Pseudoteloceras, a new stephanoceratid genus (Ammonitida) of the lower Humphriesianum Zone (lower Bajocian, Middle Jurassic) from western Tethys

Giulio Pavia a,*, Sixto Fernandez-Lopez b

a Dipartimento di Scienze della Terra, via Valperga Caluso 35, 10125 Torino, Italy
b Departamento de Paleontología, Facultad de Ciencias Geológicas, calle José Antonio Novais, 2, Universidad Complutense de Madrid, 28040 Madrid, Spain

A R T I C L E I N F O

Article history:
Received 23 September 2015
Received in revised form 15 December 2015
Accepted 17 December 2015
Available online 7 March 2016

Keywords:
Ammonites
Stephanoceratidae
Humphriesianum Zone
Romani Subzone
Mediterranean-Caucasian Subrealm
Western Tethys

A B S T R A C T

The new dimorphic genus Pseudoteloceras (type-species: P. croisillense gen. et sp. nov.) is defined within the subfamily Stephanoceratinae. It constitutes the terminal step of an early Bajocian phyletic trend that produces Teloceras-like morphologies throughout the lower Humphriesianum Zone of the western Mediterranean-Caucasian Subrealm, at an older chronological interval and with morpho-structural features that stand apart from those of the best known genus Teloceras of the uppermost Humphriesianum and lower Niortense zones at the early/late Bajocian transition. Three new species are described: P. croisillense, P. maerteni and P. boursiciot. Their biochronostatigraphical ranges are confirmed by the distribution in expanded sections of the Subalpine Basin in Submediterranean Province (Digne area) and the taphonomic analysis of fossil assemblages from the condensed sections of the “Oolithe ferrugineuse de Bayeux” Formation in Calvados, North West European Province. The biochronostatigraphical range of Pseudoteloceras gen. nov. is limited to the Romani Subzone, lower Humphriesianum Zone. P. croisillense gen. et sp. nov. marks a well-defined biohorizon of the upper Romani Subzone in the Digne stratigraphical successions. The extreme degree of the cadiconic morphology in the inner whorls of P. boursiciot gen. et sp. nov., and the biostratigraphical gap separating the first appearance of the genus Teloceras in the upper Humphriesianum Zone, support its erection as a new taxon Pseudoteloceras gen. nov. A fourth species, Pseudoteloceras geometricum (Maubeuge), is interpreted as the earliest species of this phyletic lineage, derived from Stemmatoceras and widely distributed through western Tethys in the lower Humphriesianum Zone.

© 2016 The Geologists’ Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The pandemic family Stephanoceratidae Neumayr, 1875, one of the five families of the Middle to Late Jurassic superfamily Stephanoceratoidea Neumayr, 1875, evolves from the Otoitidae Masche, 1907, at the Aalenian/Bajocian transition (Fernandez-Lopez, 2014; Fernandez-Lopez and Pavia, 2015) and ranges through the Bajocian and Bathonian. It consists of three classical subfamilies Stephanoceratinae Neumayr, 1875, Garantiana Wetzel, 1937, and Cadomitinae Westermann, 1956, and in addition two new early Bajocian subfamilies were recently defined: Mollistephaninae Fernandez-Lopez and Pavia, 2015, and Frebolditinae Fernandez-Lopez and Pavia, 2015 (for diagnostic features see Fernandez-Lopez and Pavia, 2015, p. 2, and references therein).

The subfamily Stephanoceratinae is characterized by serpenticonic, planorbiconic, platyconic and cadiconic shells and primary ribs with tubercles at the flaring points on the outer flank, and secondary ribs uninterrupted on the venter. Two dimorphs are differentiated: (1) microconchs [m] with lateral lappets and short body-chambers that are ribbed to the termination, and (2) macroconchs [M] with a simple aperture and relatively long body-chamber (in excess of 360°) that is smooth or distantly ribbed. The septal suture is usually complex with 1st lateral saddle E/L asymmetric and higher than the second lateral saddle L/U, dominant 1st lateral lobe, supplementary lobe (U2) on L/U, and well-developed, retracted umbilical lobe (U) (Arkell et al., 1957; Callomon, 1981, 1985; Page, 1993, 1996, 2008; Moyne and Neige, 2004; Howarth, 2013; Fernandez-Lopez, 2014).

On the basis of these morpho-structural features, Stephanoceratinae display diverse evolutionary trends interpreted as a
monophyletic group. This subfamily clade brings together a morphologically complex group of lineages and superspecific taxa throughout early to early-late Bajocian, such as:

- **Skirroceras Mascke, 1907** (and synonyms proposed by Arkell et al., 1957), planorbicones or platycones to serpenticones distributed from the Laeviuscula to the lowermost Humphriesianum zones (type species *Ammonites Humphriesianum macer* Quenstedt 1886, in 1883–1888, p. 528, pl. 65, fig. 11, lectotype designed by Buckman, 1921 in 1909–1930, pl. 24, from the "Humphriesianum-Oolith", Swabia, Germany).
- **Stephanoceras Waagen, 1869** (and synonyms proposed by Arkell et al., 1957), platycones to planorbicones distributed from the upper Laeviuscula to the lowermost Niortense zones (type species *Ammonites Humphriesianus* J. de C. Sowerby, 1825 in Sowerby and Sowerby, 1812–1846, pl. 500, holotype from the lower Bajocian, Oborne, Dorset, England).
- **Teloceras Mascke, 1907**, cadicones distributed from the uppermost Humphriesianum to the lower Niortense zones (type species *Ammonites bliedeni* J. Sowerby, 1818 in Sowerby and Sowerby, 1812–1846, p. 231, pl. 201, holotype from the uppermost Humphriesianum Zone, Oborne, Dorset).

With respect to this group of selected taxa, it is worth mentioning that the transition from *Stephanoceras* to *Teloceras* is represented by the sub adcadic to planorbiconic forms historically referred to as a branch of the genus *Stemmatoferas*, *Mascke*, 1907, but recently assembled into the subgenus *Teloceras* (*Paviceras*) Gauthier, Riout and Trévisan, 1996, from the upper part of the Humphriesianum Zone (type species *Stemmatoferas hoffmanni* Schmidtill and Krumbeek, 1938, p. 348, pl. 13, fig. 6, lectotype designed by Pavia, 1983, p. 115, pl. 21, fig. 4, from the "Oberes Humphriesi-Schichten", North Bavaria, Germany).

Besides *Teloceras* (*Paviceras*), a second lineage involving subadcadic to planorbiconic stephanoceratids evolves into the subfamily Cadominitae whose dimorphic partner is [*M*] *Cadomites Munier-Chalmas, 1892* (type species *Ammonites Deslongchampi* Defrance in d’Orbigny, 1846 in 1842–1851, p. 405, pl. 138, figs. 1–2, holotype by original designation from the upper Bajocian of Calvados, France) and [*M*] *Polyplectites Mascke, 1907* (type species *Ammonites linguiferus* d’Orbigny, 1846 in 1842–1851, p. 402, pl. 136, figs. 4–5, neotype designed by Westermann, 1954, p. 338, on *Grossouvre, 1930*, p. 40, fig. 10, from the upper Bajocian of Calvados, France) from the uppermost lower Bajocian Humphriesianum Zone to the upper Bathonian/lower Callovian transition (*Sandoval, 1983; Fernandez-Lopez, 1985; Dietl and Herold, 1986; Fernandez-Lopez and Pavia, 2015*). The genus *Lokutieras* *Galácz, 1994* (type species *Lokutieras rosbrunense* Galácz, 1994, p. 163, pl. 1, fig. 1, holotype from the uppermost Humphriesianum Zone, Lókút, Bakony Mountains, Hungary) and its microconch counterpart *Mascketes* Buckman, 1920 in 1909–1930 (type species *Mascketes densus* Buckman, 1920 in 1909–1930, pl. 152, holotype from the Humphriesianum Zone of Sherborne, Dorset) may be regarded as the ancestor of Cadominitae in the uppermost Humphriesianum Zone (*Galácz, 1994; Pavia and Zunino, 2012*).

