Publication:
Interaction of Calcium Carbonates with Lead in Aqueous Solutions

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Pure calcium carbonate (calcite and aragonite) solid materials of different particle size (100-200 ím fragments and millimeter-sized single crystals) were interacted with Pb in aqueous solutions at room temperature under atmosphericPCO2. In the case of the micrometer-sized samples, the macroscopic investigation using a batch-type treatment procedure (solutions between 10 and 1000 mg/L Pb) and ICP-AES, SEM-EDS, and powder-XRD showed that the metal is readily removed from the aqueous media by both materials and indicated the sorption processes (mainly surface precipitation leading to overgrowth of cerussite and hydrocerussite crystals) taking place in parallel with surface dissolution processes. The various processes occurring at the calcium carbonate solid-water interface were clearly distinguished and defined in the case of the millimeter-sized samples interacted with 1000 mg/L Pb using a combination of wet-chemical, in-situ (AFM) and exsitu (AFM, SEM) microscopic, and surface spectroscopic (XPS, 12C-RBS) techniques. The in-situ AFM data revealed the dissolution processes on the surface of the calcium carbonates and the simultaneous heterogeneous nucleation of lead carbonate phases and confirmed the secondary dissolution of lead carbonate crystals grown epitaxially from the initial nuclei. The XPS spectra confirmed that adsorption of Pb occurs simultaneously to dissolution at short interaction times (less than 10 min, prior to precipitation-nucleation/crystal growth) in the case of both CaCO3 polymorphs and that the calcite surface with adsorbed Pb may have an aragonite-type character. The 2CRBS spectra indicated that absorption (incorporation of Pb2+ ions) also takes place in parallel at the surface layers of the calcium carbonates, resulting in formation of solid solutions.
Description
Unesco subjects
Keywords
Citation
Collections