Anglesite (PbSO₄) epitactic overgrowths and substrate-induced twinning on anhydrite (CaSO₄) cleavage surfaces

Juan Morales a, José Manuel Astilleros a,b,n, Lurdes Fernández-Díaz a,b,
Pedro Álvarez-Lloret c, Amalia Jiménez c

a Departamento de Cristalografía y Mineralogía, Universidad Complutense de Madrid, C/ José Antonio Novais 2, Madrid 28040, Spain
b Instituto de Geociencias (CSIC, UCM), C/ José Antonio Novais 2, Madrid 28040, Spain
c Departamento de Geología, Universidad de Oviedo, C/Jesús Arias de Velasco, s/n, Oviedo 3305, Spain

A B S T R A C T

The dissolution – precipitation reactions occurring on mineral surfaces are considered an effective means to remove high amounts of dissolved toxic metals from fluid phases by precipitation of a new solid in whose structures the pollutant is immobilized. However, for these reactions to be efficient a continuous communication between the fluid and mineral phases is required. This communication can be significantly hindered when the new solid phase forms a continuous homogeneous layer on the mineral substrate. The formation of such a layer is more likely to occur when epitactic relationships exist between the newly formed phase and the mineral substrate. Dissolved lead can be removed by interaction of the Pb-bearing aqueous solution with anhydrite (CaSO₄) leading to the formation of anglesite (PbSO₄). Here, the relationship between anglesite crystals and an anhydrite substrate is investigated. The three main anhydrite cleavage surfaces, (100), (010), and (001) are considered. A high density of oriented anglesite crystals growing with their (210) plane parallel to the substrate was observed on (001) Anh. The density of oriented anglesite was, however, significantly lower on (100) Anh and almost negligible on (010) Anh. Anglesite grew with its (001) plane parallel to the substrate on (100) Anh, but no evident epitactic relationship was found with (010) Anh. Differences in anglesite crystal density are explained on the grounds of structural similarities and the goodness of anglesite – anhydrite matching through the interface. Both on anhydrite (100) and (001) anglesite crystals show at least two specific orientations, which relate to each other through symmetry operators present in the substrate. The coalescence of differently oriented anglesite crystals leads to the formation of twins. This twinning phenomenon is designated as substrate-induced twinning, since the twinning law is determined by the substrate symmetry. In the particular case of anglesite growing on anhydrite (100) two different orientations have been observed, related each other through (210) Ang which act as twin plane.

Keywords: Crystal morphology ; Surface processes; Twinning; Growth from solutions; Epitactic growth; Mineral

1. Introduction

Dissolution–reprecipitation reactions are important for a variety of phenomena, ranging from the development of solvent mediated polymorphic transformations to mineral replacement and fossilization [1–4]. In recent years, di solution–reprecipitation a ctions have been envisaged as a means to remove dissolved pollutants from the environment through their incorporation in the crystal structure of a solid phase [5,6]. The efficiency of such a process mainly depends on the reactivity of the dissolving phase, which releases to the fluid medium the elements with which the pollutant will react, and on the chemical stability of the newly-formed solid [7]. Dissolution–recrystallization reactions often involve the nucleation of the phase that precipitates on a dissolving substrate. When this is the case, the progress of the dissolution–reprecipitation reaction is controlled by the development of a connected porosity network that guarantees the contact between the reactant solution and the substrate [6,8,9]. Such connectivity can be strongly affected by the existence or absence of epitactic relationships between substrate and overgrowth because an epitactic overgrowth can armor the dissolving substrate from further contact with the solution. Therefore, the efficiency of dissolution–reprecipitation reactions in the removal of pollutants can be strongly affected by the existence of crystallographic relationships between the solid phases involved in the reaction [10,11].

