Universidad Complutense de Madrid
E-Prints Complutense

Statistical stellar mass corrections for high-z galaxies observed with JWST broadband filters due to template degeneracies



Downloads per month over past year

Bisigello, L. and Caputi, K.I. and Colina, L. and Pérez González, Pablo Guillermo and Koekemoer, A. and Le Fèvre, O. and Grogin, N. and Norgaard-Nielsen, H.U. and van der Werf, P. (2019) Statistical stellar mass corrections for high-z galaxies observed with JWST broadband filters due to template degeneracies. Astrophysical journal supplement series, 243 (2). ISSN 0067-0049


Official URL: http://dx.doi.org/10.3847/1538-4365/ab2911



Stellar masses in future James Webb Space Telescope (JWST) deep blank fields will be mainly derived by fitting the spectral energy distribution (SED) with theoretical galaxy templates. We investigate the uncertainties and biases of the stellar masses derived by using the LePhare code for SED fitting and the Yggdrasil theoretical templates. We consider a sample of mock galaxies at z = 7–10 with mock JWST observations with S/N_(F150W) ≥ 10. Our goal is to provide a list of statistical stellar mass corrections to include on the stellar mass derivation for different output galaxy properties and JWST filter combinations to correct for template degeneracies. Median statistical stellar mass corrections vary from −0.83 to 0.87 dex, while 25% (75%) quartiles range from −0.83 (−0.67) to 0.51 (0.88) dex, depending on filter combinations and galaxy models. The most challenging cases are galaxies with nebular emission lines, especially the ones that are wrongly identified as galaxies without, relative dust-free galaxies, and galaxies with small metallicities (i.e., Z = 1/50 Zꙩ). The stellar mass estimation of galaxies correctly identified without emission lines is generally fine, except at z = 10 when considering only the eight NIRCam bands, which make the MIRI bands very valuable. We have tested our stellar mass corrections using the public JAGUAR galaxy catalog, deriving that the average discrepancy in the recovered stellar mass distribution decreases by 20%–50% at z > 7 after the correction. We found that without the stellar mass corrections, the number of low-mass galaxies (M* < 10^(7) Mꙩ) is overestimated, which can potentially lead to systematic errors in the calculation of the galaxy stellar mass function faint-end slope at high z.

Item Type:Article
Additional Information:

© 2019. The American Astronomical Society. L.B. and K.I.C. acknowledge funding from the European Research Council through the award of Consolidator Grant ID 681627-BUILDUP. P.G.P.-P.G. acknowledges support from Spanish Government grant AYA2015-63650-P. L.C. acknowledges support by the Spanish Ministry for Science, Innovation and Universities under project ESP2017-83197.

Uncontrolled Keywords:Star-forming galaxies; Metallicity relation; Evolution; Origin
Subjects:Sciences > Physics > Astrophysics
ID Code:57610
Deposited On:22 Nov 2019 11:30
Last Modified:22 Nov 2019 12:29

Origin of downloads

Repository Staff Only: item control page