Publication:
Evaluación in vitro del ajuste marginal vertical externo de coronas de óxido de circonio fabricado por CAD/CAM sobre implantes

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2018
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Introducción y objetivos: Obtener un ajuste pasivo y un buen ajuste marginal es fundamental desde perspectivas mecánicas y biológicas, porque la falta de una adaptación preciso entre el implante y la parte protésica puede conducir problemas mecánicos tales como la fractura de los componentes de la prótesis o el implante, también puede generar una distribución de fuerza inadecuada al hueso marginal, lo que podría causar una pérdida completa de oseointegración. Por otro lado, puede conducir a una acumulación bacteriana entre el implante y la parte protésica que podría causar una respuesta inflamatoria crónica, periimplantitis, pérdida ósea y finalmente fracaso del implante. Por lo tanto, los objetivos del presente estudio fueron evaluar el ajuste marginal vertical externo entre la corona de zirconio fabricado por la tecnología CAD/ CAM y el implante con conexión cónica interna, tras la carga cíclica y analizar si el grado del desajuste marginal está dentro de los límites aceptados clínicamente. Material y métodos: Para lograr los objetivos de la investigación, se llevó a cabo un estudio in vitro. Se fabricaron 5 probetas en metacrilato mecanizado y se utilizaron como un base para la colocación de los implantes. Se colocaron 5 implantes con conexión cónicas interna. Luego se fabricaron 5 coronas atornillados de zirconio de un primer premolar, mediante tecnología (CAD/CAM). Una vez atornillada las coronas a los implantes, se realizó la prueba de carga cíclica. Después de la carga cíclica, todas las muestras se prepararon para medir el ajuste marginal. La evaluación se analizó midiendo el tamaño del espacio entre los implantes y la corona de zirconio. La medición del ajuste marginal vertical se realizó, utilizando un microscopio óptico. Los datos obtenidos se archivaron para proceder con el análisis estadístico de los resultados. Resultados: El valor del ajuste marginal entre coronas de zirconio y implantes que se obtuvo en este estudio fue (0.016 ± 0.0037 mm). Conclusiones: 1. Los valores obtenidos de ajuste marginal vertical externo entre las coronas de zirconio y los implantes fue de 0.016mm (16μm) tras la carga cíclica. 2. El desajuste marginal obtenido en las coronas atornilladas de zirconio sobre implantes se encuentra dentro de los límites clínicamente aceptables.
Introduction and objectives: Obtaining a passive fit and a good marginal fit is fundamental from mechanical and biological perspectives, because the lack of a precise adaptation between the implant and the prosthetic part can lead to mechanical problems such as the fracture of the components of the prosthesis or the implant, also it can generate an inadequate distribution of force to the marginal bone, which could cause a complete loss of osseointegration. On the other hand, it can lead to a bacterial accumulation between the implant and the prosthetic part that could cause a chronic inflammatory response, periimplantitis, bone loss and finally implant failure. Therefore, the objectives of the present study were to evaluate the external vertical marginal fit between the zirconium crown manufactured by the CAD / CAM technology and the implant with internal conical connection, after the cyclic loading and to analyze whether the degree of marginal misfit is within the clinically accepted limits. Material and methods: To achieve the objectives of the research, an in vitro study was carried out. Five specimens were manufactured in mechanized methacrylate and were used as a base for the placement of the implants. 5 implants with internal conical connection were placed. Then five screw retained zirconium crowns of a first premolar were manufactured using (CAD / CAM) technology. Once the crowns were screwed to the implants, the cyclic loading test was performed. After cyclic loading, all samples were prepared to measure the marginal fit. The evaluation was analyzed by measuring the size of the space between the implants and the zirconium crown. The vertical marginal fit measurement was carried out, using an optical microscope. The data obtained were archived in order to proceed with the statistical analysis of the results. Results: The value of the marginal fit between zirconium crowns and implants obtained in this study was (0.016 ± 0.0037 mm). Conclusions: 1. The values obtained from external vertical marginal fit between the zirconium crowns and the implants was 0.016mm (16μm) after the cyclic load. 2. The marginal misfit obtained in the implant supported screw retained zirconium crowns using CAD CAM technology, after cyclic loading is within the clinically acceptable limits.