Pb dissolved in natural waters can be removed from the environment via interaction of Pb-bearing solutions with anhydrite
Materials and methods

The anhydrite specimens used in all experiments were highly pure (X-ray fluorescence spectroscopic analysis of these crystals revealed that they contained less than 0.4 wt% impurities, with Sr as the main impurity), slightly blue crystals from Naica (Mexico). Prior to the experiments, the crystals were cleaved parallel to (100), (001), and (010) faces with a knife edge to obtain fragments of approximately 3−1 mm. The orientation and twinning will be described separately for each set of fragments. The fragments were exposed to Pb-bearing aqueous solutions. In order to ensure an optimal interaction with the aqueous solution, the faces with the most exposed area were placed upwards. Anhydrite crystals were rapidly dried by blowing pressurized air on their surfaces. All the experiments were carried out at 25°C and atmospheric pressure.

The samples obtained by the procedure described above were studied by standard scanning electron microscopy (SEM) (JEOL JSM 6400, 40 kV). SEM imaging of the anhydrite surfaces provided information about morphological features of the overgrowths and their crystallographic relationships with the anhydrite surfaces. Energy-dispersive X-ray spectroscopy (EDX) analyses were carried out on selected areas of the samples. The phase(s) resulting from the crystal–solution interaction were identified by Glancing Incidence X-Ray Diffraction (GIXRD), using a Philips X’Pert PRO MRD diffractometer equipped with a Cu Ka source (45 kV, 40 mA) and an angle of incidence of 0.11. The surfaces were scanned over the range 2θ=20−90° at a scan speed of 0.8°/min.

In addition, bidimensional X-Ray diffraction analyses were performed to establish the three-dimensional orientation between anhydrite and anglesite overgrowths using an X-ray single crystal diffractometer equipped with a CCD area detector (D8 SMART APEX, Bruker, Germany). For the diffraction experiments, working conditions were: Mo Ka (λ=0.7093 Å), 50 kV and 30 mA. A set of diffraction frames was registered by reflection mode (diffractometer ω and 2θ angles were set at 10° and 20° respectively) while rotating the sample around Φ angle (a frame every 51° was registered) with a pin-hole collimator of 0.5 mm in diameter, and an exposure time of 20 s per frame. Pole densities/figures for the main anglesite and anhydrite cleavage surface were calculated from the registered frames using XRD2DScan software [17].

3. Results

The SEM images obtained after 2 h of exposure of the anhydrite (100), (001), and (010) surfaces to the Pb(NO₃)₂ solutions show that a mineral–aqueous solution reaction always occurs, irrespectively of the interacting surface considered. As a result of this reaction, a more or less discontinuous layer composed of oriented euhedral microcrystals forms on the anhydrite substrate (Fig. 1). EDX analyses of the newly-formed crystals showed that they are composed of S, O and Pb. This composition is consistent with anglesite. The GIXRD analysis also confirmed the formation of anglesite overgrowths largely depend on the anhydrite substrate (Fig. 2).

\[
\text{CaSO}_4 + n\text{H}_2\text{O} \rightarrow \text{Ca}_2\text{SO}_4\cdot n\text{H}_2\text{O}
\]

Fig. 1. SEM image obtained after 2 h of exposure of an anhydrite (001) surface to a [Pb]₀=1000 mg/L solution. The anhydrite surface is covered by a discontinuous layer of small anglesite crystals specifically oriented with respect to the substrate.

\[
\text{SO}_4^{2−} + \text{Pb}^{2+} + \text{H}_2\text{SO}_4 \rightarrow \text{PbSO}_4+\text{H}_2\text{O}
\]

Fig. 2. Glancing Incidence X-Ray diffraction pattern (0.11) recorded after 2 h of reaction at 25°C on anhydrite (001) cleavage surface in contact with [Pb]₀=1000 mg/L. GIXRD pattern confirmed the precipitation of anglesite.

