Publication:
Efecto del extracto natural de arándono rojo en la formación de un biofilm y en la viabilidad bacteriana en un modelo validado de biofilm oral in vitro

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2019
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Objetivos Investigaciones previas han demostrado la capacidad antimicrobiana de los extractos de arándano rojo frente a varios patógenos periodontales en estado planctónico. No obstante, la literatura existente sobre ese efecto en patógenos periodontales organizados en biofilm in vitro es escasa. Debido a que las bacterias se organizan en biofilms en la cavidad oral, el objetivo de este estudio es evaluar la actividad antibacteriana y el potencial anti-adhesión para la formación de biofilms del extracto de arándano rojo frente a Streptococcus oralis, Veillonela parvula, Actinomices naeslundii y los patógenos periodontales Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans y Fusobacterium nucleatum, en un modelo validado de biofilm in vitro. Materiales y métodos Se estudiaron las concentraciones mínimas inhibitorias (MICs, por sus siglas en inglés) y las concentraciones mínimas bactericidas (MBCs, por sus siglas en inglés) de 6 especies bacterianas en planctónico, tras un periodo de exposición de 24-48 horas a diferentes concentraciones de extractos de arándano rojo (1.000 μg/mL; 500 μg/mL; 250 μg/mL; 100 μg/mL y 10 μg/mL). Dichas especies bacterianas están implicadas en el desarrollo del biofilm oral subgingival in vivo y, como tal, representan los colonizadores iniciales (S. oralis y A. naeslundii), tempranos (V. parvula), secundarios (F. nucleatum) y los colonizadores tardíos (P. gingivalis y A. actinomycetemcomitans). Teniendo en cuenta las MBCs de las seis especies bacterianas, se utilizó un modelo validado de biofilm in vitro, para evaluar la actividad antibacteriana de una solución de extractos de arándano rojo (20.000 μg/mL), frente a las bacterias organizadas en biofilm, en dos tiempos de exposición (30 y 60 segundos). Teniendo en cuenta las MICs de las seis especies bacterianas, se analizó el potencial inhibitorio en la formación de biofilms sobre discos de XVIII hidroxiapatita (HA), de una solución de extractos de arándano rojo (200 μg/mL), tras 6 horas de contacto. En los tres experimentos, se estudió el recuento de las bacterias, expresadas como unidades formadoras de colonias por mililitro (UFC/mL), mediante la técnica reacción en cadena de la polimerasa cuantitativa en tiempo real (qPCR, por sus siglas en inglés). La vitalidad celular de los biofilms fue evaluada por microscopía de barrido laser confocal (CLSM, por sus siglas en inglés). En el segundo y tercer experimentos, las variables dependientes seleccionadas fueron las UFC/mL viables de las seis bacterianas y la proporción de células vivas/células muertas de todo el biofilm. Se realizó un análisis a nivel del experimento para cada parámetro del estudio (n=9 para qPCR y n=3 para los resultados de CLSM). Para evaluar la normalidad de la distribución de los dados se usó el test de Shapiro-Wilk. El efecto de cada solución y el tiempo de exposición (variables independientes) y su interacción con las variables dependientes, se evaluó mediante el test paramétrico ANOVA. Se construyó un modelo lineal general, utilizándose el método de máxima verosimilitud y las correcciones de Bonferroni para comparaciones múltiples. Los datos se expresaron como medias ± desviación estándar y como el porcentaje medio de inhibición. Los resultados se consideraron estadísticamente significativos con p<0,05. Resultados Con respecto a la capacidad antibacteriana, los extractos de arándano rojo (20.000 µg/mL) provocaron reducciones estadísticamente significativas en las UFC/mL viables de S. oralis y A. naeslundii, en el