Description
Keywords
Citation
Zembic A, Bösch A, Jung RE, Hämmerle CHF, Sailer I. Five-year results of a randomized controlled clinical trial comparing zirconia and titanium abutments supporting single-implant crowns in canine and posterior regions. Clin Oral Implants Res. abril de 2013;24(4):384-90. 2. Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intraosseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3(2):81-100. 3. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977; 16:1-132. 4. Vootla DNR, Reddy DKV. Osseointegration- Key Factors Affecting Its Success-An Overview. IOSR J Dent Med Sci. abril de 2017;16(04):62-8. 5. Prótesis sobre implantes atornillada: ventajas e indicaciones [Internet]. Gaceta Dental. 2011 [citado 6 de septiembre de 2018]. Disponible en: https://www.gacetadental.com/2011/09/prtesis-sobre-implantes-atornillada-ventajase-indicaciones-25409/ 6. Taylor TD, Agar JR. Twenty years of progress in implant prosthodontics. J Prosthet Dent. julio de 2002;88(1):89-95. 7. Implant-abutment gap versus microbial colonization: Clinical significance based on a literature review. - PubMed - NCBI [Internet]. [citado 24 de agosto de 2018]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23661560. 8. Top factors leading to dental implant abutment/implant fixture misfit: The dreaded macrogap [Internet]. [citado 24 de agosto de 2018]. Disponible en: https://www.perioimplantadvisory.com/articles/2017/02/top-factors-leading-todental-implant-abutment-implant-fixture-misfit-the-dreaded-macrogap.html. 9. Structural and quantitative analysis of a mature anaerobic biofilm on different implant abutment surfaces. - PubMed - NCBI [Internet]. [citado 24 de agosto de 2018]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26597465. 10. Tamrakar AK, Rathee M, Mallick R, Dabas S. CAD/CAM IN PROSTHODONTICS - A FUTURISTIC OVERVIEW. :3. 11. Kim E-S, Shin S-Y. Influence of the implant abutment types and the dynamic loading on initial screw loosening. J Adv Prosthodont. febrero de 2013;5(1):21-8. 12. Ceramic dental biomaterials and CAD/CAM technology: state of the art. - PubMed - NCBI [Internet]. [citado 24 de agosto de 2018]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25172234. 13. Jemt T, Pettersson P. A 3-year follow-up study on single implant treatment. J Dent. 1 de agosto de 1993;21(4):203-8. 14. Assaf M, Gharbyeh AZA. Screw-retained crown restorations of single implants: A step-by-step clinical guide. Eur J Dent. 2014;8(4):563-70. 15. Gómez-Polo M, Ortega R, Gómez-Polo C, Celemin A, Del Rio Highsmith J. Factors Affecting the Decision to Use Cemented or Screw-Retained Fixed ImplantSupported Prostheses: A Critical Review. Int J Prosthodont. febrero de 2018;31(1):43–54. 16. Hansson S. Implant-abutment interface: biomechanical study of flat top versus conical. Clin Implant Dent Relat Res. 2000;2(1):33-41. 17. Wittneben J-G, Buser D, Salvi GE, Bürgin W, Hicklin S, Brägger U. Complication and failure rates with implant-supported fixed dental prostheses and single crowns: a 10-year retrospective study. Clin Implant Dent Relat Res. junio de 2014;16(3):35664. 18. Bacchi A, Consani RLX, Mesquita MF, dos Santos MBF. Stress distribution in fixed-partial prosthesis and peri-implant bone tissue with different framework materials and vertical misfit levels: a three-dimensional finite element analysis. J Oral Sci. septiembre de 2013;55(3):239-44. 19. Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis - ScienceDirect [Internet]. [citado 24 de agosto de 2018]. Disponible en: https://www.sciencedirect.com/science/article/pii/S1991790211000067. 