SEM observations reveal that the microscopic features of the anglesite overgrowths largely depend on the anhydrite substrate considered. Differences concern both the orientation and the density of anglesite crystals. In the following subsections the nucleation density of anglesite crystals and their morphology, orientation and twinning will be described separately for each
Fig. 3. SEM image of anglesite crystals grown specifically oriented on the (100) surface of an anhydrite cleavage fragment. The epitaxy involves a matching of the plane (100) of anhydrite with the plane (001) of anglesite. The encircled crystals show the two alternative orientations of anglesite on the anhydrite substrate. Both orientations are related to each other by symmetry planes in the anhydrite structure normal to (100). The habit of these crystals is often a combination of the pinacoid (001), and the rhombic prisms (210) and (101) as shown in the drawings. The short white arrow points out the coalescence of equally oriented anglesite crystals, which leads to the formation of short arrow-like habits.

orientation of the anhydrite substrates, (100), (001), and (010). The features of the anglesite overgrowth point to a clear crystallographic control being exerted by the anhydrite substrate. The characteristics of this control are discussed in Section 4.

3.1. Anglesite overgrowth on anhydrite (100)

The SEM images obtained after 2 h of exposure of the anhydrite (100) surface to the \(\text{Pb(NO}_3 \text{)}_2 \) solutions reveal the substrate to be partially covered by anglesite crystals. A detailed view of this overgrowth is shown in Fig. 3. Due to its very good cleavage, anhydrite (100) surfaces usually consist of very flat, large terraces bounded by macrosteps. The interaction of such a surface with an aqueous solution undersaturated with respect to anhydrite leads to the formation and spread of deep etch pits. These etch pits usually show a typical pencil shape resulting from the intersection of \{210\} with \{001\} forms, run parallel to \[010\] of anhydrite. Moreover, it becomes apparent that \{001\} and \{101\} do not always coexist in the same crystal. All these forms occur frequently in natural anglesite crystals [15].

The anglesite crystals are clearly oriented with respect to the substrate. The epitaxy involves a matching between the planes (100) of anhydrite and (001) of anglesite: (100)\(_{\text{Anh}}|| (001)\(_{\text{Ang}}\). Moreover, it becomes apparent that \{120\} edges of anglesite, resulting from the intersection of \{210\} with \{001\} forms, run parallel to the \[010\] direction of the anhydrite substrate.

In addition, preferential orientation of the anglesite crystals overgrowth in relation to the (100) anhydrite cleavage surface was further characterized by the determination of pole figures obtained by 2DXRD analyses. In order to define the (100) anhydrite cleavage surface orientation, the pole figure for the (102) reflection was determined, showing a maximum tilted by 62.51 with respect to the pole figure center which coincides with (100) anhydrite cleavage surface (Fig. 4a). On the other hand, a pole figure for combined (210) and (102) reflections for anglesite crystals grown on anhydrite (100) displays a maximum tilted by 901 for the (210) reflection and a set of four maxima for the (102) pole figure tilted by 211 from the center which in this case corresponds to the (001) plane of anglesite crystals (Fig. 4b). Pole figures for anhydrite (100) and anglesite (001) cannot be shown due to their similar d-spacing. The set of different orientations for the (102) pole figure is the result of anglesite crystals with two alternative orientations related by a rotation by 901 on the anhydrite (100) surface (see Fig. 3). Both orientations are statistically equivalent since they are related one to each other by symmetry operators inherent to the anhydrite structure normal to the (100) substrate plane. The nucleation of anglesite crystals on the anhydrite substrate with such different and symmetry related orientations leads to the formation of induced twins [19] where differently oriented anglesite crystals coalesce as a result of growth. An example of this so called induced twinning is shown in Fig. 5a,b, where the two alternative orientations of anglesite crystals can be observed at a high magnification. On the other hand, the coalescence of equally oriented anglesite crystals leads to the formation of larger single crystals. This second type of coalescence explains the formation of typical short arrow-like crystals [20], as shown in Fig. 3.