A third group of Stephanoceratinae includes two mid-lower Bajocian subadcadic to planorbiconic genera whose phylogenetic position is still debated in relation to the taxa discussed above: (1) *Kumatostephanus* Buckman, 1922 (type species *Kumatostephanus kumaterus* Buckman, 1922 in 1909–1930, pls. 345 a–b, holotype from the Propinquas Zone of Sherborne, Dorset) and (2) *Stemmatoferas Mascke, 1907* (type species *Ammonites Humphriesianum coronatus* Quenstedt, 1886 in 1883–1888, p. 539, pl. 66, fig. 11= *Stemmatoferas frechii* Renz, 1904, holotype from the Humphriesianum-Oolith of Eningen, Swabia, Germany, refuged by Weisert, 1932, p. 23, pl. 18, fig. 4, as *Stemmatoferas coronatum*, Schlegelmilch, 1985, p. 77, pl. 27, fig. 6, and Ohmert, 1990, p. 1, fig. 1), referred to as the passage between the Propinquas and the Humphriesianum zones, whose strong, club-like ribbing and less deeply incised suture lines do not support any clear connection to the most typical stephanoceratids, as indicated by many authors (e.g., Ohmert, 1994; Ohmert et al., 1995; Chandler et al., 2013; Dietze et al., 2015).

A further stock of subadcadic to planorbiconic Stephanoceratinae consists of *Teloceras*-like forms in the inner whorls, with strong ribbing, large and depressed whorl-section, and crater-like umbilicus. Frequently referred to as *Stemmatoferas*, they are limited to the uppermost Propinquas and the basal Humphriesianum zones (Maubeuge, 1951; Mouterde, 1953; Morton, 1971; Parsons, 1976; Pavia, 1983; Fernandez-Lopez, 1985; Callomon and Chandler, 1990; Ohmert, 1988, 1990, 1994; Ohmert et al., 1995; Gauthier et al., 1996; Pavia and Martire, 2010; Pavia et al., 2013; Chandler & Whicker, 2015). Most of these records may be referred to the "*Ammonites Bliedeni* non Sowerby, 1818" described by d’Orbigny (1847 in 1842–1851 fig. 5) from the lower Bajocian of Les-Moutiers-en-Cinglais in Calvados. We focus our attention here on these particular *Teloceras*-like ammites with supplementary field researches on the lower Bajocian of the Digne successions (Pavia, 1983) and of the area south of Caen (Pavia et al., 2013, 2015) where the presently unnamed species are fairly common and constitute a homogeneous morphological trend that is different from that of *Teloceras* s.s.

This study aims to (1) define the systematic status of these *Teloceras*-like stephanoceratids by erecting a new genus with new or renamed specific taxa, (2) characterize these taxa by morphostructural criteria by comparison with other Stephanoceratinae of the passage between the Propinquas and the Humphriesianum zones, (3) delineate possible phylectic relationships and palaeobiographical constraints.

2. Material and methods

This study is based on the ammonites collected from two different stratigraphical contexts pertaining to the Mediterranean and the north-western European Jurassic areas of the Mediterranean-Caucasian Subrealm (*Fernandez-Lopez and Pavia, 2015*):

(1) The thick Bajocian successions of the Digne area (Subalpine Basin, SE France) where the sections of the "Marno-calcaires à Cancellophyllum" Formation (Graciansky et al., 1982) are expanded and the fossils are preserved following resedimentation processes. Specimens come from the sections of the Ravin du Feston and the Ravin de la Coueste at Chaudon (Digne area, Alpes de Haute Provence: Pavia, 1983; Pavia and Zunino, 2012) (Fig. 1).

(2) The thin Bajocian successions of the sector south of Caen (Calvados, NW France) where the condensed sections of the "Oolithe ferrugineuse de Bayeux" Formation (Riout et al., 1991, and references therein) are reduced by recurrent discontinuities and the fossils are commonly preserved as reevelaborated elements (i.e. exhumed and displaced before their final burial: Fernandez-Lopez, 1991, 1995, 2007; 2011; Fernandez-Lopez & Pavia, 2015). The specimens come from outcrops of "Feuquieroles-sur-Orne, Breteville-sur-Orne, Evrecy, Maizet and Les Fours à Chaux at Croisilles" (Fig. 2) (Gauthier et al., 1996; Pavia and Martire, 2010; Pavia et al., 2013, 2015).
Ammonites from the Bajocian of Digne are essential for biochronostratigraphical purposes as they allow defining the stratigraphical succession of taxa in chronological order, whereas the well preserved fossils of Calvados aid in the description of structural and morphological features. The integration of data from two such different geological settings is possible as the cited authors demonstrated that a detailed taphonomic analysis could provide biochronostratigraphical information even from fossils obtained from condensed sections (see also Fernandez-Lopez and Pavia, 2015). In particular, Pavia et al. (2013, 2015), respectively for the sections of Maizet et Croisilles in Calvados, distinguished between reworked specimens (i.e. taphonomic elements displaced after accumulation on the sea floor and prior to the burial; therefore, coeval to the encasing sediment) and reworked ones (i.e. taphonomic elements exhumed and displaced before the final burial in expanded deposits; therefore, older than the sedimentary matrix). Such analyses, based on diverse mechanisms of taphonomic alteration (Fernandez-Lopez, 1991, 1995, 2007, 2011), allow the temporal order of the preserved specimens to be ascertained within the biochronological succession and the diverse depositional patterns represented by the stratigraphical intervals of the study.

The biostratigraphical and biochronostratigraphical classifications and units proposed by Rioul et al. (1997) are referred to herein as they are accepted almost unanimously (see Sandoval et al., 2001, 2002; Callomon, 2003; Fernandez-Lopez and Pavia, 2015, and references therein). The ammonite Standard Zonation, dividing the Bajocian Stage of the Mediterranean-Caucasian Subrealm, is as follows from bottom up: lower Bajocian: Discites Zone, Laeviuscula Zone, Propinquans Zone (Patella, Hebridica subzones), Humphriesianum Zone (Romani, Umbilicum, Blagdeni subzones); upper Bajocian: Niortense Zone, Garantiana Zone, Parkinsoni Zone.

The morphological terminology used in the following descriptions follow the Glossary of the Treatise on Invertebrate Paleontology (Arkell et al., 1957) and other terms presented by Westermann (1996, 2005) and by Fernandez-Lopez (2014). Ammonite abbreviations and measurements (in mm) are as follows: M, macroconch; m, microconch; D, maximum shell diameter; H, whorl height; h, % of whorl height to diameter; W, whorl width; w, % of whorl width to diameter; U, umbilical diameter; u, % of umbilicus to diameter; W/H, ratio of whorl width to whorl height; N(2)/2, internal ribs per half whorl; N(2)/2, external ribs per half whorl; N(2)/N(2), ratio of external to internal ribs.

All the studied specimens are stored in the paleontological collections of the Museo di Geologia e Paleontologia of the Torino University, with code MGPT-PU and have successive catalogue numbers, except for one ammonite provisionally housed in the Lionet Maerten collection (code LM, Ver-sur-Mer, France).