20. Contemporary implant dentistry (ed 2): Misch CE (ed) with 14 contributors. St Louis, MO, Mosby-Year Book, 199, 684 pages, 641 illustrations and 133 color plates. J Oral Maxillofac Surg. 1 de junio de 1999;57(6):753. 21. Corrosion in titanium dental implants: Literature review [Internet]. [citado 24 de agosto de 2018]. Disponible en: https://www.researchgate.net/publication/26414202_Corrosion_in_titanium_dental_ implants_Literature_review. 22. Hegde C, Prasad D K, S D, Hegde R. Implant Restoration Materials: An Overview. Mahesh L, editor. Int J Oral Implantol Clin Res. enero de 2010;43-8. 23. Phillips’ Science of Dental Materials - 11th Edition [Internet]. [citado 25 de agosto de 2018]. Disponible en: https://www.elsevier.com/books/phillips-science-ofdental-materials/anusavice/978-1-4557-3461-0. 24. Bidra AS, Tischler M, Patch C. Survival of 2039 complete arch fixed implantsupported zirconia prostheses: A retrospective study. J Prosthet Dent. 1 de febrero de 2018;119(2):220-4. 25. Daou EE. The Zirconia Ceramic: Strengths and Weaknesses. Open Dent J. 18 de abril de 2014; 8:33-42. 26. Escalante Vasquez R. Management of occlusion over implants, Part I. Three 10-year case follow-ups and evaluations. Dent Today. abril de 2013;32(4):106, 108, 110-1. 27. Contemporary Fixed Prosthodontics - 4th Edition [Internet]. [citado 24 de agosto de 2018]. Disponible en: https://www.elsevier.com/books/contemporary-fixedprosthodontics/rosenstiel/978-0-323-02874-5. 28. Roberts HW, Berzins DW, Moore BK, Charlton DG. Metal-Ceramic Alloys in Dentistry: A Review. J Prosthodont. febrero de 2009;18(2):188-94. 29. Roach M. Base Metal Alloys Used for Dental Restorations and Implants. Vol. 51. 2007. 603 p. 30. Bakitian F, Seweryniak P, Papia E, Larsson C, Vult von Steyern P. Fracture strength of veneered translucent zirconium dioxide crowns with different porcelain thicknesses. Acta Biomater Odontol Scand. 14 de noviembre de 2017;3(1):74-83. 31. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns: Acta Odontologica Scandinavica: Vol 72, No 2 [Internet]. [citado 24 de agosto de 2018]. Disponible en: https://www.tandfonline.com/doi/abs/10.3109/00016357.2013.822098?src=recsys& journalCode=iode20. 32. Costa MD, Ramos MB, Pereira JR, Castro DSM de, Pamato S, Lorenzoni FC, et al. Challenges in reconstructing an isolated anterior tooth with a metal-free crown. Dent Hypotheses. 10 de enero de 2013;4(4):143. 33. Philip G. Titanium and its role in Dentistry. Titan Its Role Dent. 2 de mayo de 2017; 7:602-8. 34. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J. junio de 1993;43(3):245-53. 35. Özcan M, Hämmerle C. Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls. Materials. 24 de agosto de 2012;5(9):1528-45. 36. Ohkubo C, Hanatani S, Hosoi T. Present status of titanium removable dentures--a review of the literature. J Oral Rehabil. septiembre de 2008;35(9):706-14. 37. Lops D, Bressan E, Chiapasco M, Rossi A, Romeo E. Zirconia and titanium implant abutments for single-tooth implant prostheses after 5 years of function in posterior regions. Int J Oral Maxillofac Implants. febrero de 2013;28(1):281-7. 38. Communication methods and production techniques in fixed prosthesis fabrication: a UK based survey. Part 2: Production techniques [Internet]. [citado 24 de agosto de 2018].Disponibl en:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340157/ 39. Al Jabbari YS. Physico-mechanical properties and prosthodontic applications of CoCr dental alloys: a review of the literature. J Adv Prosthodont. abril de 2014;6(2):138-45. 