3.2. Anglesite overgrowth on anhydrite (001)

After the interaction period, the anhydrite (001) substrates were partially covered by anglesite crystals of about 20 mm in length (Fig. 6). Also in this case, anglesite crystals clearly show preferred orientations with respect to this substrate. On average, the density of anglesite crystals formed on this surface is significantly higher than on anhydrite (100) and (010) substrates. Although the anglesite overgrowth forms a coating that totally covers large areas of the (001) anhydrite substrate, this coating is irregular, leaving some areas free of crystals. In such cleared areas the typical grooves regularly oriented parallel to [100] were observed which, again, enabled defining the main crystallo-graphic directions on this anhydrite surface [21]. The habit of the anglesite crystals formed on this surface result from a combination of \{001\}, \{210\} and \{101\} forms, run parallel to the \[010\] direction of anglesite (001) and \{102\} anglesite maxima respectively (not shown). Angular tilt values from pole figure center are represented by arrows. (a) PF for (102) anglesite displaying a defined maximum at a tilt of 62.51 from the center of the figure, corresponding to the orientation of the (100) anhydrite cleavage surface. (b) PFs for (210) and (102) anglesite crystals tilted by 901 and 2111 respectively from the center of the figure, corresponding to (001) anglesite crystal plane orientation. Two sets of (102) anglesite crystals orientation are represented by ellipse dots/lines.
4.1. Anglesite habit

The inspection of the SEM images shows that the density of anglesite crystals formed on anhydrite (010) surface is smaller than the observed on (100) and (001) substrates. Moreover, on this particular surface anglesite crystals are not equally spaced but preferentially nucleated on cleavage macrosteps and on steps bounding etch pits elongated along [001] (Fig. 8). In contrast, anglesite crystals growing on terraces are very scarce. Crystals related to macrosteps are bigger and exhibit well-developed flat faces, with their habit defined by a combination of (001), (210) and/or (101) forms, with the pinacoid (010) as minor form in some of them. It is also worthwhile to note that anglesite crystals formed on straight [001] steps of anhydrite are scarce, while a much higher density of these crystals nucleated on the rougher [100] steps resulting from the coalescence of etch pits. These observations point to a bad matching between anglesite and anhydrite on this particular surface. Moreover, the high concentration of anglesite crystals on [100] steps seems to indicate that here anglesite does not nucleate on the anhydrite (010) face but on anhydrite (001) substrates exposed at [100] steps. In fact, the anglesite crystals observed on [100] steps show identical characteristics to those directly observed on (001) surfaces. The small number of anglesite crystals which appear distributed on terraces at random orientations most likely correspond to crystals detached during the handling of the sample and settled on the (010) anhydrite substrate. The low density of anglesite crystals on this anhydrite cleavage surface does not allow the determination of orientation relationship with anglesite crystals by means of 2DXRD analyses.

4. Discussion

4.1. Anglesite habit

Crystal habits result from a complex interplay between structure and external factors affecting the crystal growth process. The final habit of the anglesite single crystals grown onto the anhydrite surfaces is defined by a combination of [210], [001], and [101] forms, with [210] faces appearing on all anglesite crystals, whereas [101] or [001] can be eventually absent. On a few anglesite crystals (010) form has also been observed. According to the theory of Hartman and Perdok [22], it is possible to assess the character of any [hkl] form of a crystal by analyzing the PBCs (periodic and uninterrupted bond chains in a given crystal structure): two PBCs determine a layer of strong bonds parallel to some (hkl) face. Faces limiting such layers (F for flat) are more stable than those parallel to one (S/stepped) or none (K/kinked) PBC. Hartman and Strom [23] applied the PBC analysis to a barite type structure, defining (210), (001), and (101), along with (211), and (201) as the faces [100]Anh, or [010]Ang. These two alternative orientations define the following relationships: (1) [010]Anh [1 0 0]Anh, [001]Ang [001]Ang (2) [010]Anh [1 0 0]Ang [1 0 0]Ang. It is worth to note that these two main alternative crystal orientations are not symmetrically equivalent because they are not related by any symmetry operator of the substrate. Moreover, both orientations are neither statistically equivalent since the density of anglesite crystals oriented with their elongation direction [100]Ang parallel to [010]Anh is much higher. Finally, the existence of (100) and (010) mirror planes in the anhydrite structure determines, in turn, the existence of two statistically equivalent orientations of anglesite crystals with respect to the anhydrite substrate for each one of the two alternative epitactic relationships defined above. In short there are four different orientations of anglesite crystals on the anhydrite substrate which are symmetrically related two by two.