modelo de biofilm in vitro, tras 30 y 60 segundos de exposición y frente a V. parvula, a los 30 segundos de exposición. Sin embargo, aunque su efecto redujo la viabilidad de P. gingivalis, A. actinomycetemcomitans y F. nucleatum, el efecto no fue estadísticamente significativo tras 30 y 60 segundos de exposición. Solo en el caso de F. nucleatum se observaron diferencias estadísticamente significativas en las UFC/mL viables, cuando se compararon los dos tiempos de exposición. XIX En relación a la capacidad antibiofilm, los extractos de arándano rojo (200 µg/mL) inhibieron significativamente la incorporación de las seis especies bacterianas en el modelo de biofilm in vitro, tras 6 horas de exposición, en comparación con los biofilms control (exposición a PBS). Tras el análisis de CLSM, se confirmó que los biofilms formados en la superficie de los discos de HA no estaban tan bien estructurados como los biofilms control, detectándose también reducciones significativas en la biomasa y en el numero de colonias bacterianas en los biofilms tratados mediante qPCR. Conclusiones El extracto natural de arándano rojo presenta capacidad antibacteriana frente a seis especies bacterianas (S. oralis, V. parvula, A. naeslundii y los patógenos periodontales P. gingivalis, A. actinomycetemcomitans y F. nucleatum) organizadas en biofilm, de manera significativa frente a los colonizadores iniciales, y capacidad para inhibir la incorporación de las seis especies bacterianas en un biofilm in vitro.
Aim Previous studies have demonstrated the antimicrobial capacity of cranberry extracts against several periodontal pathogens in planktonic state. However, the literature about this effect on periodontal pathogens organized in in vitro biofilms is scarce. Since bacteria are organized in biofilms in the oral cavity, the objective of this study was to evaluate the antibacterial activity and the antiadhesion potential for biofilm formation of cranberry extract against Streptococcus oralis, Veillonela parvula, Actinomyces naeslundii and the periodontal pathogens Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum, in a validated in vitro biofilm model. Material and methods Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of 6 bacterial species in planktonic state were studied after 24-48 hours of exposure at different concentrations of cranberry extracts (1.000 μg/mL, 500 μg/mL, 250 μg/mL, 100 μg/mL and 10 μg/mL). These bacterial species are involved in the development of an in vivo subgingival oral biofilm, and represent the early colonizers (S. oralis and A. naeslundii), early (V. parvula), secondary (F. nucleatum) and late colonizers (P. gingivalis and A. actinomycetemcomitans). Based on the MBCs of the six bacterial species, a validated in vitro biofilm model was used to evaluate the antibacterial activity of a solution of cranberry extracts (20,000 μg/mL) against bacteria in biofilm, in two exposure times (30 and 60 seconds). Based on the MICs of the six bacterial species, it was analysed the inhibitory potential on the formation of biofilms on hydroxyapatite (HA) discs of a solution of cranberry extracts (200 μg/mL) after 6 hours of exposure. In the three experiments, the bacterial counts, expressed as colony forming units per milliliter (CFU/mL), was studied using the real-time XXII quantitative polymerase chain reaction (qPCR) technique. Cellular vitality of the biofilms was evaluated by confocal laser scanning microscopy (CLSM). In the second and third experiments, the dependent variables selected were the viable CFU/mL of the six bacterial species and the ratio of living cells/dead cells of the entire biofilm. An experiment-level analysis was made for each study parameter (n=9 for qPCR and n=3 for the results of CLSM). To evaluate the normality of the data