40. Uusalo EK, Lassila VP, Yli-Urpo AU. Bonding of dental porcelain to ceramic-metal alloys. J Prosthet Dent. enero de 1987;57(1):26-9. 41. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. enero de 1999;20(1):1-25. 42. Application of Zirconia in Dentistry: Biological, Mechanical and Optical Considerations | IntechOpen [Internet]. [citado 31 de agosto de 2018]. Disponible en: https://www.intechopen.com/books/advances-in-ceramics-electric-andmagnetic-ceramics-bioceramics-ceramics-and-environment/application-of-zirconiain-dentistry-biological-mechanical-and-optical-considerations. 43. Platt P, Frankel P, Gass M, Howells R, Preuss M. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys. J Nucl Mater. 1 de noviembre de 2014;454(1):290-7. 44. Saridag S, Tak O, Alniacik G. Basic properties and types of zirconia: An overview. World J Stomatol. 20 de agosto de 2013;2(3):40-7. 45. Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil. agosto de 2010;37(8):641-52. 46. Performance of Zirconia for Dental Healthcare [Internet]. [citado 31 de agosto de 2018]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513513/ 47. Abduo J, Lyons K. Rationale for the Use of CAD/CAM Technology in Implant Prosthodontics [Internet]. International Journal of Dentistry. 2013 [citado 22 de agosto de 2018]. Disponible en: https://www.hindawi.com/journals/ijd/2013/768121/ 48. Augstin-Panadero R, Fons-Font A, Roman-Rodriguez JL, Granell-Ruiz M, del RioHighsmith J, Sola-Ruiz MF. Zirconia versus metal: a preliminary comparative analysis of ceramic veneer behavior. Int J Prosthodont. junio de 2012;25(3):294300. 49. Kohal R-J, Att W, Bächle M, Butz F. Ceramic abutments and ceramic oral implants. An update. Periodontol 2000. 2008; 47:224-43. 50. Kapos T, Ashy LM, Gallucci GO, Weber H-P, Wismeijer D. Computer-aided design and computer-assisted manufacturing in prosthetic implant dentistry. Int J Oral Maxillofac Implants. 2009;24 Suppl:110-7. 51. Klotz MW, Taylor TD, Goldberg AJ. Wear at the titanium-zirconia implantabutment interface: a pilot study. Int J Oral Maxillofac Implants. octubre de 2011;26(5):970-5. 52. Abduo J, Lyons K. Rationale for the Use of CAD/CAM Technology in Implant Prosthodontics [Internet]. International Journal of Dentistry. 2013 [citado 25 de agosto de 2018]. Disponible en: https://www.hindawi.com/journals/ijd/2013/768121/ 53. Gonzalez J. The evolution of dental materials for hybrid prosthesis. Open Dent J. 2014; 8:85-94. 54. Shibata Y, Tanimoto Y. A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. J Prosthodont Res. enero de 2015;59(1):20-33. 55. Gonçalves SEP, Bresciani E. Reconstructions using alloys and ceramics. En Elsevier; 2017. p. 23-66. 56. Revista Internacional de Prótesis Estomatológica [Internet]. Quintessence. [citado 25 de agosto de 2018]. Disponible en: https://www.quintessence.es/revistas/13-19revista-internacional-de-protesis-estomatologica.html 57. Albrektsson T. A multicenter report on osseointegrated oral implants. J Prosthet Dent. julio de 1988;60(1):75-84. 58. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. febrero de 2004;75(2):292-6. 59. Hecker DM, Eckert SE. Cyclic loading of implant-supported prostheses: changes in component fit over time. J Prosthet Dent. abril de 2003;89(4):346-51. 60. Alkan I, Sertgöz A, Ekici B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J Prosthet Dent. abril de 2004;91(4):319-25. 61. Broggini N, McManus LM, Hermann JS, Medina R, Schenk RK, Buser D, et al. Peri-implant inflammation defined by the implant-abutment interface. J Dent Res. mayo de 2006;85(5):473-8. 