Ammonite-benthic Foraminifera turnovers across the Lower-Middle Jurassic transition in the Lusitanian Basin (Portugal)§

Maria Helena Paiva Henriquesa,*, Maria Luisa Canalesb

aDepartment of Earth Sciences and Geosciences Centre, Faculty of Sciences and Technology, University of Coimbra; Largo Marquês de Pombal, 3000-272 Coimbra, Portugal
bDepartment of Paleontology, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, José Antonio Novais, 2, 28040 Madrid, Spain

A B S T R A C T

This paper describes and characterises the co-occurrence of ammonite and benthic foraminiferal assemblages across the São Gião outcrop (Central Portugal), a reference section for the Lower-Middle Jurassic boundary in the Lusitanian Basin. The upper Toarcian-lower Aalenian marls and marly- limestones in this section provide a precise and detailed ammonite-based biostratigraphic zonation, with a mixed assemblage of northwest European and Mediterranean faunal elements, associated with benthic foraminifera assemblages with northern hemisphere affinities, both correlatable with the Aalenian GSSP at the Fuentelsaz section (Iberian Cordillera, Spain). A total of 447 well-preserved ammonite specimens and 13,116 foraminifera have been studied; no evidence was detected of any taphonomic processes that could have changed the original assemblages. From a biostratigraphic point of view, the ammonite record has enabled four biostratigraphic units to be recognised (the Mactra and Aalensis subzones of the Aalensis Biozone in the upper Toarcian, and the Opalinum and Comptum subzones of the Opalinum Biozone in the lower Aalenian). With regard to the benthic foraminifera, the taxa identified have enabled the Astacolus dorbignyi Zone and 11 bioevents to be identified, most of which representing local biostratigraphic proxies. However, the increase in the relative abundance of Lenticulina exgaleata Dieni from the upper part of the Opalinum Subzone to the lower part of the Comptum Subzone has a regional value. The constant and continuous ammonite record of northwest European taxa, together with typical Mediterranean taxa – namely Grammoceratinae – throughout the section, the high relative abundance of Miliolina representatives – generally interpreted as foraminifers typical of shallow waters – and the absence of foraminifera forms typical of cool waters, do not support the inference of cool seawater temperatures attributed to the Early Aalenian, or the global character of the “Comptum cooling event”, at least with reference to the Lusitanian Basin.

Keywords:
Ammonite-benthic Foraminifera biostratigraphy, Lower-Middle Jurassic Toarcian, Aalenian Lusitanian Basin Faunal turnover, “Comptum cooling event”

1. Introduction

Ammonites are the best fossil group for dating Jurassic marine sediments, but when these fossils are poorly preserved, scarce or almost impossible to obtain (e.g., in core samples), alternative biostratigraphic scales based on other fossil groups are needed. In recent decades, there have been some attempts to establish biostratigraphic scales based on benthic foraminifera. The precision and validity of such scales is greater when they can be calibrated with accurate biostratigraphic charts based on ammonites, as done in this work. The stratigraphic range of most of the Jurassic foraminiferal species is relatively wide; therefore, identification of bioevents such as first occurrences (First Appearance Datum, FAD), last occurrences (Last Appearance Datum, LAD) or noticeable changes in assemblage diversity or in the relative abundance of some taxa, can be a useful biostratigraphic tool. Hence, the aim of this work is to describe for the first time the detailed co-occurrence of ammonite and benthic foraminiferal assemblages across the Toarcian-Aalenian boundary at the São Gião section (Lusitanian Basin, Central Portugal), and to recognise the corresponding biostratigraphic units, thus contributing to a better calibration of the biostratigraphic scale for the Lower-Middle Jurassic boundary on the basis of different fossil groups.

The São Gião section is a classical outcrop of the Lower-Middle Jurassic boundary in the Lusitanian Basin, where previous works on ammonites were carried out by Mouterde et al. (1979) and Caloo-Fortier (1985). It is one of the few areas in Europe where this time interval is represented by an expanded section, showing exceptional exposure conditions along highly fossiliferous marly- limestones sediments approximately 45 m-thick, displaying a continuous record of ammonites. Moreover, the relevance of the

§ Corresponding editor: Fabienne Giraud-Guillot.
* Corresponding author. Tel.: +35 1239860510; fax: +35 1239860501.
E-mail address: hhenriq@ct.uc.pt(M.H.P. Henriques).
Gramnoceratinae content for palaeobiogeographic reconstructions of the western Tethys (Sandoval et al., 2012a), as well as the significant Pleydellia and Leioceras record, both justified the proposition of the São Giaão section as a reference section for the Toarcian-Aalenian boundary in the Lusitanian Basin (Henriques, 1989, 1992, 2000a; Henriques et al., 1996; Goy et al., 2000; Sandoval et al., 2001a; Azeredo et al., 2003). More recently, other fossil groups in the section have been studied, namely calcareous nannofossils (Henriques and Perilli, 2000), and most particularly benthic foraminifera (Magno et al., 2008; Magno, 2010; Canales et al., 2010). These studies all suggested the importance of analysing the detailed vertical co-occurrence of ammonite and benthic foraminifera assemblages across the Toarcian-Aalenian boundary at the São Giaão section, in order to identify major faunal changes both on macrofossil and microfossil assemblages.