distribution, the Shapiro-Wilk test was used. The effect of each solution and the exposure time (independent variables) and its interaction with the dependent variables were evaluated by the parametric ANOVA test. A general linear model was constructed, using the maximum likelihood method and the Bonferroni corrections for multiple comparisons. The data were expressed as means ± standard deviation and as mean percentage of inhibition. The results were considered statistically significant at p<0.05. Results With respect to the antibacterial capacity, cranberry extracts (20.000 μg/mL) caused significant reductions on viable CFU/mL of S. oralis and A. naeslundii, in an in vitro biofilm model, after 30 and 60 seconds of exposition and against of V. parvula, at 30 seconds of exposure. However, although their effect reduced the viability of P. gingivalis, A. actinomycetemcomitans and F. nucleatum, their effect was not significant after 30 and 60 seconds of exposure. Only for F. nucleatum, statistically significant differences were observed in the viable CFU/mL when the two exposure times were compared. In relation to the antibiofilm capacity, cranberry extracts (200 μg/mL) significantly inhibited the incorporation of the six bacterial species in the in vitro biofilm model after 6 hours of exposure, in comparison with the control biofilms. After CLSM analysis, it was confirmed that the biofilms formed on the surface of the HA discs were not as well structured as the control biofilms, and significant reductions in the biomass and in the number of bacterial colonies in the biofilms treated by qPCR were also detected. XXIII Conclusions Natural extracts of cranberry present antibacterial capacity against six bacterial species (S. oralis, V. parvula, A. naeslundii and the periodontal pathogens P. gingivalis, A. actinomycetemcomitans and F. nucleatum) in biofilm, with a statistically significant result against the initial colonizers, and an ability to inhibit the incorporation of the six bacterial species in an in vitro biofilm
Description
UCM subjects
Keywords
Citation
Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sanchez, E., Nabavi, S. F. & Nabavi, S. M. (2017) Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research 196, 44-68. Beikler, T. & Flemmig, T. F. (2011) Oral biofilm-associated diseases: trends and implications for quality of life, systemic health and expenditures. Periodontology 2000 55, 87-103. Bodet, C., Chandad, F. & Grenier, D. (2006a) Anti-inflammatory activity of a high-molecular-weight cranberry fraction on macrophages stimulated by lipopolysaccharides from periodontopathogens. Journal of Dental Research 85, 235-239. Bodet, C., Piché, M., Chandad, F. & Grenier, D. (2006b) Inhibition of periodontopathogen-derived proteolytic enzymes by a high-molecularweight fraction isolated from cranberry. Journal of Antimicrobial Chemotherapy 57, 685-690. Bonifait, L. & Grenier, D. (2010) Cranberry polyphenols: potential benefits for dental caries and periodontal disease. Journal of the Canadian Dental Association 76, a130. Boutaga, K., van Winkelhoff, A. J., Vandenbroucke-Grauls, C. M. & Savelkoul, P. H. (2003) Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples. Journal of Clinical Microbiology 41, 4950-4954. Boutaga, K., van Winkelhoff, A. J., Vandenbroucke-Grauls, C. M. & Savelkoul, P. H. (2005) Periodontal pathogens: a quantitative comparison of anaerobic culture and real-time PCR. FEMS Immunology and Medical Microbiology 45, 191-199. Bunte, K., Hensel, A. & Beikler, T. (2019) Polyphenols in the prevention and treatment of periodontal disease: A systematic review of in vivo, ex vivo and in vitro studies. Fitoterapia 132, 30-39. Buset, S. L., Walter, C., Friedmann, A., Weiger, R., Borgnakke, W. S. & Zitzmann, N. U. (2016) Are