3. Systematic palaeontology

Class Cephalopoda Cuvier, 1795
Subclass Ammonoidae von Zittel, 1884
Order Ammonitida Fischer, 1882
Superfamily Stephanoceratoidea Neumayer, 1875
Family Stephanoceratidae Neumayer, 1875
Subfamily Stephanoceratinae Neumayer, 1875

3.1. Genus Pseudoteloceras nov.

Type-species. Pseudoteloceras croissillense gen. et sp. nov. (Fig. 3). Other species. Two nominal species are assigned to the new genus: Pseudoteloceras maertenii gen. et sp. nov. and Pseudoteloceras boursicoti gen. et sp. nov., both from the lower Bajocian, lower Humphriesianum Zone, Romani Subzone. A further taxon is represented by Teloceras geometricum Maubeuge, 1951 (p. 76, pl. 4, fig. 4) from an undefined layer of the Humphriesianum Zone at Halanzy, on the Franco-Belgian boundary, the morphology of which modifies from subcadincon to planorobic with depressed trapezoidal whorl section; for Maubeuge’s taxon we propose the new combination Pseudoteloceras geometricum (Maubeuge). Its holotype, the only known type-specimen, was doubtfully referred to the “zone à T. blagdeni?” by Maubeuge (1951, p. 76); it is a reelerbated internal mould that, if the original biostratigraphical reference is correct, was derived from the underlying fossil assemblage that mixes ammonites indicative of layers from the topmost Propinquans to the middle Humphriesianum zones. Therefore it can be interpreted as pre-Blagdeni Subzone and probably belonging to the Romani Subzone.

Etymology. Genus name Teloceras combined with the prefix "pseudo" with the meaning “resembling or imitating”.

Diagnosis. Shells of small to medium size (micro- and macroconchs generally between 50 and 360 mm in diameter, respectively), evolve subcadicones, cadicones in the inner whorls,
becoming planorbicones in the outer whorls, with depressed trapezoidal to subelliptical whorl section in the phragmocone and whorl-width proportionally reduced towards the adult body-chamber; coarse, strong, spaced and slightly sinuous primary ribs; prominent tubercles in the trifurcation points on the ventrolateral shoulder and straight or convex to forward projected secondaries. Microconchs with rounded-depressed whorl section egressed on the body-chamber; pointed to obsolete tubercles on the ventrolateral shoulder.

Description. Macroconchs are subacrodicones of medium size with depressed, subtrapezoidal to elliptical section. The umbilicus is open, but relatively deep with steep flanks up to the acute ventrolateral shoulder in the inner whorls. The venter is slightly arched to flatten. Primary ribs are distant, sinuous, enlarged in the distal part and sometimes sharp. Trifurcation points lie in the outer flank at the ventrolateral shoulder and correspond to high tubercles, stout on the phragmocone and spinform on the shells (or composite moulds). Secondary ribs cross the venter without interruption and describe a feeble to pronounced forward bend. Microconchs are small (50–60 mm) with rounded whorl-section, angular at the furcation point, just outside the mid-flank, with pointed to smoothed tubercles. Single ribs occur between bicuspid pairs. Perisome bears medium-long and narrow lappets. Suture line (Fig. 4) shows narrow and deeply incised E/L, large, slightly oblique lateral lobe, U/L saddle larger than E/L and symmetrically bipartite by a wide U1, U2 retracted and deep as U3.

Regarding the microconchs, the dimorphic pairing is established only for P. croisillense gen. et sp. nov. and is evidenced by the co-occurrence of macro- and micro-counterparts in the same beds of the Chaudon section (see Pavia, 1983). Any other microconch counterpart of Pseudoteloceras gen. nov. is so far unknown. Our view is that it would be very difficult to corroborate from literature. The dimorphic coupling of Pseudoteloceras gen. nov. should be recognised only by co-occurrence of forms in the same fossil assemblage.

Discussion. Teloceras s.s., to which many authors referred these forms of the Romani Subzone (e.g., Callomon and Chandler, 1990; Chandler and Whicher, 2015; Ohmert et al., 1995), shows cadicones with regularly increasing whorl-width through the ontogeny, umbilical egression in the last whorl, shorter adult body-chamber (brevidomic or mesodomic; i.e., body-chamber with length whorl less than 360 degrees), denser primary ribs and tubercles, except in T. banksi of the lowermost upper Bajocian, more complex suture lines with deeply incised primary and secondary elements. Moreover, it is observed that Teloceras s.s. is recorded as beginning from the topmost Umbilicum Subzone with T. acuticostatum.

Chandler et al. (2013, p. 296) suggested a possible phyletic connection between the “Teloceras” of the Romani Subzone (recte Pseudoteloceras croisillense gen. et sp. nov.) and the Kumatastephanus present in Dorset up to the Humphriesianum Zone. Apart from this biochronologic anomaly (Kumatastephanus is recorded from the Laeviuscula and the lower Propinquians zones everywhere in the West-Tethys areas), Kumatastephanus shows coronate inner whorls becoming serpenticonic in the adult stage. A further stephanocrinian of the mid-lower Bajocian is Stemmatoceras, from which Pseudoteloceras gen. nov. differs for distinctive features such as more depressed trapezoidal whorl section, prominent ventrolateral shoulder, more spaced primary ribs, and blunt to spiniform tubercles.

Species of Stemmatoceras show a wide dispersion throughout the West-Tethys areas: from the central-European sector where they are mostly frequently listed in the upper Propinquans Zone (Hebridica Subzone, equivalent to the German Pinguis Subzone) and in the basal Humphriesianum Zone (Gassmann and Ohmert, 1990; Ohmert, 1990, 1994; Ohmert et al., 1995), to the Submediterranean (central France: Fernandez-Lopez and Mouterde, 1994, p. 122) and Mediterranean (Della Bruna and Martire, 1985; Sandowal, 1990; Galacz, 1991) provinces. The records from the East-Pacific Realm enlarge the possible range of the species, but most records are not clearly and confidently congruent within Mascke’s taxon, or pertain to different species (Hall and Westermann, 1980; Westermann, 1992).

The type-species Stemmatoceras frechi was carefully described by Ohmert et al. (1995, p. 81, pl. 5, figs. 1–4, pl. 6, figs. 1–2) who highlighted its morphological features in relation to both Stephanoceras and Teloceras. Its morphology can be summarized as follow: medium-sized to large subcadiconic shell with depressed trapezoidal inner whors becoming elliptical during ontogenesis; moderately open and deep umbilicus with rounded walls; spaced, slightly projected and concave primary ribs (24 on the last whorl at 87 mm diameter of the holotype); stout tubercles at the trifurcation point with regular intercalary ribs; suture line characterized by well-incised accessory elements of the lateral saddles and a deeply retracted umbilical lobe (Ohmert et al., 1995, fig. 17: very different to that one produced by Schlegelmilch, 1985, p. 771). Besides the type-species, Ohmert et al. (1995) described two species, S. rauricum Ohmert, 1995 and S. triplex (Weisert, 1922). Moreover, Mascke (1907, p. 30) listed many taxa from the same layer of S. frechi that need formal definition as nomina nuda such as “S. croressipina”, “S. ellipticum” (see Pavia, 1983, fig. 28), and “S. robustum” (personal observation of the coauthor G. P. in the geo-palaeontological Museum of Göttlingen), Ohmert et al. (1995) referred to Mascke’s genus a further coeval species, Teloceras geometricum Maubeuge, whose teloceriform features are out of the morphological spectrum of Stemmatoceras and it is referred more appropriately to Pseudoteloceras gen. nov.

As to the microconch equivalent of Stemmatoceras, the best candidate is the genus Platyostomites Westermann, 1954 (Ohmert et al., 1995). The holotype of the type-species (“Gerzenites (Platyostomites) platyostomus” Westermann, 1954, p. 220, pl. 17, fig. 6, by original designation) comes from the “Pinguis-Schichten” of Goslar (N Germany), i.e. it is referred to the Hebridica Subzone as the type of Stemmatoceras frechi. In details, Ohmert et al. (1995, p. 82) specified that the microconch counterpart of Stemmatoceras frechi is Platyostomites postragus (Westermann, 1954).