3.3. Anglesite overgrowth on anhydrite (010)

the anhydrite substrate, while the shorter [001] edges of anglesite, defined by the intersection of the faces of the [210] form, are parallel to [100] of the anhydrite substrate. As in the previous case, this crystallographic orientation relationship is also confirmed from the determination of pole figures for anhydrite cleavage surface and overgrown anglesite crystals. The pole figure for [200]Anh reflection (Fig. 7a) shows a maximum tilted 90° from center, that indicates the (210) anglesite crystal orientation. Pole figures for [001] anhydrite and [210] of anglesite are not represented due to their similar d-spacing.

Here, it is also easy to establish relationships between the main directions of the substrate and the overgrowth since the elongation direction in anglesite crystals, [120]Ang, runs parallel to either [100]Anh or [010]Ang. These two alternative orientations define the following relationships: (1) [010]Anh [1 0 0]Anh, [001]Ang [001]Ang (2) [010]Anh [1 0 0]Ang [1 0 0]Ang. It is worth to note that these two main alternative crystal orientations are not symmetrically equivalent because they are not related by any symmetry operator of the substrate. Moreover, both orientations are neither statistically equivalent since the density of anglesite crystals oriented with their elongation direction [120]Ang parallel to [010]Anh is much higher. Finally, the existence of (100) and (010) mirror planes in the anhydrite structure determines, in turn, the existence of two statistically equivalent orientations of anglesite crystals with respect to the anhydrite substrate for each one of the two alternative epitactic relationships defined above. In short there are four different orientations of anglesite crystals on the anhydrite substrate which are symmetrically related two by two.
that have an F-character. The theoretical habit of a crystal can be built by considering the growth rate of F faces as proportional to their attachment energy \(E_{\text{att}} \). Calculated attachment energies \(E_{\text{att}} \) for the aforementioned F faces predict a theoretical habit for barite type crystals dominated by \(\{210\} \), \(\{001\} \) and \(\{101\} \) faces. The morphology of the anglesite crystals formed on anhydrite \(\{100\} \), \(\{010\} \) and \(\{001\} \) surfaces is also bounded by the \(\{210\} \), \(\{001\} \) and \(\{101\} \) faces in agreement with this prediction. Moreover, it is also very close to the habit proposed for barite crystals grown under low supersaturation conditions \[24\]. Although an estimation of supersaturation during the growth of anglesite on anhydrite is beyond the scope of this work, the close similarity of anglesite crystal habits to that predicted by PBC theory for barite type crystals points to anglesite growth occurring under low supersaturation conditions or a limited influence of this external factor on the growth morphology of anglesite. It is worth noting that the dissolution of anhydrite, which provides a continuous source of sulfate ions, guaranteeing the progress of anglesite growth, also releases \(\text{Ca}^{2+} \) ions to the growth medium. However, no significant disruption of the anglesite crystal habits has been observed that can be related to the presence of \(\text{Ca} \) in the growth medium.

Finally, it is interesting to highlight the influence exerted by the epitactic relationships between the substrate and the overgrowth on the morphology of anglesite crystals. Although their habit is bounded by \(\{210\} \), \(\{100\} \) and \(\{101\} \) faces in all the cases, the relative importance of such faces varies depending on the anhydrite substrate on which anglesite crystals develop. Thus, the comparison of images in Figs. 3 and 6 shows that while \(\{101\} \) is the most important form in the habit of anglesite formed on anhydrite \(\{100\} \), this form is much less developed or even absent in anglesite crystals grown on anhydrite \(\{001\} \), which show a morphology dominated by \(\{210\} \) and \(\{001\} \). This could be explained as a result of a better matching of between \(\{210\}_\text{Ang} \) and \(\{001\}_\text{Anh} \) than between \(\{001\}_\text{Ang} \) and \(\{100\}_\text{Anh} \). Such better matching could also explain the anisotropic development of equivalent faces belonging to the \(\{210\} \) form, with the faces parallel to the \(\{001\}_\text{Anh} \) substrate being more developed.