The bioevents recognised in the benthic foraminifera record, accurately calibrated here using ammonite-based biostratigraphic units, represent a proxy that can be used to determine both the age and depositional environment assigned to core samples (Canales et al., 2010). Moreover, they allow the interpretation of previous data on palaeotemperature changes established for neighbouring basins located around the Iberian Plate, e.g., in the southern and northern palaeomargins (O’Dogherty et al., 2006; Sandoval et al., 2008; Gómez et al., 2009), as well as in more distant, boreal regions such as the Hebrides Basin (Price, 2010), where close relationships between major faunal-flora turnovers and isotopic fluctuations in δ¹³C have been recognised (Aguado et al., 2008; Sandoval et al., 2012b).

2. Geographic and geological settings

The São Giaão section is located in the northern sector of the Lusitanian Basin (Central Portugal), at about 5 km to the South-Southwest of Cantanhede village, near Zambujal (coordinates: 40°18′12.63″N, 8°37′17.58″W; altitude: 100 m; Fig. 1). The section is composed of greyish marly limestones, more or less compact, in regular beds with thicknesses ranging from 0.10 to 0.30 m, alternating with slightly thicker greyish marl beds organised in shallowing-upward units and deposited in an external marine platform environment. The limestone component progressively increases towards the top of this unit, which corresponds to the upper part of the Póvoa da Lomba Formation (upper Toarcian-upper Aalenian).

The Póvoa da Lomba Formation was firstly informally defined by Barbosa et al. (1988, 2008) as a lithostratigraphic unit named the “Calcários Margosos de Póvoa da Lomba” (“Póvoa da Lomba Marly Limestones”), and later formalised as the Póvoa da Lomba Formation by Azeredo et al. (2003). It corresponds laterally to the lower part of the Cabo Mondego Formation which outcrops at the west of the basin, the upper part of the Prado Formation outcropping eastwards, and the top of the Fórnrea Formation/base of the Barranco de Zambujal Formation which outcrops in the southeast of the basin (Azeredo et al., 2003; Fig. 2).

![Fig. 1. Geological map of the Lusitanian Basin (West of the Iberian Peninsula) showing the Jurassic outcrops and location of the São Giaão section. Modified after Figueiredo (2009).](image-url)
3. Material and methods

In order to study the ammonite record, 44 successive bed-by-bed samplings were obtained from 36 marly-limestone beds and eight marly beds. A total of 447 ammonite specimens were collected and identified according to the systematic classification proposed by Henriques (1992).

A total of 24 marly beds were sampled for the study of the benthic foraminiferal assemblages, taking into account the thickness of each ammonite subzone. For each sample, 300 g were processed in the laboratory using a classical methodology involving a mixture of sodium hydroxide, hydrogen peroxide and water for 2–3 days. Following this, the samples were washed over a column of 1.000, 0.500, 0.250, 0.125 and 0.060 mm mesh sieves. The dry residues were weighed and subsequently picked to obtain the foraminifera using a Wild M-8 binocular microscope. The specimens recovered were classified, at suprageneric and generic rank, using the Loeblich and Tappan (1988) systematic; the Ellis and Mixina’s (1940–1990) foraminifera catalogue was consulted for the specific rank classification. Photographs of the figured specimens were taken at the Centro Nacional de Microscopía Electrónica, Universidad Complutense de Madrid (Spain), using a JEOL-JSM 6400 electronic microscope.

The species richness and relative abundances were calculated for both fossil groups. Species richness is understood as the number of species (or other taxonomical category) in a sampling unit, in relation to the total number of identified species (or other taxa). Relative abundances are expressed as percentages, in relation to the total number of specimens obtained in each assemblage. All the ammonite and foraminifera specimens (including the residues of the samples studied) are stored in the Laboratório de Geologia Sedimentar e Registo Fóssil, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, University of Coimbra (Portugal).

4. Taphonomic considerations

The preservational features of the ammonite assemblages can be characterised according to several taphonomic parameters described for Tnetoceras from Iberia (Fernández López et al., 1999a, 1999b) and for other ammonites from the Lower Pliensbachian of Portugal (Fernández López et al., 2000). Marly limestones mainly record resedimented elements, whereas accumulated shells are virtually absent and re-elaborated elements are scarce. Ammonite assemblages are composed of incomplete phragmocones normally filled with sediment and, in general, appear scattered in the sediment, showing no pattern of imbricate or encased grouping. Complete shells are scarce and pyritic internal moulds are only found locally and assigned to marly levels. The degree of ammonite packing – estimated by the difference between the number of specimens and the number of fossiliferous levels divided by the number of fossiliferous levels – and the ammonite stratigraphical persistence – i.e., the proportion of fossiliferous levels – presents high values (9.15 and 38%, respectively), whereas the degree of taphonomic heritage – i.e., the percentage of re-elaborated elements – is very low to nil.