It is just worth noting the strict analogies among the microconchs of Stemmatoceras and Pseudoteloceras gen. nov. This evidence supports the evolutionary lineage connecting the latter genus to the former one, possibly through the large, fragmentary and unnamed specimen of Stemmatoceras with a trapezoidal whorl-section and depressed venter figured by Ohmert (1988, p. 339, pl. 8, fig. 9; 1990, p. 123, pl. 1, fig. 2). Based on the Stemmatoceras group of the central-European lower Bajocian, Hebridica Subzone, the appearance of the Teloceras-like morphology is first documented by Pseudoteloceras geometricum (Maubeuge) largely documented within the lower Humphriesianum Zone, from the Mediterranean Province (Alpi Feltrine, northern-east Italy: Della Bruna and Martire, 1985 as “Kumatastephanus (Stemmatoceras) geometricum”) to the NW European Province (Halanyz at the Franco-Belgian boundary, Maubeuge, 1951; Dorset, southern England: Parsons, 2006, unpublished manuscript, pls. 11–12, as “Teloceras blagdeniforme” from the Sherborne area).

The so-called Stemmatoceras dubium Schmidtt and Krumbeck, 1938, Stemmatoceras hoffmannii Schmidtt and Krumbeck, 1938, Anmomites subcoronatus Oppel, 1856 in 1856–1858, and Skirocera? tritoenatum Buckman, 1912, are biostratigraphically located in the upper part of the Humphriesianum Zone (topmost Umbilicum and Blagdeni subzones), and disconnected from the stephanocrinians of the basal Humphriesianum Zone as demonstrated by Pavia (1983) from the sections of the Digne area. Their morphology strongly recalls that of Stemmatoceras, and for this reason most authors have assigned them to Mascke’s genus (e.g.,
Fernandez-Lopez, 1985). However, Pavia (1983, p. 107) highlighted the absence of equivalent morphologies between the typical *Stemmatoceras* *frechi* of the transition from Propinquans to Humphriesianum zones and these *Stemmatoceras*-like forms of the topmost Umbilicum and Blagdeni subzones. For this set of species, intermediate between *Stephanoceras* and *Teloceras*, Gauthier et al. (1996) proposed the new nomenclatural combination *Teloceras* (Paviceras), whose type-species is *Teloceras* (Paviceras) *hoffmanni* (Schmidtill and Krumbeck, 1938). Further taxa of the upper Humphriesianum Zone, referable to *Paviceras*, are *Teloceras* (Paviceras) *blagdeniforme* (Roche´, 1939) from the upper Humphriesianum Zone (“couches à *Cad. Blagdeni* du Mont d’Or Lyonnais” in Roche´, 1939, p. 236; see also Gauthier et al., 1996, p. 35 from Feuugerolles-sur-Orne, and Pavia et al., 2015, from Croisilles), *Stemmatoceras* sp. nov. 2 from the Iberian Range (Fernandez-Lopez, 1985, p. 292), *Stemmatoceras* cf. *frechi* (Renz) form the Subbetic Domain (Sandoval, 1983, p. 252).

Occurrence. *Pseudoteloceras* gen. nov. is known from different bioprovinces of the early Bajocian West-Tethys. Its biochronostatigraphical range is so far limited to the lower Humphriesianum Zone, Romani Subzone:

- NW European Province: Calvados (d’Orbigny, 1847 in 1842–1851; Gauthier et al., 1996; Pavia and Martire, 2010; Pavia et al., 2013, 2015), Dorset (Parsons, 1976; Callomon and Chandler, 1990; Chandler & Whitcher, 2015).

3.2. Pseudoteloceras crassillese gen. et sp. nov.

Figs. 3–6 7/A–H and 8/A–F and 8/A–F

Macroconchs [M]

- 1847 Ammonites Blagdeni, Sowerby – d’Orbigny, 1842–1851, p. 396, pl. 132.
- 1850 Ammonites Blagdeni, Sow. – Morris and Lycett, p. 110, pl. 14, fig. 3.
- 1993 *Teloceras* sp. – Arkell, p. 221.
- 1976 *Teloceras* (T.) *blagdeniformis* (Roche´) – Parsons, p. 134 (CP2555, figured by Parsons, 2006, pl. 10, fig. 1 as *Teloceras labrum*, unpublished manuscript).
- 1983 *Kumatostephanus* (Stemmatoceras) sp. – Pavia, p. 108, pl. 17, figs. 1–3.
- 1990 *Teloceras labrum* Buckman – Callomon and Chandler, p. 99, pl. 4, fig. 1.
- 1993 *Teloceras*? sp. – Pavia in Fischer, 1993, p. 120, pl. 43, fig. 1, pl. 44, fig. 1.
- 1996 *Kumatostephanus* (Stemmatoceras) sp. – Gauthier et al., p. 33.
- 2010 “Stemmatoceras” *blagdeni* – Pavia and Martire, p. 77.
- 2013 “*Teloceras Blagdeni* (sensu d’Orbigny)” – Pavia et al., p. 141.
- 2015 ?Stemmatoceras* nov. sp. 1 – Pavia et al., p. 10, fig. 12.

Microconch [m]
that subcadicones with trapezoidal whorl-section, feebly arched venter, spiniform to large tubercles at the bifurcation point and straight secondary ribs. Microconchs (diameter up to 60 mm): subcadicones with rounded whorl-section and pointed to reduced tubercles at the bifurcation point with intercalary ribs.

Etymology. The species is named basing on the section of Croisilles, some four kilometres south of Les-Moutiers-en-Cinglais in Calvados (NW France).

Nomenclatural status. This species has been recorded with the name *Teloceras* (T.) *blagdeniforme* (Roché) by Mouterde (1953) from the Humphriesianum Zone of the French Central Massif and by Parsons (1976) from the Romani Subzone of Sherborne in Dorset, based on the references in the text of Roché (1939) to d’Orbigny's figure and description (see Parsons, 2006, unpublished manuscript). However, Pavia (1983, p. 109) stated that d’Orbigny's specimen cannot be regarded as the type of the species *blagdeniforme* because Roché (1939, p. 236) based its discussion on a fossil of unknown species. “En figure un de très grande taille qui provient de la Ste Baume, dans mon étude sur les « couches à Cad. Blagdeni du Mont d’Orlyonnais »”, this ammonite was described in detail and figured in a paper already listed “sous presse” in 1939 but printed four years later (Roché, 1943) because of the war.

Such a delay does not prevent acceptance of Roché’s original description made on a fossil in the hands of the author that is different from d’Orbigny’s specimen, as discussed below. In conclusion, we confirm the proposition of Pavia (1983, p. 109) that the lectotype of *Teloceras* (Paviceras) *blagdeniforme* (Roché) is the specimen figured by Roché (1943, pl. 2, fig. 1), whereas d’Orbigny's specimen is free of any nomenclatural charge and may be used as holotype of the new taxon *Pseudoteloceras croisillense* gen. et sp. nov.

Holotype. Specimen MNHN.F.R04116 (formerly MHNP-2139c in d’Orbigny’s Collection) housed in the Museum d'Histoire Naturelle de Paris, the single specimen cited by d’Orbigny (1847 in 1842–1851: cf. Pavia in Fischer, 1993) coming from the area of Les-Moutiers-en-Cinglais (Fig. 3).

Locus typicus. D’Orbigny (1847 in 1842–1851, p. 396) did not give any indication useful to identify the locality of the holotype, except a general reference to the area of Les-Moutiers-en-Cinglais in Calvados. However, by lithofacies and preservational features, the fossil may be referred to bed 6 of the section described by Pavia et al. (2015) at “Les Fours à Chaux” (49°00′28.59″N and 0°26′02.91″E) in the municipality of Croisilles, just south of Moutiers. The large pre-adult paratype collected from bed 6 of the Croisilles section (Fig. 5) adds further information in defining the formal statement of the species: it exactly fits with the holotype's morphological features and the lithofacies of their internal moulds are the same. The site of Les Fours à Chaux at Croisilles is thus here indicated as the most probable type-locality of *Pseudoteloceras croisillense* gen. et sp. nov.