4.2. Anhydrite and anglesite: epitactic relationships, nucleation density and induced twinning

In order to understand the development of an epitaxy, the structural matching between the overgrowth and the substrate must be considered. This requires a comparison of geometrical features of the crystal lattices of both phases as well as the structural elements that they share. In the anhydrite structure, \(\text{Ca}^{2+} \) is coordinated to eight oxygen atoms belonging to six different \(\text{SO}_4^{2-} \) tetrahedra. As a result, sulfate–calcium chains can be distinguished. The PBC analysis of anhydrite structure \[16\] reveals three elementary sulfate–calcium–sulfate bond chains which run parallel to the main crystallographic axes. These PBCs...
provide an F-character to the three anhydrite surfaces considered in this study, {100}Anh, {0 1 0}Anh, and {001}Anh. In the anglesite structure, at least ten PBCs have been found [23]. Among them, those parallel to [001]Ang and [120]Ang are most stable and consist of a sequence of Pb-sulfate bonds, which is linear along [120]Ang and arranged in a zig–zag chain along [001]Ang. As explained above, the epitactic growth of anglesite on anhydrite is controlled by the parallelism between these two directions in anglesite and [100]Anh. The fact that the directions involved in both the substrate and the overgrowth are PBCs composed of cation–sulfate bonds explains the structural affinity between both minerals.

Fig. 9 displays a comparison between the projections of the structures of anhydrite (100) and anglesite (001) faces which are the contact planes in the epitaxy described in Section 3.1. Both structures are projected in the same orientation as shown in the SEM images (Figs. 3 and 5), with the [120]Ang running parallel to the [010]Anh. For anhydrite, the distance between successive SO₄ groups along [010] is 6.995 Å, i.e., it coincides with the b cell parameter. In the anglesite structure, the distance between successive equivalent SO₄ groups (repeating period) is 13.772 Å, which is about twice the distance between successive SO₄ groups along [010]Anh (2 × 6.995 Å/213.990 Å). Similar repeating periods mean good matching between the two structures. The mismatch can be described by the lattice misfit (mf), which is frequently expressed using the equation [25]:

\[mf(\%) = \frac{t_{uvw,Anh} - t_{uvw,Ang}}{t_{uvw,Anh}} \times 100 \]

(3)

where \(t_{uvw} \) is the repeating period along the [uvw] direction in the substrate (anhydrite) and overgrowth (anglesite). Negative misfit values mean that the unit cell of the overgrowth is contracted along [uvw] in comparison to the unit cell of the substrate. Considering a 1:2 ratio between the repeating periods along [001]Anh and [120]Ang, the misfit is only −1.92% (Table 1). This misfit is clearly within the limits required for epitactic nucleation from solution, which justifies the development of an oriented overgrowth of anglesite on the anhydrite (100) surface. Although less obvious, there are also two additional pairs of directions lying within the contact plane, [120]Ang∥[010]Ang and [001]Ang∥[001]Anh. These pairs show relatively low divergences in the repeating periods (see Table 1) and their linear misfits (mf = 15.10% and −9.66%, correspondingly) could be considered within the limits to promote epitactic growth. However, they also show angular divergences (3.63° and 10.11°, correspondingly) which do not favor the development of epitaxy.