The ratio between the amount of preserved elements and the amount of species is high (26.3), making specific diversity, i.e., the inverse ratio, relatively low (0.04); adult shells are scarce. These taphonomic features, by disproving sorting processes involving mechanical transport, support the demic nature of the fossil assemblages, as pointed out by Fernández López and Méndez (1995) for the Phylloceratina and by Fernández López et al. (1999b) for the Tnetoceras of the Iberian basins during the Middle Jurassic. Concerning the benthic foraminifera record, most of the 13,116 specimens recovered are very well preserved. From a taphonomic point of view, only breakages, sedimentary infillings of the chambers, dissolution (partial or even total, as is the case for some representatives of the Ceratobuliminidae Family), distortion and recrystallisation (Herrero and Canales, 2002) were observed.
specimens, but no evidence of any alteration of the assemblages can be inferred. The last two studied samples come from harder sediments and, as a consequence, the surface of the specimens appeared to be covered by calcite crusts, thus hindering their taxonomic identification at specific rank.

5. Results

The co-occurrence of ammonite and benthic foraminiferal assemblages across the São Gião section provides a precise and detailed ammonite-based biostratigraphic zonation as well as an alternative biostratigraphic scale based on benthic foraminifera. In addition, the identification of bioevents, such as FADs, LADs or noticeable changes in assemblages’ species richness or in the relative abundance of some taxa in both fossil groups, may prove to be a useful biostratigraphical proxy. Such bioevents are, so far, considered to be of local application. It is expected that future analyses in the same basin or in other basins will allow for correlations between different sections, based on some of these bioevents. Moreover, the taxonomic composition of the assemblages and the recognised bioevents in the São Gião section provide relevant palaeoecological data for ongoing discussions on the relationships between major faunal turnovers and palaeotemperature changes during the Early-Middle Jurassic transition.

5.1. Ammonite and benthic foraminiferal assemblages

The ammonite record of the São Gião section mainly includes some typical northwest European Grammoceratinae (Catulloceras, Cotteswoldia, Pleydellia) in the upper Toarcian, and Leioceratinae (Leioceras, Cypholioceras) in the lower Aalenian, together with typical Mediterranean Grammoceratininae (Vacekia), Tmetoceratininae.

(Tmetoceras) and rare Hammatumoceratidae (*Bredya* and *Czerneyiceras*) (Fig. 3). No typically Tethyan phylloceratids were found among the 20 species identified (some of which are represented in Fig. 4).

The foraminiferal assemblages recorded along the stratigraphic interval are very abundant and display a high species richness (Figs. 5, 6). A total of 71 species (some of which are represented in Figs. 7, 8), corresponding to 26 genera and five suborders, have been identified, all typical of the Jurassic platforms in the northern hemisphere.

5.1.1. Upper Toarcian, Aalenian Biozone, Mactra Subzone

Samples SG1–SG8; 3.5 m of 0.70 m-thick greyish marls alternating with 0.15 m-thick lenticular greyish marly limestones with abundant ammonite content.

Index fossil: *Pleydellia mactra* (Dumortier).

The ammonite assemblage recognised in this subzone, which corresponds to six fossiliferous levels, reveals low number of specimens (16) but a relatively high number of...
Fig. 5. Occurrence and relative abundance of some of the foraminiferal taxa recorded in the studied stratigraphic interval.
Fig. 6. Occurrence and relative abundance of some of the foraminiferal taxa recorded in the studied stratigraphic interval (left), and main bioevents based on ammonites and foraminifers identified along the lower/middle Jurassic transition in the São Gião section (right).

species (five identified species corresponding to two genera). Most specimens correspond to the *Cotteswoldia* genus, namely *C. limatula* Buckman, *C. egena* Buckman, and *C. costulata* (Zieten) (representing 38% of the identified specimens), and the *Pleydellia* genus, namely *P. fluens* (Buckman) and *P. subcompta* Branco (also representing 38% of the identified specimens) (Appendix A, Table S1). The latter is a significant component of the recorded assemblages, as it represents earlier *Pleydellia*, thus
characterising the subzone, whose base is recognised by the FAD of these forms.