Stratum typicum. The reseedimented ammonites (*Chondroceras evolvenscens*, *C. gervilli* and *Poeclilomorphus cycloides* in Pavia et al., 2015) allow reference of Bed 6 of the section Les Fours à Chaux to the upper part of the Romani Subzone, Humphriesianum Zone, lower Bajociian.

Paratypes. Specimens MGPT-PU112498 [M] from Maizet and MGPT-PU112523 [M] from Croisilles. Twenty specimens from the section of Chaudon are considered as paratypes too: [M] MGPT-PU112501-112504, MGPT-PU112506-112507, MGPT-PU112515, MGPT-PU112517-112519, MGPT-PU112525; [m] MGPT-PU112505, MGPT-PU112508-112514, MGPT-PU112516.

Fig. 5. A large, pre-adult specimen of *Pseudoteloceras croisillense* gen. et sp. nov. in the lower part of Bed 6 in the section of Les Fours à Chaux (cf. Pavia et al., 2015). Unfortunately, vertical faulting broke the fossil: it was possible to recover only the external whorl that is presently stored with code MGPT-PU112523. Asterisk marks the beginning of the body-chamber.

Material. Three specimens of the lower Humphriesianum Zone, Romani Subzone from the “Oolithe ferrugineuse de Bayeux” Formation: the holotype MHNP-2139c and the paratypes MGPT-PU112523 and MGPT-PU112498 respectively from Croisilles and Maizet. Further specimens come from an interval of the “Marnocalcaires à Cancellopus” Formation of the Digne area aged to early Humphriesianum Chron, latest Romani Subchron (*Pavia, 1983*): 1 [M] and 1 [m] at the section of Feston; 37 [M] and 41 [m] at the section of Chaudon. The largest specimens in collection measure 265 mm diameter (MGPT-PU112506, Fig. 6) and 290 mm in diameter (MGPT-PU112519) both from bed 395 of the Chaudon section (*Pavia, 1983*). We also took account of the fossil CP2965 from Dorset cited by Parson (1976, p. 131) and figured on Plates 3–4 of his unpublished manuscript (Parsons, 2006) that provides information useful for a more complete and documented description of the new species.

Measurements. See Table 1.

Description. The material from the Subalpine Basin comprises macro- and microconchs that allow description of both dimorphs of the new species.

Adult peristomes of macroconchs are unknown but growth lines of largest shells are concave (cf. Callomon and Chandler, 1990); the length of the body-chamber exceeds one whorl. The coiling is evolute with umbilicus a bit more than 50%. Shells are subcadiconic with subtrapezoidal whorl section (*W/H = 2.3 to 1.9* on the holotype), depressed venter gently arched in the middle and plan at the ventrolateral shoulder, flanks regularly sloped to...
Fig. 6. A large external mould of *Pseudoteloceras croissillense* gen. et sp. nov. from Bed 395 of the section of Chaudon, Digne area. The equivalent internal mould is stored with code MGPT-PUI112506 [M]. Asterisk marks the beginning of the body-chamber.

the spiral centre without any umbilical wall; there is no evidence of uncoiling of the whorl (egression) in any studied specimens (Fig. 6) even at 290 mm diameter. Ornament consists of coarse, acute and sinuous primary ribs, trifurcate with additional intercalary ribs. Secondary ribs are blunt, feebly convex to straight on the venter (Fig. 7/A and 7/D); they fade on the adult body-chamber. Tubercles of macroconchs are spiniform in the inner to medium whorls, whereas they enlarge and modify the lateral outline of the shell on the outer whorls (Figs. 3 and 7/C).

On microconchs, the body-chamber is 210–220 mm and bears long, not distally enlarged lateral lappets (Fig. 8/E). Whorl section is subcircular with regularly arched venter and maximum width on the mid-flanks; the body-chamber becomes more and more egressed. Ribbing is sharp with sinuous primaries and gently projected secondaries; the latter become prominent on the outer body-chamber. Tubercles are pointed, but may be reduced to a bulge on the bifurcation point. The septal suture is visible on pyritized internal mould of microconchs from Chaudon (Figs. 4 and 8/B). It shows narrow and deeply incised E/L saddle, large and slightly oblique lateral lobe lying on the ventrolateral shoulder and on the umbilical seam in the inner whorls, L/U saddle larger than E/L and symmetrically bipartite by a wide U2, U3 clearly retracted and deep as U2; near the umbilical seam a short U3 is clearly visible.

Discussion. *Pseudoteloceras croissillense* gen. et sp. nov. shows a certain degree of ornament variability on macroconchs: the specimens from Chaudon show a higher density of primary ribs, whereas in Dorset specimens the secondary ribs are less accentuated becoming obsolete on the venter (Callomon and Chandler, 1990; Chandler & Whitcher, 2015). Consistent in all specimens is the absence of umbilical walls, the proportional reduction of the whorl-width in the outer whorls that does not increase in the last ontogenetic growth phase, and the furcation rate (Ne/Ni) with average value 3.4.

Regarding the microconchs, the dimorphic status of *P. croissillense* gen. et sp. nov. is indicated by the co-occurrence of the macro- and micro-counterparts in the same beds of the Chaudon section (see Pavia, 1983, table III; confirmation by 2015 studies on the same section). Pavia (1983, p. 139) identified these microconchs *Gerznitziites* (Mylabrisites) a'rostogonus (Westermann, 1954), but Ohmert et al. (1995, p. 82) assumed that Westermann’s taxon fits more appropriately *Stemmatoarcas frechi* (Renz, 1904) on the basis of well-preserved specimens coming from the Hebridica Subzone of Löffrich, SW Germany.

Regarding the references in the synonymy list, the holotype of *Teloceras labrum* Buckman, 1922 (in 1909–1930) comes from the so-called *Epaxites* hemera that refers to the upper part of the Humphriesianum Zone according to Buckman’s Type Ammonites (1925 in 1909–30, V, p. 74). It shows a more arched ventral side and the suture line is typical of the genus *Teloceras*: L narrow, 2nd lateral saddle asymmetrically divided, little retraction of the umbilical lobe. Thus, the specimen cited by Callomon and Chandler (1990, p. 99; see also Chandler & Whitcher, 2015) as *Teloceras labrum* cannot be attributed to Buckman’s taxon on both morphological and stratigraphic grounds; it fits *Pseudoteloceras croissillense* gen. et sp. nov. The lectotype of *Teloceras* (Paviceras) *blagdeniiforme* (Roché, 1939; see above) comes from the “couches à Cad. Blagdeni du Mont d’Or Lyonnais” (Roché, 1939, p. 206), i.e. the uppermost Humphriesianum Zone; its whorl-section is subrectangular on the phragmocone and becomes elliptical in the last whorl; the venter is

Table 1
Measurements for *Pseudoteloceras croissillense* gen. et sp. nov. Some parameters on Chaudon specimens cannot be taken because of deformation by compaction of the composite moulds, except occasionally as for MGPT-PUI112510 and MGPT-PUI112511. Paratype MGPT-PUI112517 refers to Pavia’s paper (1983, pl. 26/2). Status of specimens: h = holotype, p = paratype, M = Macroconchs, m = microconchs. Figures in [] refer to maximum D. Measurements of whorl-width are taken on the interspace between tubercles or (in brackets) on the tubercles.