62. Yuan JC-C, Sukotjo C. Occlusion for implant-supported fixed dental prostheses in partially edentulous patients: a literature review and current concepts. J Periodontal Implant Sci. abril de 2013;43(2):51-7. 63. Pita MS, Anchieta RB, Barão VAR, Garcia IR, Pedrazzi V, Assunção WG. Prosthetic platforms in implant dentistry. J Craniofac Surg. noviembre de 2011;22(6):2327-31. 64. Ricomini Filho AP, Fernandes FS de F, Straioto FG, da Silva WJ, Del Bel Cury AA. Preload loss and bacterial penetration on different implant-abutment connection systems. Braz Dent J. 2010;21(2):123-9. 65. Changes in prosthetic screw stability because of misfit of implant-supported prostheses. - PubMed - NCBI [Internet]. [citado 25 de agosto de 2018]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11887597 66. Muley N, Prithviraj D, Gupta V. Evolution of External and Internal Implant to Abutment Connection. Mahesh L, editor. Int J Oral Implantol Clin Res. 15 de septiembre de 2012; 3:122-9. 67. Semper-Hogg W, Kraft S, Stiller S, Mehrhof J, Nelson K. Analytical and experimental position stability of the abutment in different dental implant systems with a conical implant–abutment connection. Clin Oral Investig. abril de 2013;17(3):1017-23. 68. Shetty M. IMPLANT ABUTMENT CONNECTION: BIOMECHANICAL PERSPECTIVES. 2014; 4:7. 69. Jorge JRP, Barao VAR, Delben JA, Assuncao WG. The role of implant/abutment system on torque maintenance of retention screws and vertical misfit of implantsupported crowns before and after mechanical cycling. Int J Oral Maxillofac Implants. abril de 2013;28(2):415-22. 70. Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Brånemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup. Int J Oral Maxillofac Implants. 1991;6(3):270-6. 71. Guindy JS, Besimo CE, Besimo R, Schiel H, Meyer J. Bacterial leakage into and from prefabricated screw -retained implant-borne crowns in vitro. J Oral Rehabilitation 1998; 25: 403-408. 72. Cheshire PD, Hobkirk JA. An in vivo quantitative analysis of the fit of Nobel Biocare implant superstructures. J Oral Rehabil. 1996; 23:762–769. 73. Buzayan MM, Yunus NB. Passive Fit in Screw Retained Multi-unit Implant Prosthesis Understanding and Achieving: A Review of the Literature. J Indian Prosthodont Soc. marzo de 2014;14(1):16-23. 74. Pasali B, Sarac D, Kaleli N, Sarac YS. Evaluation of marginal fit of single implantsupported metal-ceramic crowns prepared by using presintered metal blocks. J Prosthet Dent. febrero de 2018;119(2):257-62. 75. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. octubre de 1989;62(4):405-8. 76. Gassino G, Barone Monfrin S, Scanu M, Spina G, Preti G. Marginal adaptation of fixed prosthodontics: a new in vitro 360-degree external examination procedure. Int J Prosthodont. abril de 2004;17(2):218-23. 77. Riccitiello F, Amato M, Leone R, Spagnuolo G, Sorrentino R. In vitro Evaluation of the Marginal Fit and Internal Adaptation of Zirconia and Lithium Disilicate Single Crowns: Micro-CT Comparison Between Different Manufacturing Procedures. Open Dent J. 2018; 12:160-72. 78. Comparison of marginal fit of 3 different metal-ceramic systems: an in vitro study. - PubMed - NCBI [Internet]. [citado 25 de agosto de 2018]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11203662 79. do Nascimento C, Miani PK, Watanabe E, Pedrazzi V, de Albuqerque RF. In vitro evaluation of bacterial leakage along the implant-abutment interface of an externalhex implant after saliva incubation. Int J Oral Maxillofac Implants. agosto de 2011;26(4):782-7. 80. Jemt T, Rubenstein JE, Carlsson L, Lang BR. Measuring fit at the implant prosthodontic interface. J Prosthet Dent. marzo de 1996;75(3):314-25. 