The only foraminiferal assemblage studied from the Mactra Subzone corresponds to sample SG8 (Table S2). A total of 469 specimens were obtained, 434 (93%) of which were identified at specific level. Taking into account the number of grams of picked sediment, in this sample the abundance amounts to 60.5 foraminifera per gram of picked sediment. In this assemblage,
four suborders (Spirillina, Miliolina, Lagenina and Robertinina) were identified, in which Lagenina was the most abundant (87%). Spirillina and Miliolina occur in percentages of less than 4% and Robertinina is known from a single specimen. The total absence, in this assemblage, of representatives of the Textulariina Suborder is notable, given that these are present, even if in small numbers, in Lower-Middle Jurassic foraminiferal assemblages of other coeval basins (Canales and Herrero, 1996; 2000; Canales and Ureta, 1997; Canales, 2001; Canales and Henriques, 2007, 2008; Figueiredo, 2009; Canales et al., 2010; Figueiredo et al., 2010; Guerteres, 2010; Magno, 2010; Figueiredo and Guerteres, 2012). At generic level, a total of 13 genera were identified, in which Lenticulina, with a relative abundance of 77%, clearly predominates. On a specific level, a total of 31 species were identified, of which Lenticulina poly gonata (Franke) was the most abundant (19%). There was no evidence of any single species dominating over the others (Table S2).

5.1.2. Upper Toarcian, Aalenisia Biozone, Aalenis Subzone

Samples SG9-SG33; 7.5 m of greyish marls with thicknesses varying from 0.15 to 1.10 m, alternating with 0.15 m-thick of bioturbated greyish marly limestones, displaying very abundant, sometime pyritised ammonite internal moulds.

Index fossil: Pleydellia aalenis (Zieten).

Other biostratigraphic units have been proposed for the upper part of the Aalenis Biozone. Page (2003) uses P. fluitans as index for the Fluitans Subzone. However, P. fluitans has a scarce record in the Lusitanian Basin and, as pointed out by Elmi et al. (1997: p. 34), ‘‘sa position stratigraphique au sein de la zone à Aalenis ne nous paraît pas bien établie, ce qui justifie son abandon en tant qu’indice’’. Concerning the Lugdunensis Subzone, it has been established due to traditional misinterpretations of P. aalenis (Zieten) by some authors. According to Elmi et al. (1997: p. 34), ‘‘L’âge lagonien utilissait une sous-zone à Aalenis pour cet intervalle de temps [Sous-zone à Lugdunensis] en faisant référence à l’espèce figurée par Dumortier (1874, pl. L, Fig. 1–3) qui est bien différente du type de Zieten [...].’’ Afin d’éviter de pé renniser les confusions, nous proposons le nouveau nom de Pleydellia (Walk-ericeras) lugdunensis [...]” for the French forms of Walkericeras, previously interpreted as P. aalenis sensu Dumortier non Zieten, the original author of the aalenis species. But the Aalenis Biozone, based on the occurrence of its index fossil – P. aalenis (Zieten), i.e., specimens displaying rounded umbilical wall and variable ribbing during ontogeny, according to the original interpretation by Zieten (1830) – is perfectly recognizable in several basins around the Iberian Plate, where correlation has been already established (e.g., Goy et al., 2000), including at Fuentelsaz, the Aalenian GSSP.

The ammonite assemblage recognised in the Aalenis Subzone of the Aalenis Biozone, which corresponds to 12 fossiliferous levels, reveals high abundance (140 specimens, 118 of which identified at the species level) and high number of taxa (10 identified species; four identified genera) (Table S3). The base of the subzone is defined by the FAD of the index species P. aalenis (Zieten, 1830 non Dumortier, 1874), which dominates amongst the fauna (39 specimens representing 33% of the identified specimens, in association with P. folleata (Buckman). The base of the subzone also records the last occurrence of P. subcompta Branco and P. fluitans (Buckman). Cottswoldia costulata (Zieten) (18% of the identified specimens), C. limatula Buckman and C. egena Buckman, which occur in the previous subzone, still remain here. Last Catulloceras occur together with the first Tmtoceeras; Vacekia sourensis (Perrot) and early striate Vacekia, like V. striata Henriques (Sandoval et al., 2012a), are also relatively abundant (10% of the identified specimens). The marly levels of the thick SG14 bed reveal a great abundance of indeterminate pyritised Cottswoldia and Pleydellia nucleus (Table S3).