periodontal diseases really silent? A systematic review of their effect on quality of life. Journal of Clinical Periodontology 43, 333-344. Chan, M., Hidalgo, G., Asadishad, B., Almeida, S., Muja, N., Mohammadi, M. S., Nazhat, S. N. & Tufenkji, N. (2013) Inhibition of bacterial motility and spreading via release of cranberry derived materials from silicone substrates. Colloids and Surfaces B: Biointerfaces 110, 275-280. Christersson, L. A., Slots, J., Rosling, B. G. & Genco, R. J. (1985) Microbiological and clinical effects of surgical treatment of localized juvenile periodontitis. Journal of Clinical Periodontology 12, 465-476. Chung, S. Y., Song, K. B., Lee, S. G. & Choi, Y. H. (2011) The strength of age effect on tooth loss and periodontal condition in Korean elderly. Archives of Gerontology and Geriatrics 53, e243-248. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & LappinScott, H. M. (1995) Microbial Biofilms. Annual Review of Microbiology 49, 711-745. Côté, J., Caillet, S., Doyon, G., Dussault, D., Sylvain, J.-F. & Lacroix, M. (2011) Antimicrobial effect of cranberry juice and extracts. Food Control 22, 1413-1418. Dabholkar, C. S., Shah, M., Kathariya, R., Bajaj, M. & Doshi, Y. (2016) Comparative Evaluation of Antimicrobial Activity of PomegranateContaining Mouthwash Against Oral-Biofilm Forming Organisms: An Invitro Microbial Study. Journal of Clinical and Diagnostic Research 10, Zc65-69. Daglia, M. (2012) Polyphenols as antimicrobial agents. Current Opinion in Biotechnology 23, 174-181. Davey, M. E. & Costerton, J. W. (2006) Molecular genetics analyses of biofilm formation in oral isolates. Periodontology 2000 42, 13-26. Davies, D. (2003) Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery 2, 114-122. Donlan, R. M. & Costerton, J. W. (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews 15, 167-193. Eke, P. I., Page, R. C., Wei, L., Thornton-Evans, G. & Genco, R. J. (2012) Update of the case definitions for population-based surveillance of periodontitis. Journal of Periodontology 83, 1449-1454. Eydelnant, I. A. & Tufenkji, N. (2008) Cranberry derived proanthocyanidins reduce bacterial adhesion to selected biomaterials. Langmuir 24, 1027310281. Feldman, M. & Grenier, D. (2012) Cranberry proanthocyanidins act in synergy with licochalcone A to reduce Porphyromonas gingivalis growth and virulence properties, and to suppress cytokine secretion by macrophages. Journal of Applied Microbiology 113, 438-447. Feldman, M., Tanabe, S., Howell, A. & Grenier, D. (2012) Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells. BMC Complementary and Alternative Medicine 12, 6. Frencken, J. E., Sharma, P., Stenhouse, L., Green, D., Laverty, D. & Dietrich, T. (2017) Global epidemiology of dental caries and severe periodontitis - a comprehensive review. Journal of Clinical Periodontology 44 Suppl 18, S94-S105. Gregoire, S., Singh, A., Vorsa, N. & Koo, H. (2007) Influence of cranberry phenolics on glucan synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. Journal of Applied Microbiology 103, 1960-1968. Gutiérrez, S., Morán, A., Martínez-Blanco, H., Ferrero, M. A. & RodríguezAparicio, L. B. (2017) The usefulness of non-toxic plant metabolites in the control of bacterial proliferation. Probiotics and Antimicrobial Proteins 9, 323-333. Gyawali, R. & Ibrahim, S. A. (2012) Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics. Applied Microbiology and Biotechnology 95, 29-45. Haffajee, A. D. & Socransky, S. S. (1994) Microbial etiological agents of destructive periodontal diseases. Periodontology 2000 5, 78-111. Haffajee, A. D., Teles, R. P. & Socransky, S. S. (2006) The effect of periodontal therapy on the composition of the subgingival microbiota. Periodontology 2000 42, 219-258. Herrera, D., Alonso, B., León, R., Roldán, S. & Sanz, M. (2008) Antimicrobial therapy in periodontitis: the use of systemic antimicrobials against the subgingival biofilm. Journal of Clinical Periodontology 35, 45-66. Herrera, D., Matesanz, P., Bascones-Martinez, A. & Sanz, M. (2012) Local and systemic antimicrobial therapy in periodontics. Journal of EvidenceBased Dental Practice 12, 50-60. Hidalgo, G., Chan, M. & Tufenkji, N. (2011) Inhibition of Escherichia coli CFT073 fliC expression and motility by cranberry materials. Applied and Environmental Microbiology 77, 6852-6857. Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C. & Rahu, N. (2016) Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?. Oxidative Medicine and Cellular Longevity 2016, 1-9. Jensen, H. D., Struve, C., Christensen, S. B. & Krogfelt, K. A. (2017) Cranberry juice and combinations of its organic acids are effective against experimental urinary tract infection. Frontiers in Microbiology 8, 542. Koo, H., De Guzman, P. N., Schobel, B., Smith, A. V. & Bowen, W. (2006) Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development. Caries Research 40, 20-27. Koo, H., Duarte, S., Murata, R., Scott-Anne, K., Gregoire, S., Watson, G., Singh, A. & Vorsa, N. (2010) Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Research 44, 116-126. Kornman, K. S. & Robertson, P. B. (1985) Clinical and microbiological evaluation of therapy for juvenile periodontitis. Journal of Periodontology 56, 443-446. Krayer, J. W., Leite, R. S. & Kirkwood, K. L. (2010) Non-surgical chemotherapeutic treatment strategies for the management of periodontal diseases. Dental Clinics of North America 54, 13-33. La, V. D., Howell, A. B. & Grenier, D. (2010) Anti-Porphyromonas gingivalis and anti-inflammatory activities of A-type cranberry proanthocyanidins. Antimicrobial Agents Chemotherapy 54, 1778-1784. Labrecque, J., Bodet, C., Chandad, F. & Grenier, D. (2006) Effects of a highmolecular-weight cranberry fraction on growth, biofilm formation and adherence of Porphyromonas gingivalis. Journal of Antimicrobial Chemotherapy 58, 439-443. Lang, N. P. & Lindhe, J. (2015) Clinical periodontology and implant dentistry, 2nd Volume Set. John Wiley & Sons. Lewis, K. (2001) Riddle of biofilm resistance. Antimicrobial Agents Chemotherapy 45, 999-1007. Lima, G. P. P., Vianello, F., Corrêa, C. R., Campos, R. A. d. S. & Borguini, M. G. (2014) Polyphenols in fruits and vegetables and its effect on human health. Journal of Food and Nutrition Sciences 5, 1065-1082. Listgarten, M. A. (1988) Bacterial invasion of periodontal tissues. Journal of Periodontology 59, 412-413. Mah, T.-F. C. & O'toole, G. A. (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 9, 34-39. Maisuria, V. B., Lopez-de Los Santos, Y., Tufenkji, N. & Déziel, E. (2016) Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Scientific Reports 6, 30169. Manach, C., Scalbert, A., Morand, C., Remesy, C. & Jimenez, L. (2004) Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition 79, 727-747. Marsh, P. D. (1994) Microbial ecology of dental plaque and its significance in health and disease. Advances in Dental Research 8, 263-271. Marsh, P. D. (2005) Dental plaque: biological significance of a biofilm and community life-style. Journal of Clinical Periodontology 32 Suppl 6, 7-15. Mombelli, A., Gmur, R., Gobbi, C. & Lang, N. P. (1994) Actinobacillus actinomycetemcomitans in adult periodontitis. I. Topographic distribution before and after treatment. Journal of Periodontology 65, 820-826. Mombelli, A., Schmid, B., Rutar, A. & Lang, N. P. (2000) Persistence patterns of Porphyromonas gingivalis, Prevotella intermedia/nigrescens, and Actinobacillus actinomyetemcomitans after mechanical therapy of periodontal disease. J Periodontol 71, 14-21. Muller, H. D., Eick, S., Moritz, A., Lussi, A. & Gruber, R. (2017) Cytotoxicity and Antimicrobial Activity of Oral Rinses In Vitro. BioMed Research International 2017, 1-9. Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257-266. Neto, C. C., Amoroso, J. W. & Liberty, A. M. (2008) Anticancer activities of cranberry phytochemicals: an update. Molecular Nutrition & Food Research 52, S18-S27. Nogueira, M. C., Oyarzabal, O. A. & Gombas, D. E. (2003) Inactivation of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella in cranberry, lemon, and lime juice concentrates. Journal of Food Protection 66, 1637-1641. O'May, C., Ciobanu, A., Lam, H. & Tufenkji, N. (2012) Tannin derived materials can block swarming motility and enhance biofilm formation in Pseudomonas aeruginosa. Biofouling 28, 1063-1076. O'May, C. & Tufenkji, N. (2011) The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannincontaining materials. Applied and Environmental Microbiology 77, 30613067. Papapanou, P. N., Neiderud, A. M., Papadimitriou, A., Sandros, J. & Dahlen, G. (2000) "Checkerboard" assessments of periodontal microbiota and serum antibody responses: a case-control study. Journal of Periodontology 71, 885-897. Papapanou, P. N., Sanz, M., Buduneli, N., Dietrich, T., Feres, M., Fine, D. H., Flemmig, T. F., Garcia, R., Giannobile, W. V., Graziani, F., Greenwell, H., Herrera, D., Kao, R. T., Kebschull, M., Kinane, D. F., Kirkwood, K. L., Kocher, T., Kornman, K. S., Kumar, P. S., Loos, B. G., Machtei, E., Meng, H., Mombelli, A., Needleman, I., Offenbacher, S., Seymour, G. J., Teles, R. & Tonetti, M. S. (2018) Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Clinical Periodontology 45 Suppl 20, S162-S170. Pappas, E. & Schaich, K. M. (2009) Phytochemicals of cranberries and cranberry products: characterization, potential health effects, and processing stability. Critical Reviews in Food Science and Nutrition 49, 741-781. Philip, N., Bandara, H., Leishman, S. J. & Walsh, L. J. (2019) Inhibitory effects of fruit berry extracts on Streptococcus mutans biofilms. European Journal of Oral Sciences 127, 122-129. Pihlstrom, B. L., Michalowicz, B. S. & Johnson, N. W. (2005) Periodontal diseases. The Lancet 366, 1809-1820. Polak, D., Naddaf, R., Shapira, L., Weiss, E. I. & Houri-Haddad, Y. (2013) Protective Potential of Non-Dialyzable Material Fraction of Cranberry Juice on the Virulence of P. gingivalis and F. nucleatum Mixed Infection. Journal of Periodontology 84, 1019-1025. Rams, T. E., Degener, J. E. & van Winkelhoff, A. (2014) Antibiotic resistance in human peri-implantitis microbiota. Clinical Oral Implants Research 25, 82-90. Rams, T. E. & Slots, J. (1996) Local delivery of antimicrobial agents in the periodontal pocket. Periodontologyl 2000 10, 139-159. Sanchez, M., Llama-Palacios, A., Blanc, V., Leon, R., Herrera, D. & Sanz, M. (2011) Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota. Journal of Periodontal Research 46, 252-260. Sanchez, M. C., Marin, M. J., Figuero, E., Llama-Palacios, A., Leon, R., Blanc, V., Herrera, D. & Sanz, M. (2014) Quantitative real-time PCR combined with propidium monoazide for the selective quantification of viable periodontal pathogens in an in vitro subgingival biofilm model. Journal of Periodontal Research 49, 20-28. Serrano, J., Escribano, M., Roldán, S., Martín, C. & Herrera, D. (2015) Efficacy of adjunctive anti-plaque chemical agents in managing gingivitis: a systematic review and meta-analysis. Journal of Clinical Periodontology 42, S106-S138. Singh, A. P., Singh, R. K., Kim, K. K., Satyan, K., Nussbaum, R., Torres, M., Brard, L. & Vorsa, N. (2009) Cranberry proanthocyanidins are cytotoxic to human cancer cells and sensitize platinum-resistant ovarian cancer cells to paraplatin. Phytotherapy research : an international journal devoted to pharmacological and toxicological evaluation of natural product derivatives 23, 1066-1074. Slobodnikova, L., Fialova, S., Rendekova, K., Kovac, J. & Mucaji, P. (2016) Antibiofilm Activity of Plant Polyphenols. Molecules 21. 