘Middle Cambrian’ (St. David’s Series) in Shropshire. The base of the traditional Middle Cambrian is estimated to be 510.0 ± 1.0 Ma, an age that is constrained by U-Pb zircon ages from an ash bed in the Hanford Brook Formation, southern New Brunswick (Bowring and Erwin, 1998; Landing et al., 1998). This age was recalibrated as 508.05 ± 2.5 Ma (Peng et al., 2012b; Schmitz, 2012). Although the age of the stratigraphically older New Brunswick ash bed conflicts with the above estimated age for the base of Wuliuan Stage (509.1 ± 0.62 Ma), the conflict is easily accommodated within the error ranges for the two dates. Taken together, the two dates give a well-corroborated age for the base of the Miaolingian Series and Wuliuan Stage close to 509 Ma. Montañez et al. (2000) estimated an age of ~509 Ma for the base of the traditional Middle Cambrian of Laurentia, and this estimate is close to the age provided by ICS.

Acknowledgements

We thank the members of the Working Group on Cambrian Stage 5, International Subcommission on Cambrian Stratigraphy (ISCS), and the voting members of ISCS for providing constructive comments and suggestions that improved the original proposal largely. This work was supported in part by grants from the National Natural Science Foundation of China (49060010, 40372023, 41330101), the Ministry of Science and Technology of China (2006CB806401, 2013CB835002, 2015FY10100, 12002CC2600), the National Commission on Stratigraphy of China (95-Special Project-01-1-6, DD20160120-04), the State Key Laboratory on Palaeobiology and Stratigraphy (20191101),
and the Guizhou Bureau of Science and Technology (CGSCFG-2010-7001; Gui. Sci. Tal. [2017] 5788). Zhu Lijun and Yu Meiyi from the Guizhou University and Zhang Zhenghua from the Guizhou Command of Southwest Petroleum are thanked for taking part in earlier studies. We are grateful to Nigel C. Hughes (Riverside) and an anonymous reviewer for their constructive reviews. Special thanks are due to all master students from the College of Resource and Environment Engineering, Guizhou University, and to the local Balang villager Feng Liu and Zhefu Liu for their assistance with the field work. This is a contribution to the IGCP 668 project ‘The stratigraphic and magmatic history of Early Paleozoic equatorial Gondwana and its associated evolutionary Dynamics.’

References

Saito, K., 1934. Older Cambrian trilobite and conchostraca from the Kuonamka Formation of the Molodo River section (the southeast- ern slope of the Olenek Uplift of the Siberian Platform) proposed as a candidate for GSSP of the lower boundary of the Middle Cambrian and

Zhao Yuanlong is a Professor at Guizhou Research Center of Palaeontology and College of Resources and Environment Engineering, Guizhou University. He has been working on Cambrian trilobites, chronostratigraphy of Cambrian Series 3 and Stage 5, and early metazoan paleobiology since 1961. As one of primary researchers, he found the Cambrian soft-bodied Kaili Biota with his colleagues. Currently he focuses his research mainly on defining provisional Cambrian Stage 4, and the taxonomy and biostratigraphy of oryctocephalid trilobites.

Jinliang Yuan is a Research Professor at the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences. He has been working on Cambrian biostratigraphy and trilobites, and Devonian, Carboniferous, and Permian trilobites since 1975. Recently he focuses on his research on Cambrian boundaries between Series 2 and the Miaolingian Series in South China and between Miaolingian and Furongian Series in North China, and on biostratigraphy and phylogeny of Cambrian oryctocephalid trilobites.

Loren E. Babcock is a Professor in the School of Earth Sciences at the Ohio State University, Columbus, Ohio, USA. His research interests are centered around trilobite paleobiology, taphonomy, and stratigraphy. In recent years, Babcock has focused attention on development of a global chronostratigraphic subdivision of the Cambrian System. He is currently Chairman of the International Subcommission on Cambrian Stratigraphy from 2012.

Xinglian Yang is a Professor at the Research Center of Palaeontology and College of Resource and Environment Engineering at Guizhou University, Guiyang, Guizhou, China. She has been working on Cambrian Stratigraphy and Palaeontology since 1999. Her research interests are mainly focused on early metazoan paleobiology and Cambrian stratigraphy, especially on the Cambrian sponges and chronostratigraphy of the boundary interval of Cambrian provisional Series 2 and Miaolingian Series in South China.