The matching between the two structures through the [001]Anh and [210]Ang (i.e., the contact planes between both structures as described in Section 3.2 and showed in Fig. 6) is even better (Table 1). Fig. 10 shows the projections of the structures of anhydrite and anglesite on (001) and (210), respectively. These projections show [120]Ang running parallel to the [010]Anh. As explained above, the linear misfit between them is −1.92%. However, the matching is significantly better between [100]Anh and [001]Ang. The repeating period along these directions are 6.993 and 6.955 Å, which means a misfit of only −0.54. It appears, therefore, that from a geometric standpoint, this epitaxy can be considered two-dimensional. On the other hand, the fact that a and b axes in anhydrite structure are almost identical in length, enables the exchange of [100] by [010] with little change of the repeating periods (Table 1). As a consequence, the matching between [010]Ang∥[001]Ang, and [100]Ang∥[120]Ang are also excellent, with misfits of −0.57 and −1.89, respectively. The good matching between the two pair of directions in this second

Table 1
Epitactic relationships between anhydrite (CaSO₄) and anglesite (PbSO₄).

<table>
<thead>
<tr>
<th>Contact Plane</th>
<th>Parameter (Å)</th>
<th>Contact Plane</th>
<th>Parameter (Å)</th>
<th>Misfit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrite (CaSO₄)</td>
<td>Anglesite (PbSO₄)</td>
<td>Misfit (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(100)</td>
<td>2 × [010] = 13.990</td>
<td>(001)</td>
<td>(120) = 13.772</td>
<td>−1.92</td>
</tr>
<tr>
<td>(001)</td>
<td>2 × [010] = 13.990</td>
<td>(210)</td>
<td>[001] = 6.955</td>
<td>−0.54</td>
</tr>
<tr>
<td>(100)</td>
<td>[010] = 6.993</td>
<td>(001)</td>
<td>(120) = 13.772</td>
<td>−1.92</td>
</tr>
<tr>
<td>(001)</td>
<td>[010] = 6.995</td>
<td>(001)</td>
<td>[001] = 6.955</td>
<td>−0.57</td>
</tr>
<tr>
<td>(100)</td>
<td>[010] = 13.986</td>
<td>(001)</td>
<td>(120) = 13.772</td>
<td>−1.89</td>
</tr>
</tbody>
</table>

Fig. 9. Projections of the crystal structures of (a) a (200) slice of anhydrite and (b) a (002) slice of anglesite.
5. Conclusions

The experimental results obtained in this research indicate that the interaction of anhydrite surfaces with highly concentrated Pb-aqueous solutions leads to their dissolution coupled to the nucleation of anglesite. The structural similarity between anglesite and anhydrite facilitates the epitactic growth of anglesite on the three main anhydrite cleavage surfaces. Anglesite crystals can show different orientations on specific anhydrite surfaces. These differently oriented anglesite crystals are related to each other via a symmetry operator present in the anhydrite substrate. The coalescence of these crystals leads to the formation of the so-called substrate-induced twinning.

These experimental results also indirectly suggest that the surface of anhydrite is a potential scavenger of dissolved Pb since during the interaction between anhydrite surfaces and highly concentrated Pb-aqueous solutions this heavy metal is continuously removed from the contaminated water as the reaction proceeds. However, the epitactic character of anglesite growth on the main anhydrite surfaces could determine that the efficiency of this process was significantly reduced as a result of an early substrate isolation by a layer of oriented overgrowth. Establishing the actual influence of the epitactic relationships between anhydrite and anglesite on the efficiency of anhydrite surfaces as Pb sorbants requires a specific research and will be the subject of a future work from this laboratory.

Acknowledgments

This research was supported by MICINN-Spain, under grants, CGL2010-20134-C02-01 and CGL2011-25906. J. Morales acknowledges a FPI fellowship from the Spanish MICINN. We sincerely thank the Microscopy Centre and the X-ray Diffraction Central Service of the Complutense University (UCM) for technical assistance. We appreciate the insightful comments by an anonymous reviewer.

References

[10] J.D. Rodríguez-Blanco, A. Jiménez, M. Prieto, Oriented overgrowth of pharma-
colite (CaHAsO4·C12H2O) on Gypsum (CaSO4·2H2O), Cryst. Growth Des. 7 (2007) 2756–2763.