Four foraminiferal assemblages (samples SG12, SG18, SG24 and SG32) from the Aalenis Subzone were studied (Table S4). A total of 2006 specimens were recovered, 1922 of which were identified at the specific level. The average abundance in these assemblages amounts to 94 foraminifera per gram of picked sediment. At suborder level, representatives of Textulariina, Spirillina, Mili-o lina, Lagenina and Robertinina were identified, within which Lagenina was the most abundant (82% of the assemblage), followed by Miliolina (15%). This fact is remarkable, since representatives of this suborder, when present in Toarcian-Aalenian foraminiferal assemblages, are usually very rare (Herrero and Canales, 1997; Canales and Herrero, 2000; Canales, 2001; Canales and Henriques, 2007, 2008; Figueiredo, 2009; Figueiredo et al., 2010; Figueiredo and Guerteres, 2012). The remaining suborders show relative abundances of less than 2%. At generic level, 18 genera were identified in these assemblages and, again, the representatives of the genus Lenticulina, representing 69% of the assemblage, were dominant. Moreover, the large amount of specimens correspond- ing to the Vinelloidea genus (Miliolina Suborder), whose relative abundance amounts to 15%, is noticeable. A great number of species (45 in total) have been identified in these assemblages. Among them, Lenticulina toarcense Payard is the most abundant (18% of the assemblage), but no single species was markedly dominant (Table S4).

5.1.3. Lower Aalenian, Opalinum Biozone, Opalinum Subzone

Samples SG34-SG54; 8 m of alternating greyish marly lime- stones in 1 m-thick beds, and thin micritic marly limestones in 0.20 m-thick beds, including very abundant, sometime pyritised ammonite internal moulds.

Index fossil: Leioceras opalinum (Reinecke).

The ammonite assemblage recognised in this subzone corre- sponds to seven fossiliferous levels, displaying the greatest abundance and species richness in the whole section (153 specimens; 45 identified at species level; six identified species; five identified genera; Table S5). The base of the subzone is characterised by the FAD for Leioceras opalinum (Reinecke), which appears in association with Pleydellia representatives until bed SG35, where the LAD for this taxon is recorded (Fig. 3). P. aalenis (Zieten), P. folleata (Buckman), P. lotharingica (Buckman) and P. fluitans (Dumortier) co-exist at the base with the first Leio cer- atinae, representing 48% of the total recorded assemblages in this subzone, followed by Vacekia representatives, mainly V. striata Henriques (10%). Cypholithoceras lineatum (Buckman), Leioceras opalinum (Reinecke) and indeterminate species of both genera represent only 4-11% of the recorded ammonite specimens. Rare Czernyjeiceras also feature in the ammonite assemblages of this unit, in which the LAD of several taxa have been identified – namely Pleydellia, Cottswoldia and Catulloceras – together with the FAD of others – Cypholithoceras, Leioceras and Czernyjeiceras – corresponding to an important ammonite turnover from the typical Late Toarcian taxa to the characteristic Early Aalenian taxa. This turnover, which can be accurately assigned to the Opalinum Subzone, is particularly well documented by the SG35 assemblage in the Sáo Gião section (Table S5).

Seven foraminiferal assemblages from the Opalinum Subzone were studied (samples SG34, SG36, SG44, SG48, SG52 and SG54; Table S6). A total of 3285 specimens were recovered, 3012 of which have been identified at the specific level. The average abundance in these assemblages reaches 74 foraminifera per gram of picked sediment. As in the previous subzone, 5 suborders were identified, namely Textulariina, Spirillina, Miliolina, Lagenina and Robertinina, and again, Lagenina is the dominant suborder (91%), followed by Miliolina (4%) and Spirillina (3%). The Textulariina and Robertinina are very rare (<2%). A total of 19 genera were identified, within which representatives of Lenticulina
5.1.4. Lower Aalenian, Opalinum Biozone, Comptum Subzone

Samples SG55-SG119; 28 m-thick of greyish marls of irregular thickness ranging from 0.20 to 2 m, alternating with limestones, which are marly and grey at the base, becoming whiter and more micritic towards the top of the succession.

Index fossil: *Cypholioceras comptum* (Reinecke).

The ammonite assemblage recognised in this subzone, which corresponds to 20 fossiliferous levels, reveals relatively high number of specimens (138 specimens; 70 identified at the species level) and high number of taxa (8 identified species belonging to four different genera and two indeterminate species, one of *Bredyia* and another of *Czernyeceras*; Table S7). The base of the subzone is defined by the FAD of the fossil index, associated to other species of the *Cypholioceras* genus – *C. opaliniforme* (Buckman) and *C. lineatum* (Buckman), representing 27% of the identified specimens – and forms of *Leioceras* ranging from the stratified *L. opalinum* (Reinecke) to the costulated *L. costosum* (Quenstedt), which represent 20% of the identified specimens. All *Leioceratinae* disappear at SG107, where the facies abruptly changes to micritic white limestones. *Vacekia striata* Henriques and *V. sourensis* (Perrot), as well as *Tnetoceras scissum* (Benecke) persist within this subzone, the former being quite significant (26% of the identified specimens) within the unit as a whole, and particularly when *Leioceratinae* are less abundant or absent (Table S7).