<table>
<thead>
<tr>
<th>Specimens</th>
<th>Figures</th>
<th>D mm</th>
<th>H mm</th>
<th>h</th>
<th>W mm</th>
<th>w</th>
<th>U mm</th>
<th>u</th>
<th>W/H</th>
<th>Ni/2</th>
<th>Ne/2</th>
<th>Ne/Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>h – MNHN.F.R04116</td>
<td>Fig. 3</td>
<td>[M] 134.0</td>
<td>36.0</td>
<td>.27</td>
<td>67.0</td>
<td>(.740)</td>
<td>.55</td>
<td>(.50)</td>
<td>.67</td>
<td>.50</td>
<td>1.9</td>
<td>(2.1)</td>
</tr>
<tr>
<td>– CP2965</td>
<td></td>
</tr>
<tr>
<td>p – PUI112501</td>
<td>Fig. 6G</td>
<td>[M] 116.6 [126]</td>
<td>33.6</td>
<td>.30</td>
<td>–</td>
<td>–</td>
<td>ca 63</td>
<td>ca .54</td>
<td>–</td>
<td>10</td>
<td>36</td>
<td>3.6</td>
</tr>
<tr>
<td>- PUI112502</td>
<td>Fig. 6H</td>
<td>[M] 85.0</td>
<td>25.4</td>
<td>.30</td>
<td>–</td>
<td>–</td>
<td>38.3</td>
<td>.48</td>
<td>–</td>
<td>10</td>
<td>35</td>
<td>3.5</td>
</tr>
<tr>
<td>p – PUI112506</td>
<td>Fig. 5</td>
<td>[M] ca 150 [165]</td>
<td>ca 42</td>
<td>ca .28</td>
<td>–</td>
<td>–</td>
<td>ca 81</td>
<td>ca .54</td>
<td>–</td>
<td>11</td>
<td>37</td>
<td>3.4</td>
</tr>
<tr>
<td>- PUI112507</td>
<td>Fig. 6F</td>
<td>[M] ca 50</td>
<td>ca 17</td>
<td>ca .34</td>
<td>–</td>
<td>–</td>
<td>ca 25</td>
<td>ca .50</td>
<td>–</td>
<td>10</td>
<td>35</td>
<td>3.5</td>
</tr>
<tr>
<td>p – PUI112525</td>
<td>Fig. 6E</td>
<td>[M] 39.7</td>
<td>12.8</td>
<td>.32</td>
<td>–</td>
<td>–</td>
<td>18.1</td>
<td>.46</td>
<td>–</td>
<td>10</td>
<td>32</td>
<td>3.2</td>
</tr>
<tr>
<td>p – PUI112505</td>
<td>Fig. 3</td>
<td>[m] 30.5 [45]</td>
<td>9.4</td>
<td>32</td>
<td>ca 14.0</td>
<td>47</td>
<td>13.2</td>
<td>.43</td>
<td>ca 1.3</td>
<td>11</td>
<td>27</td>
<td>2.5</td>
</tr>
<tr>
<td>- PUI112508</td>
<td>Fig. 6D</td>
<td>[m] ca 46.5 [50]</td>
<td>ca 14</td>
<td>ca .30</td>
<td>–</td>
<td>–</td>
<td>ca 19</td>
<td>ca .40</td>
<td>–</td>
<td>11</td>
<td>23</td>
<td>2.1</td>
</tr>
<tr>
<td>p – PUI112509</td>
<td>Fig. 7A</td>
<td>[m] ca 56 [70]</td>
<td>ca 20</td>
<td>ca .38</td>
<td>–</td>
<td>–</td>
<td>ca 23.5</td>
<td>ca .42</td>
<td>–</td>
<td>10</td>
<td>26</td>
<td>2.6</td>
</tr>
<tr>
<td>p – PUI112510</td>
<td>Fig. 7C</td>
<td>[m] ca 44.3</td>
<td>14.7</td>
<td>.33</td>
<td>19.8</td>
<td>(21.0)</td>
<td>.47</td>
<td>(.45)</td>
<td>17.4</td>
<td>.39</td>
<td>13.1</td>
<td>(.14)</td>
</tr>
<tr>
<td>p – PUI112511</td>
<td>Fig. 7B</td>
<td>[m] 27.5 [40.7]</td>
<td>8.5</td>
<td>.31</td>
<td>13.3</td>
<td>.48</td>
<td>11.4</td>
<td>.41</td>
<td>1.6</td>
<td>11</td>
<td>24</td>
<td>2.2</td>
</tr>
<tr>
<td>p – PUI112513</td>
<td>Fig. 7E</td>
<td>[m] 48.1 [51]</td>
<td>ca 15.8</td>
<td>.33</td>
<td>–</td>
<td>–</td>
<td>ca 20.3</td>
<td>ca .42</td>
<td>–</td>
<td>11</td>
<td>23</td>
<td>2.1</td>
</tr>
<tr>
<td>p – PUI112516</td>
<td>Fig. 7F</td>
<td>[m] ca 46.5 [48.4]</td>
<td>ca 14.3</td>
<td>ca 31</td>
<td>–</td>
<td>–</td>
<td>ca 19.5</td>
<td>ca .42</td>
<td>–</td>
<td>11</td>
<td>23</td>
<td>2.1</td>
</tr>
<tr>
<td>p – PUI112517</td>
<td>Pavia’ 83</td>
<td>[m] ca 43 [51]</td>
<td>ca 13.6</td>
<td>32</td>
<td>–</td>
<td>–</td>
<td>ca 18.1</td>
<td>ca .42</td>
<td>–</td>
<td>13</td>
<td>26</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Fig. 7. A–G: *Pseudoteloceras croisillense* gen. et sp. nov. [M] et [m].
Scale bars = 10 mm. Asterisk marks the beginning of the body-chamber.
Fig. 8. A–F: Pseudoteloceras croisillense gen. et sp. nov. [m].

G–H: Pseudoteloceras maerteni gen. et sp. nov. [M]
arched; the umbilical regression of the external half of the body-chamber is marked; flanks show well define umbilical walls; primary ribs are dense and straight with rectiradiate secondaries.

Distribution. *Pseudoteloceras croissillense* gen. et sp. nov. occurs in the upper Romani Subzone, lower Humphriesianum Zone. Its distribution is mainly documented in the North West European Province; Calvados (d’Orbigny, 1847 in 1842–1851; Haug, 1907; Pavia and Martire, 2010; Pavia et al., 2013) and Dorset (Morris and Lyckett, 1850; Arkell, 1933; Parsons, 1976; Callomon and Chandler, 1990; Chandler and Whicher, 2015). However, the taxon is common also in the Subalpine Basin (Pavia, 1983) where a *Pseudoteloceras croissillense* Biohorizon may be defined at the upper part of the Romani Subzone (see Conclusions).

3.3. *Pseudoteloceras maertenii* gen. et sp. nov.

Figs. 8/G–H

Macroconch [M]

v 1980 *Stemmatoceras* "blagdeni" – Clari and Pavia, p. 88.

? 1985 *Stemmatoceras* sp. nov. 1 – Fernandez-Lopez, p. 290, pl. 31, fig. 1.

1996 *Teloceras* *Teloceras?* labrum Buckman – Gauthier et al., p. 34, pl. 1, fig. 2 (non fig. 6).

2006 *Teloceras blagdeniiforme* – Parsons, pl. 10, fig. 2 (unpublished manuscript)

v 2015 *?Stemmatoceras* nov. sp. 2 – Pavia et al., p. 10.

Diagnosis. Moderately evolve subadiconic; depressed, sub-elliptical whorl-section with short umbilical walls, slightly rounded flanks and arched venter; strong primary ribs, convex secondaries and strong tubercles at the trifurcation point.

Etymology. The species is dedicated to Lionel Maerten (Ver-sur-Mer, Calvados, France) who amicably collaborated in sampling the section Les-Fours-à-Chaux at Croisilles and collected both specimens that compose the type-series of this new taxon.

Holotype. Specimen MGPT-PU112499 housed in the paleontological collections of the Museo di Geologia e Paleontologia of the Torino University. The holotype comes from the base of Bed 6 of the section of Croisilles (Fig. 8/G).

