Publication:
Nuclear embeddings of Besov spaces into Zygmund spaces

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2019
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Let d ∈ N and let Ω be a bounded Lipschitz domain in Rd. We prove that the embedding Id : Bd (Ω) −→ L (log L) (Ω) is nuclear if a < −1 and 1 ≤ p, q ≤ ∞,p,q ≤∞, while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ the embedding Id fails to be nuclear. Furthermore, if a = −1, the embedding Id : Bd∞,∞(Ω) −→ L∞ (log L)−1 (Ω) is not nuclear.
Description
Keywords
Citation
[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. [2] J. Bergh and J. L�ofstr�om, Interpolation Spaces. An introduction, Springer, Berlin, 1976. [3] F. Cobos, O. Dom��nguez and T. K�uhn, On nuclearity of embeddings between Besov spaces, J. Approx. Theory 225, 209-223 (2018). [4] F. Cobos, L.M. Fern�andez-Cabrera, A. Manzano and A. Mart��nez, Logarithmic interpolation spaces between quasi-Banach spaces, Z. Anal. Anwendungen 26, 65-86 (2007). [5] F. Cobos and A. Segurado, Description of logarithmic interpolation spaces by means of the J. functional and applications, J. Funct. Anal. 268, 2906-2945 (2015). [6] J. Diestel, H. Jarchow and A. Tongue, Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, 1995. [7] D.E. Edmunds, P. Gurka and J. Lang, Nuclearity and non-nuclearity of some Sobolev embeddings on domains, J. Approx. Theory 211, 94-103 (2016). [8] D.E. Edmunds and H. Triebel, Function spaces, entropy numbers, di�erential operators, Cambridge Univ. Press, Cambridge, 1996. [9] W.D. Evans and B. Opic, Real interpolation with logarithmic functors and reiteration, Canad. J. Math. 52, 920-960 (2000). [10] A. Grothendieck, Produits Tensoriels Topologiques et Espaces Nucl�eaires, Memoirs Amer. Math. Soc. 16, Providence, 1955. [11] J. Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42, 289-305 (1978). [12] G.J.O. Jameson, Summing and Nuclear Norms in Banach Space Theory, Cambridge Univ. Press, Cambridge, 1987. [13] H. K�onig, Eigenvalue Distribution of Compact Operators, Birkh�auser, Basel, 1986. [14] K. Maurin, Abbildungen vom Hilbert-Schmidtschen Typus und ihre Anwendungen, Math. Scand. 9, 359-371 (1961). [15] K. Maurin, Methods of Hilbert Spaces, PWN-Polish Scienti�c Publishers, Warsaw, 1972. [16] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Series, Durham, 1976. [17] L.-E. Persson, Interpolation with a parameter function, Math. Scand. 59, 199-222 (1986). [18] A. Pietsch, r-Nukleare Sobolevsche Einbettungsoperatoren, in: Elliptische Differentialgleichungen II, Akademie-Verlag, Berlin (1971), pp. 203-215. [19] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980. [20] A. Pietsch, Eigenvalues and s-Numbers, Cambridge Univ. Press, Cambridge, 1987. [21] A. Pietsch and H. Triebel, Interpolationstheorie f�ur Banachideale von beschr�ankten linearen Operatoren, Studia Math. 31 95-109 (1968). [22] H. Triebel, Interpolation Theory, Function Spaces, Di�erential Operators, North-Holland, Amsterdam, 1978. [23] H. Triebel, Theory of Function Spaces II, Birkh�auser, Basel, 1992. [24] H. Triebel, Function Spaces and Wavelets on Domains, European Math. Soc. Publishing House, Zurich, 2008. [25] H. Triebel, Nuclear embeddings in function spaces, Math. Nachr. 290 3038-3048 (2017). [26] K. Yosida, Functional Analysis, Springer, Berlin, 1965.
Collections