Taking the significant development of the Comptum Subzone in the São Giao section into account, 12 foraminiferal assemblages were studied (samples SG56, SG62, SG64, SG68, SG74, SG78, SG86, SG90, SG92, SG96, SG108 and SG112; Table S8). A total of 7363 specimens were recovered, 7071 of which were identified at specific level. Again, specimens corresponding to the Textulariina, Spirillinina, Milolinina, Lagenina and Robertinina suborders were obtained, with the Lagenina Suborder dominating (76%). Representative of the *Milolinina* Suborder show a relative abundance of 19%. Again, the representatives of this suborder are more frequent than in coeval Upper Toarcian-Lower Aalenian Iberian sections (Herrero and Canales, 1997; Canales and Herrero, 2000; Canales, 2001; Canales and Henriques, 2007, 2008; Figueiredo, 2009; Figueiredo et al., 2010; Figueiredo and Guteres, 2012). In these assemblages, the representatives of the remaining suborders are rare and all display relative abundances < 3%, or even < 1% in the case of Robertinina. A total of 24 genera were identified, with the representatives of the *Lenticulina* genus again presenting the highest relative abundance (56%) and dominating over the remaining genera. The relative abundance of other genera such as *Vinelloidea* (9%), *Ophthalmidium* (9%), *Nodosaria* (6%), *Astartoceras* (6%), *Prodentalina* (4%) and *Ammobaculites* (2%) is also notable, since they were much rarer in previously studied assemblages. Finally, a total of 63 species were identified, of which *Lenticulina helios* (Terquem) is the most abundant (13%) (Table S8).

5.2. Biostratigraphic significance of the recorded assemblages

The ammonite record (447 specimens, 20 species, 9 genera) for the São Giao section has enabled 4 biostratigraphic units to be recognised: the Maceda and Aalenian subzones of the Aalenian Biozone in the Upper Toarcian, and the Opalinum and Comptum subzones of the Opalinum Biozone in the Lower Aalenian (Fig. 3). This biostratigraphic zonal scheme has been already recognised in the Lusitanian Basin, as well as in other coeval basins of the Iberian Peninsula (Henriques, 1995; Henriques et al., 1996; Sandoval et al., 2001a), namely at the Fuentelsaz section (Iberian Cordillera), where the Aalenian GSSP has been established (Cresta et al., 2001).

From a biostratigraphic point of view, the benthic foraminifera identified in São Giao (13,116 specimens, 71 species, 26 genera, 5 suborders) allow for the recognition of the *Astacolas dorbignyi* Zone – in the sense of the Dorbignyi Zone proposed by Canales (2001) in the Basque-Cantabrian Basin (Northern Spain) for the Lower-Middle Jurassic transition – with *Astacolas dorbignyi* (Roemer) serving as the index fossil (Fig. 6). This zone has also been recognised in other sections of the Lusitanian Basin (Figueiredo, 2009; Guteres, 2010; Magno, 2010; Canales et al., 2010; Figueiredo et al., 2010; Figueiredo and Guteres, 2012). Its lower boundary is marked by the first record of the index species, previously unrecognised in the Lusitanian Basin, whose upper boundary coincides with the first record of *Lenticulina quenstedti* (Gümbel), the index species for the *Lenticulina quenstedti* Zone, which has been characterised as belonging to the upper part of the Gigantea Subzone (Bradfordensis Biozone, Middle Aalenian) at the Bajocian GSSP in the Murtinheira section (Portugal) (Canales and Henriques, 2013).

6. Discussion

The composition of the ammonite assemblages in the São Giao section is cosmopolitan in nature, with a constant and continuous record of both northwest European taxa – thus allowing the recognition of the standard biozonation established for the Lower-Middle Jurassic transition – together with typical Mediterranean taxa – thus increasing its correlation potential with sections located in both provinces. Both reproduce the general trends already recognised in other coeval sections of the Lusitanian Basin and of the Iberian Plate (Henriques, 1989, 1992, 1995, 2000a; b; Henriques et al., 1996; Goy et al., 2000; Sandoval et al., 2001a; Azeredo et al., 2003), although the ammonite content displays some peculiarities of stratigraphic and palaeoecological relevance, as discussed below (Sections 6.1 and 6.3).

The general composition of the foraminiferal assemblages recorded in São Giao is also comparable with other coeval sections, not only in the Lusitanian Basin (Canales and Henriques, 2007, 2008; Figueiredo, 2009; Figueiredo et al., 2010; Guteres, 2010; Magno, 2010; Figueiredo and Guteres, 2012), but also in other Iberian sections (Canales and Herrero, 1996, 2000; Canales and Ureta, 1997; Herrero and Canales, 1997; Canales et al., 2000; Canales, 2001). However, like the ammonite fauna, the foraminiferal assemblages display some peculiarities in terms of their species richness and the main components of the assemblages, which are also of stratigraphic and palaeoecological relevance, as discussed below (Sections 6.2 and 6.3).