81. Kan JYK, Rungcharassaeng K, Bohsali K, Goodacre CJ, Lang BR. Clinical methods for evaluating implant framework fit. J Prosthet Dent. 1999;81(1):7. 82. Suárez García MJ. Evaluación del sellado marginal de coronas de titanio colado y mecanizado con dos líneas de determinación: memoria para optar al grado de doctor. [Madrid]: [Universidad Complutense de Madrid], Servicio de Publicaciones; 2006. 83. Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater Off Publ Acad Dent Mater. enero de 2011;27(1):83-96. 84. Barbosa GAS, Neves FD das, Mattos M da GC de, Rodrigues RCS, Ribeiro RF. Implant/abutment vertical misfit of one-piece cast frameworks made with different materials. Braz Dent J. 2010;21(6):515-9. 85. Nascimento C do, Ikeda LN, Pita MS, Pedroso e Silva RC, Pedrazzi V, Albuquerque RF de J, et al. Marginal fit and microbial leakage along the implantabutment interface of fixed partial prostheses: An in vitro analysis using Checkerboard DNA-DNA hybridization. J Prosthet Dent. diciembre de 2015;114(6):831-8. 86. Faria KO de, Silveira-Júnior CD da, Silva-Neto JP da, Mattos M da GC de, Silva MR da, Neves FD das. Comparison of methods to evaluate implant-abutment interface. Braz J Oral Sci. marzo de 2013;12(1):37-40. 87. de França DGB, Morais MHST, das Neves FD, Barbosa GAS. Influence of CAD/CAM on the fit accuracy of implant-supported zirconia and cobalt-chromium fixed dental prostheses. J Prosthet Dent. enero de 2015;113(1):22-8. 88. Butignon LE, de Almeida Basílio M, Santo JS, Arioli Filho JN. Vertical Misfit of Single-Implant Abutments Made from Different Materials Under Cyclic Loading. Int J Oral Maxillofac Implants. octubre de 2016;31(5):1017-22. 89. Tiossi R, Gomes EA, Lapria Faria AC, Silveira Rodrigues RC, Ribeiro RF. Effect of cyclic loading on the vertical microgap of long-span zirconia frameworks supported by 4 or 6 implants. J Prosthet Dent. octubre de 2014;112(4):828-33. 90. Zaghloul HH, Younis JF. Marginal Fit of Implant-Supported All-Ceramic Zirconia Frameworks. J Oral Implantol. agosto de 2013;39(4):417-24. 91. Klineberg IJ, Murray GM. Design of superstructures for osseointegrated fixtures. Swed Dent J Suppl. 1985; 28:63-9. 92. Yüzügüllü B, Avci M. The implant-abutment interface of alumina and zirconia abutments. Clin Implant Dent Relat Res. mayo de 2008;10(2):113-21. 93. de Morais Alves da Cunha T, de Araújo RPC, da Rocha PVB, Amoedo RMP. Comparison of fit accuracy between Procera® custom abutments and three implant systems. Clin Implant Dent Relat Res. diciembre de 2012;14(6):890-5. 94. Baldassarri M, Hjerppe J, Romeo D, Fickl S, Thompson VP, Stappert CFJ. Marginal accuracy of three implant-ceramic abutment configurations. Int J Oral Maxillofac Implants. junio de 2012;27(3):537-43. 95. Canullo L. Clinical outcome study of customized zirconia abutments for singleimplant restorations. Int J Prosthodont. octubre de 2007;20(5):489-93. 96. Meleo D, Baggi L, Girolamo MD, Carlo FD, Pecci R, Bedini R. Fixture-abutment connection surface and micro-gap measurements by 3D micro-tomographic technique analysis. Ann DellIstituto Super Sanità [Internet]. marzo de 2012 [citado 5 de septiembre de 2018];(1). 97. Mobilio N, Fasiol A, Franceschetti G, Catapano S, Mobilio N, Fasiol A, et al. Marginal Vertical Fit along the Implant-Abutment Interface: A Microscope Qualitative Analysis. Dent J. 6 de septiembre de 2016. 98. Neves F, Prado C, Prudente M, Carneiro T, Zancope K, Davi L, et al. Microcomputed tomography marginal fit evaluation of computer-aided design/computer-aided manufacturing crowns with different methods of virtual model