1-15. Slots, J. & Rosling, B. G. (1983) Suppression of the periodontopathic microflora in localized juvenile periodontitis by systemic tetracycline. Journal of Clinical Periodontology 10, 465-486. Socransky, S. S. & Haffajee, A. D. (2002) Dental biofilms: difficult therapeutic targets. Periodontology 2000 28, 12-55. Socransky, S. S. & Haffajee, A. D. (2005) Periodontal microbial ecology. Periodontology 2000 38, 135-187. Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. & Kent, R. L., Jr. (1998) Microbial complexes in subgingival plaque. Journal of Clinical Periodontology 25, 134-144. Steinberg, D., Feldman, M., Ofek, I. & Weiss, E. I. (2005) Cranberry high molecular weight constituents promote Streptococcus sobrinus desorption from artificial biofilm. International Journal of Antimicrobial Agents 25, 247-251. Sun, J., Marais, J. P., Khoo, C., LaPlante, K., Vejborg, R. M., Givskov, M., Tolker-Nielsen, T., Seeram, N. P. & Rowley, D. C. (2015) Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli. Journal of Functional Foods 17, 235242. Teles, R., Teles, F., Frias-Lopez, J., Paster, B. & Haffajee, A. (2013) Lessons learned and unlearned in periodontal microbiology. Periodontology 2000 62, 95-162. Tonetti, M. S., Van Dyke, T. E. & Workshop, W. G. o. t. J. E. A. (2013) Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. Journal of Clinical Periodontology 40, S24-S29. Tsao, R. (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2, 1231-1246. Ulrey, R. K., Barksdale, S. M., Zhou, W. & van Hoek, M. L. (2014) Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complementary Alternative Medicine 14, 499. Van Strydonck, D. A., Slot, D. E., Van der Velden, U. & Van der Weijden, F. (2012) Effect of a chlorhexidine mouthrinse on plaque, gingival inflammation and staining in gingivitis patients: a systematic review. Journal of Clinical Periodontology 39, 1042-1055. Van Winkelhoff, A., Herrera, D., Oteo, A. & Sanz, M. (2005) Antimicrobial profiles of periodontal pathogens isolated from periodontitis patients in The Netherlands and Spain. Journal of Clinical Periodontology 32, 893898. Van Winkelhoff, A. (2012) Antibiotics in the treatment of peri-implantitis. International Journal of Oral Implantology 5 Suppl, S43-S50. Weiss, E. I., Kozlovsky, A., Steinberg, D., Lev-Dor, R., Bar Ness Greenstein, R., Feldman, M., Sharon, N. & Ofek, I. (2004) A high molecular mass cranberry constituent reduces mutans streptococci level in saliva and inhibits in vitro adhesion to hydroxyapatite. FEMS Microbiology Letters 232, 89-92. Wojnicz, D., Tichaczek-Goska, D., Korzekwa, K., Kicia, M. & Hendrich, A. B. (2016) Study of the impact of cranberry extract on the virulence factors and biofilm formation by Enterococcus faecalis strains isolated from urinary tract infections. International Journal of Food Sciences and Nutrition 67, 1005-1016. Yamanaka, A., Kimizuka, R., Kato, T. & Okuda, K. (2004) Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation. Oral Microbiology and Immunology 19, 150-154. Yamanaka, A., Kouchi, T., Kasai, K., Kato, T., Ishihara, K. & Okuda, K. (2007) Inhibitory effect of cranberry polyphenol on biofilm formation and cysteine proteases of Porphyromonas gingivalis. Journal of Periodontal Research 42, 589-592. Yamanaka-Okada, A., Sato, E., Kouchi, T., Kimizuka, R., Kato, T. & Okuda, K. (2008) Inhibitory effect of cranberry polyphenol on cariogenic bacteria. The Bulletin of Tokyo Dental College 49, 107-112. Yan, X., Murphy, B. T., Hammond, G. B., Vinson, J. A. & Neto, C. C. (2002) Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). Journal of Agricultural and Food Chemistry 50, 5844-5849.