Universidad Complutense de Madrid
E-Prints Complutense

Nuclear embeddings of Besov spaces into Zygmund spaces

Impacto

Downloads

Downloads per month over past year



Cobos, Fernando and Edmunds, David E. and Kühn, Tomas (2019) Nuclear embeddings of Besov spaces into Zygmund spaces. Journal of Fourier analysis and applications . ISSN 1069-5869 (In Press)

[img]
Preview
PDF
327kB


Abstract

Let d ∈ N and let Ω be a bounded Lipschitz domain in Rd. We prove that the embedding Id : Bd (Ω) −→ L (log L) (Ω) is nuclear if a < −1 and 1 ≤ p, q ≤ ∞,p,q ≤∞, while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ the embedding Id fails to be nuclear. Furthermore, if a = −1, the embedding Id : Bd∞,∞(Ω) −→ L∞ (log L)−1 (Ω) is not nuclear.


Item Type:Article
Uncontrolled Keywords:Análisis matemático, Espacios de Besov, Espacios de Zygmund
Palabras clave (otros idiomas):Besov spaces, Zygmund spaces, nuclear embeddings
Subjects:Sciences > Mathematics
Sciences > Mathematics > Mathematical analysis
ID Code:58106
Deposited On:13 Dec 2019 12:23
Last Modified:16 Dec 2019 09:07

Origin of downloads

Repository Staff Only: item control page