Locus typicus. The type locality of the holotype is the site Les Fours à Chaux (49°00'28.59"N and 0°26'02.91"E) in the municipality of Croisilles, South of Caen in Calvados (Pavia et al., 2015).

Stratum typicum. The reseedimented ammonites (*Chondroceras evolvenscens, C. gervilli* and *Paeolomorphus cycloides* in Pavia et al., 2015) allow referring Bed 6 of the section at Les Fours à Chaux to the upper part of the Romani Subzone, Humphriesianum Zone, Lower Bajocian.

Paratypes. Specimens MGPT-PU112500 [M] from Bed 6 of the section of Croisilles, the same place as the holotype

Material. The holotype MGPT-PU112499 and the paratype MGPT-PU112500, from the Oolite ferrugineuse de Bayeux Formation, are reeledaborated fossils at the base of Bed 6 of the Croisilles section (see Pavia et al., 2015). The lithofacies of their internal moulds is a bioclastic packstone with fine and scattered Fe-oooids that is similar to that of the encasing bed 6 but totally different from those of the underlying Bed 5; thus the two fossils have to derive from a layer between beds 5 and 6 not recorded in the succession. Bed 5 has been referred to as the lower part of the Romani Subzone (Pavia et al., 2015), so that the holotype and the paratype of *Pseudoteloceras maertenii* gen. et sp. nov. have to be dated at the middle or late Romani Chron.

Measurements. See Table 2.

Description. Both holotype and paratype from Croisilles are immature macroconchs with a short tract of the body-chamber. Suture lines, though not easily detectable, do not show any approximation.

The coiling of macroconchs is moderately evolve with umbilicus at 39–40°. Shells are subadiconic; the subelliptical whorl section (W/H = 1.2–2.0) shows slightly rounded flanks with inclined umbilical walls, and arched venter. Ornament consists of coarse, sinuous primary trifurcate ribs with additional free secondaries regularly intercalated each triple bundle. Secondary ribs are blunt, gently projected forward. Tubercles lie on the ventrolateral shoulder, are pointed in the inner whorls on the umbilical seam and enlarge on the last whorls. The septal suture of these macroconchs cannot be drawn due to unfavourable preservation of the internal moulds. No microconch counterpart has been identified in the field or in the literature.

Discussion. The morphological features confirm that the definition of *Pseudoteloceras maertenii* gen. et sp. nov. as a new species is clear, though the sample is small. The diagnostic features of the species consist of a narrow umbilicus compared with conspecific taxa (39–40 vs 48–40), the degree of forward projection of the secondary ribs and the subelliptical whorl section with arched venter and short umbilical walls. On the other hand, the subadiconic architecture with just slightly rounded flanks and the tubercles on the umbilical seam allow this species to be placed in *Pseudoteloceras* gen. nov., rather than in *Stemmatoceras* that is distinguished by its elliptical whorl-section with regularly rounded flank and venter and by blunt tubercles often reduced to a bulge at the furcation point. However, these morphological features assign *P. maertenii* gen. et sp. nov. to an intermediate position in the phyletic trend from *Stemmatoceras* to *Pseudoteloceras* gen. nov.

Distribution. *Pseudoteloceras maertenii* gen. et sp. nov. is present in different sites of the West-Tethys domain, from NW European Province (Gauthier et al., 1996; Parsons, 2006) to the Submediterranean (Mouterde, 1953; Fernandez-Lopez, 1985; Fernandez-Lopez and Mouterde, 1994) and the Mediterranean provinces (Clari and Pavia, 1980). These references confirm our view that this species occurs in the lower Humphriesianum Zone.

3.4. *Pseudoteloceras boursicoti* gen. et sp. nov.

**Figs. 8/A–Dv 2013 *Teloceras labrum* – Pavia et al., p. 141.

v 2015 *Teloceras* cf. *labrum* (S. Buckman) – Chandler and Whicher, pl. 34, fig. 5.

Diagnosis. Evolute calioclines in the inner whorls; trapezoidal whorl-section with rounded umbilical walls, slightly rounded flanks and feebly arched venter; strong and sharp primary ribs, convex secondaries projected forward; spiniform, directed backwards tubercles at the trifurcation point.
Etymology. The species is dedicated to Pierre-Ives Boursicot (Villedieu-la-Blouére, Maine-et-Loire, France) who collected the holotype in the temporary outcrop of Evrecy, South of Caen, whose succession is similar to that of Maizet (Pavia et al., 2013).

Holotype. Specimen MGPT-PU112524 housed in the paleontological collections of the Museo di Geologia e Paleontologia of the Torino University (Fig. 9/A). The holotype is a resedimented fossil coming from a packstone with randomly dispersed fine Fe-ooids of Fig. 9. A–D: Pseudoteloceras boursicoti gen. et sp. nov. [M]. A: holotype MGPT-PU112524, Evrecy section, specimen collected by Pierre-Ives Boursicot. B: paratype LM-541, Maizet section, Bed 4, specimen collected by Lionel Maerten. C: paratype MGPT-PU112520, Bretteville section, Bed 7. D: paratype MGPT-PU112521, Maizet section, Bed 4. Scale bars = 10 mm. Asterisk marks the beginning of the body-chamber.
the section of Evrecy, whose lithofacies is equivalent to that described in Bed 4 of the section of Maizet (Pavia et al., 2013, p. 141).

Locus typicus. The type locality of the horizon is the northern sector of the Evrecy municipality (49°06′04.45″N and 0°29′52.59″E) where a temporary trench was opened in 2008 on a building site; thus at present no section is visible.

Stratum typicum. The resedimented ammonites associated to the holotype (Chondroceras evolvenscens, C. gervillii and Poecilomorphus cycloides: Boursicot, pers. comm.) allow referring the source bed to the Lower Bajocian, Humphriesianum Zone, upper Romani Subzone by comparison with the Maizet section.

Paratypes. Specimen MGPT-PUI112520 from Bretteville, specimens LM-541 and MGPT-PUI112521 from Maizet.

Material. This new taxon is represented only by macroconchs; microconchs are hitherto unknown. The type-series totals five specimens of the lower Humphriesianum Zone, Romani Subzone from the Oolithe ferrugineuse de Bayeux* Formation: the holotype from Evrecy (MGPT-PUI112524), a reeled fossil from Bed 7 at Bretteville (MGPT-PUI112520), a resedimented specimen and a reeled one from Bed 4 at Maizet, respectively LM-541 (plaster mould MGPT-PUI112522) and MGPT-PUI112521, a reedimented specimen from Bed 6 at Croisilles (MGPT-PUI112525), the resedimented specimens come from a bed in which the ammonite assemblage is characterized by Chondroceras evolvenscens, C. gervillii and Poecilomorphus cycloides, and refers to the Romani Subzone. The two reeledarated specimens (MGPT-PUI112520 and MGPT-PUI112521) do not conflict with this biostratigraphical location because (1) the lithofacies of their internal moulds are equivalent to that of Bed 7 at Bretteville, Bed 4 at Maizet and Bed 6 at Croisilles, (2) MGPT-PUI112520 and Bed 7 of Bretteville is regarded as a fossil reeledarated from the underlying Bed 6, and MGPT-PUI112521 from Bed 4 at Maizet (erroneously stated to be from Bed 3 by Pavia et al., 2013, p. 141) is interpreted as derived from a directly underlying bed not recorded in the stratigraphical succession, but referred to the Romani Subzone.

Measurements. See Table 3.