6.1. Ammonite record and stratigraphic implications

With regard to the stratigraphic range of the index species *Pleydellia aalenensis* (Zieten) and *Leioceras opalinum* (Reinecke), their co-existence at the base of the Opalinum Subzone has been clearly confirmed, corresponding to a bioevent recognisable at basinal scale (Fig. 4 (C)). The base of the Opalinum Subzone therefore has to be established by the FAD of the latter, and not by its FAD concomitant with the LAD of *Pleydellia aalenensis* (Zieten) (Fig. 6). Similarly, the co-occurrence of *Leioceras opalinum* (Reinecke) and the FAD of *Cypholioceras comptum* (Reincke) at the base of the Comptum Subzone ignores the extinction of the former as a criterion for recognising the Opalinum-Comptum subzone boundary (Fig. 4 (K)).

The increase in the relative abundance of *Vacekia* representa-tives in the upper part of the Comptum Subzone is a relevant
bioevent, at least with regional value, allowing the subzone to be recognised in sections of the Lusitanian Basin where the last Leioceratinae representatives are generally rare or absent (Fig. 3).

6.2. Foraminiferal record and stratigraphic implications

With regard to benthic foraminifera species richness, a total of 57 species where identified in the stratigraphic interval studied in the Zambujal de Alcaria section (Figueiredo, 2009; Figueiredo et al., 2010), 45 in the Maria Pares section (Guterres, 2010; Figueiredo and Guterres, 2012), and 35 in the Murtinheira section (Canales and Henriques, 2008), all of which lie in the Lusitanian Basin. In addition, a total of 50 species where obtained from different sections of the Basque-Cantabrian Basin in Northern Spain (Canales, 2001). In the Moyuela section, located in the Iberian Range (Spain), 47 species were identified along the Upper Toarcian and Lower Aalenian transition (Canales and Herrero, 2000), whilst in the Fuentelsaz section (Aalenian GSSP), also located in the Iberian Range, a total of 62 species were obtained (Herrero and Canales, 1997). As a consequence, and taking into account the fact that a total of 71 species have been identified in São Giao, this section is the most diverse of the Iberian basins in terms of this stratigraphic interval.

Regarding the taxonomical composition of the assemblages, as commonly occurs in Jurassic foraminiferal assemblages from the Boreal Realm, *Lenticulina* (Lagenina Suborder) is the most abundant genus. In the São Giao section, the most abundant species of this genus in almost all of the assemblages is *L. helios* (Terquem). Canales et al. (2010) have pointed out that the different species of *Lenticulina* recorded in the Lower-Middle Jurassic transition in several sections of the Lusitanian Basin show variations in their relative abundances which can be related to the facies where they developed. Thus, *L. muensteri* (Roemer) is relatively more abundant in facies corresponding to the deeper part of the platform, whilst *L. helios* (Terquem) reaches maximum relative abundance in the middle platform, and *L. toarcense* Payard is most abundant in facies corresponding to the shallower part (the inner platform).

Other Lagenina genera with unusually high relative abundance, such as *Pradentalina*, *Nodosaria* and other elongated forms, corresponding to shallow infaunal morpho-groups and indicating good levels of nutrients and oxygenation in the infaunal microhabitats (Reolid et al., 2012), have been recorded in the Comptum Subzone. The abundant record of representatives of the Milolina Suborder, which are present in almost all the studied assemblages, and are unusually frequent in the Aalenisis and in the upper part of the Comptum subzones, is also notable.

The foraminiferal assemblages recorded are abundant and very diverse. Within the studied time span, there are no significant arrivals or disappearances of taxa – the whole stratigraphic interval corresponds to a single foraminiferal zone: the *Asterias dorbignyi* Zone. For this reason, a total of 11 bioevents, based on FAD, LAD or change in the observed abundance of some taxon or in assemblage diversity have been established, representing biostratigraphical proxies generally of local application (Fig. 6). Nevertheless, some of them, e.g., the increase in the relative abundance of *Lenticulina exgaleata* Dieri from the upper part of the Opalinum Subzone to the lower part of the Comptum Subzone, have also been recognised in other coeval sections in the Lusitanian Basin (Canales and Henriques, 2008; Figueiredo, 2009; Figueiredo et al., 2010; Guterres, 2010), thus demonstrating regional value. The FAD of *Nodosaria hortensis* Terquem in the Aalenis Subzone and the marked increase in the relative abundance of *Ophiomelania* - *dium* representatives in the lower part of the Comptum Subzone have been also recognised in the Zambujal de Alcaria Section (Figueiredo, 2009; Figueiredo etal.,2010). The increase observed in the relative abundance of the representatives of the Textulariina Suborder, as well as in *Eoguttulina iisaica* (Strickland) in the upper part of the Comptum Subzone, have also been recognised in the Murtinheira section (Canales and Henriques, 2008).