Description. The coiling is evolve with umbilics that varies from 46 to 55% during growth. Shells are cadiconic; the trapezoidal whorl-section (W/H = 2.1 to 2.8) shows slightly rounded flanks with short umbilical walls; the venter is flattened, just a little arched in the middle and pagoidon on the ventrolateral shoulders due to the long tubercles; no evidence of umbilical egession at the last preserved whorl. Ornament consists of spaced, slightly sinuous, trifurcate primary ribs with additional free secondaries intercalated each triple bundle; primaries are feeble on the umbilical wall and increase in relief towards the tubercles. Secondary ribs are blunt and bundle on tubercles; they regularly project forward. Tubercles lie on the ventrolateral shoulder, are pointed in the inner whorls on the umbilical seam and enlarge on the pre-adult stage; on specimens with the neomorphic shells, the tubercles develop spines turned backward (Fig. 9A and 9B). The sepal suture is hardly visible because of shell cover and bad preservation of internal moulds; nevertheless, it is composed of a narrow and deeply incised E/L saddle, large, slightly oblique lateral lobe located on the marginal part of the flattened venter, shallow l/U saddle symmetrically bipartite by a wide U1, U2 deeply retracted.

Discussion. The convexity of the secondary ribs on the venter is particularly accentuated in the holotype of Pseudoteloceras boursicotii gen. et sp. nov. This feature marks a clear difference in comparison with the congeneric species. Another distinctive characteristic is represented by the spiniform tubercles directed backwards that produce a pagoidform outline of the venter. The variability of the species is further expressed by the ratio of whorl width to whorl height (W/H = 2.1–2.8 with the holotype in a middle position) and the furcagion degree of the primary ribs (Ni = 2.8–3.7).

Distribution. The type-series of Pseudoteloceras boursicotii gen. et sp. nov. comes from the lower Bajocian, Humphriesianum Zone, Romani Subzone of the southern area of Caen, Calvados, NW France. The coeval record from Dorset (Chandler & Whibey, 2015) certifies a larger distribution of the species within the northwestern European lower Humphriesianum Zone.

4. Conclusions
Pseudoteloceras gen. nov. represents a distinct phyletic lineage within the subfamily Stephanoceratinae. Its morphological features displayed in the inner whorls of the macroconchs are similar to those of the known genus Teloceras. The differences from Teloceras are mainly morpho-structural and biochronological. Pseudoteloceras gen. nov. displays (1) subadiconic with planorbionic outer whorls, regularly decreasing whorl-width towards the adult body-chamber without umbilical egession up to 300 mm diameter, (2) wider spaced primary ribbing, (3) convex secondary ribbing sometimes highly projected forward in the mid-venter, (4) simpler suture line. Moreover, Pseudoteloceras gen. nov. is older than Teloceras: the biochronologic range of Pseudoteloceras gen. nov. is limited to the early Humphriesianum Chron in the Western Tethys as supported by the literature and the new species, whereas the oldest Teloceras s.l. are recorded from the topmost Umbilicium Subzone.

The phyletic origin of Pseudoteloceras gen. nov. is likely to occur in the Stemmatoceras group of the Hebridea Subzone, upper Propinquans Zone, of the central-European lower Bajocian. In particular, we refer to the specimen Stemmatoceras sp. described by Ohmert (1988, p. 339, pl. 8, fig. 9; 1990, p. 123, pl. 1, fig. 2, original by Scholz, 1966) from the “Pinguis Subzone” of Glens bei Reutlingen, Germany, that shows an “unusual” subtrapezoidal whorl-section, depressed venter and pointed tubercles at the ventrolateral shoulder. The following step, with subadiconic appearance and Teloceras-like morphology, is represented by Pseudoteloceras geometricum (Maubeuge). B. boursicotii gen. et sp. nov. may be regarded as the end term of a phyletic trend developed during the late Romani Subzone that finishes with the most accentuated Teloceras-like architecture in the inner whorls.

Pseudoteloceras geometricum is interpreted here as the earliest species of the new lineage. The three new species described in detail may be sequentially arranged in the upper Romani Subzone. The subadiconics with subelliptical whorl-section of Pseudoteloceras maerteni gen. et sp. nov., possibly located to the middle Romani

Table 3
Measurements for Pseudoteloceras boursicotii gen. et sp. nov. Status of specimens: h=holotype, p=paratype. M=Macroconchs, m= microconchs. Figures in [] refer to maximum D. Measurements of whorl-width are taken on the interspace between tubercles or (in brackets) on the tubercles.

<table>
<thead>
<tr>
<th>Specimens</th>
<th>Figures</th>
<th>D mm</th>
<th>H mm</th>
<th>h</th>
<th>W mm</th>
<th>w</th>
<th>U mm</th>
<th>u</th>
<th>W/H</th>
<th>Ni/2</th>
<th>Ne/2</th>
<th>Ne/Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>h – PUI112524</td>
<td>Fig. 9A</td>
<td>46.6</td>
<td>52.1</td>
<td>31</td>
<td>34.4</td>
<td>.39</td>
<td>.66</td>
<td>.55</td>
<td>2.8</td>
<td>9</td>
<td>25</td>
<td>2.8</td>
</tr>
<tr>
<td>p – PUI112520</td>
<td>Fig. 8C</td>
<td>68.0</td>
<td>21.1</td>
<td>.31</td>
<td>44.1</td>
<td>.51</td>
<td>4.2</td>
<td>.24</td>
<td>10</td>
<td>10</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>p – LM-541</td>
<td>Fig. 8B</td>
<td>54.0</td>
<td>16.3</td>
<td>.30</td>
<td>38.0</td>
<td>.43</td>
<td>2.7</td>
<td>.23</td>
<td>9</td>
<td>3.5</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>p – PUI112521</td>
<td>Fig. 9D</td>
<td>36.3</td>
<td>16.7</td>
<td>.29</td>
<td>28.8</td>
<td>.34</td>
<td>2.4</td>
<td>.32</td>
<td>9</td>
<td>28</td>
<td>31</td>
<td>3.1</td>
</tr>
<tr>
<td>p – PUI112521</td>
<td>Fig. 8D</td>
<td>213</td>
<td>55.0</td>
<td>62.0</td>
<td>2.6</td>
<td>2.9</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Subzone, anticipated the definitive trapezoidal and cadiconic architecture of the inner whorls shown by *Pseudoteloceras croisillense* gen. et sp. nov. and *Pseudoteloceras boursicotii* gen. et sp. nov. In general, the latter three species refer to the upper Romani Subzone, the *Gervillii* Horizon (Fernandez-Lopez and Mouterde, 1994; Rioult et al., 1997, p. 49). The results from the section of Chaudon in the Subapline Basin (Pavia, 1983, tab. IIIb) are more precise and reduce the distribution of *P. croisillense* gen. et sp. nov. to a relatively thin set of beds in the upper part of the Romani Subzone, so that it is possible to define a local *Pseudoteloceras croisillense* Biohorizon (Fig. 10) whose correlation potential needs to be confirmed in other areas of the western Tethys.

Acknowledgements

Many friends collaborated and facilitated the activity in the field: Pierre-Ives Boursicot (Villedieu-la-Blouère, France) for the fossils from Evrecy, Laurent Corbin (les-Moutiers-en-Cinglas, France) the owner of the old bureau of Les-Fours-à-Chaux at Croissilles, Aldo Defavari (Alessandria, Italy) for help in excavation after many years in Calvados, Gérard Le Corsu (former Mayor of Maizet, France) for facilities in the field activity, Lionel Maerten (Ver-sur-Mer, France) for careful work in the field sampling and for putting at our disposal ammonites from Maizet and Croissilles, Myette Guyomar and Didier Bert of the Réserve Naturelle géologique de Haute Provence (Digne, France) for formal authorization to work in the reserve area. The bureau of the Museum National d’Histoire Naturelle de Paris (France) transmitted us information (Didier Merle) and photos (Peter Massicard) of the *P. croisillense* holotype. The clarity and impact of the final manuscript benefited from the action of the reviewers Robert Chandler plus an anonymous specialist and John Cope, the Coordinator of the PGA volume dedicated to late John Callomon. The study was supported by G. Pavia’s personal grants and by S. Fernandez-Lopez research project CGL2011-23947 (MICINN) from the Spanish Ministry of Science and Innovation.

References