6.3. Faunal turnovers and seawater palaeotemperatures

A previous study on morphological changes observed in ammonites at the Lias-Dogger boundary, questioned the existence of a faunal crisis during the Late Toarcian-Early Aalenian times (Neige et al., 2001). The ammonite composition of the assemblages throughout the Upper Toarcian-Lower Aalenian record for the São Giao section also shows a virtually constant rate of faunal turnover, i.e., no drastic changes in the number of originations and extinctions between ammonite biozones, unlike the coeval record described for the Betic Cordillera. The Toarcian- Aalenian ammonite record is represented in this case by a major faunal turnover which has been correlated with a sea-level regressive phase (Sandoval et al., 2001b) and relatively low d13C values for bulk carbonates in the Upper Toarcian, followed by a moderate positive excursion of the d13C values in the Comptum Subzone (Sandoval et al., 2008). This “Comptum cooling event” was also noted by Gómez et al. (2009) for the Basque-Cantabrian Basin (Northern Spain), in relation to a major faunal turnover in the ammonite and foraminiferal records; a seawater temperature of 15.7°C based on d13C has been proposed for this time interval. Price (2010) proposes a seawater temperature of 15–22°C for the Early Aalenian with rapid cooling to a minimum of 7-8°C for the Comptum Subzone based on the positive isotopic excursion recognised in the d13C curves for the Aalenian and Bajocian of Scotland; he therefore supports the global range of the “Comptum cooling event”. However, the Comptum Subzone of the São Giao section is characterised by the co-occurrence of northwest European Leioceratinae taxa and Mediterranean Grammomoceratinae, namely the dominant *Vacekia striata* Henriques, which may amount to 30% of the total identified specimens within the whole unit, a feature also recognised at basinal scale (Sandoval et al., 2012a).

Among the foraminifers, milolids, generally interpreted as typical of shallow waters (Copestake and Johnson, 1981; Haynes, 1981; Strom, 1985; Murray, 1989), have a continuous and relatively abundant record in this section. This group amounts to 19% of the total assemblage from the Comptum Subzone in São Giao, but is rare in the Aalenian GSSP (Herrero and Canales, 1997), and is absent in all coeval sections of the Basque-Cantabrian Basin (Canales, 2001) and the Northern Iberian Range (Canales and Herrero, 2000). In the Lusitanian Basin, Milolina are rare in distal and proximal facies (Canales and Henriques, 2008; Figueiredo, 2009; Figueiredo et al., 2010), but represent 7% of the relative abundance in intermediate facies (Guterres, 2010; Figueiredo and Guterres, 2012), such as those of the São Giao section. Regarding the taxonomical composition of the foraminiferal assemblages described in the Basque-Cantabrian Basin (Northern Spain), and in relation to the “Comptum cooling event”, 14 species present their FAD within this time interval (Gómez et al., 2009). Most of them, apparently typical of cool waters, are absent in São Giao and, whenever present, record is scarce, both in terms of stratigraphic distribution and relative abundance.

As a consequence, the results obtained from the compositional analysis of the ammonite and foraminiferal assemblages recorded in the São Giao section do not support the inferred cooling trend to minimum seawater temperatures, or the global character of the “Comptum cooling event”. Local reasons must be cited in order to justify the warmer seawater temperature trend in the Lusitanian Basin as inferred here from the ammonite and foraminiferal records, specifically in relation to the palaeogeographic location of
the basin within the context of the opening of the North Atlantic Ocean (García-Frank et al., 2008) and/or the hypothetical connection between Western Tethys and the Eastern Pacific through the Hispanic Corridor (Arias, 2006, 2007; Sandoval et al., 2012a). Hydrothermal activity and/or changes in oceanic circulation patterns are plausible explanations for the occurrence of warmer seawater temperatures in this sector of the Lusitanian Basin, as opposed to the inferred cool seawater accepted for neighbouring basins.

7. Conclusion

The first study of the co-occurrence of ammonite and benthic foraminiferal assemblages across the São Gião section (Central Portugal) represents a contribution to the knowledge of this reference section for the Lower-Middle Jurassic boundary in the Lusitanian Basin. The analysis of the macro- and microfossil assemblages in this expanded section, both correlatable with the Aalenian GSSP at the Fuentelsaz section (Iberian Cordillera, Spain; Cresta et al., 2001), improves the calibration of the bionstratigraphic scale for the Lower-Middle Jurassic transition based on these fossil groups, making benthic foraminifera a particularly useful bionstratigraphical proxy when ammonites are poorly preserved, scarce or almost impossible to obtain (e.g., in core samples).

A total of 447 well-preserved ammonite specimens and 13,116 foraminifers have been studied and no evidences of taphonomic processes that could change the original assemblages were detected. From a taxonomic point of view, the ammonite record of the São Gião section mainly includes some typical northwest European Grammoceratinae (Canonloceras, Coteswoldia, Playdellia) in the Upper Toarcian, and Leioceratinae (Leioceras, Cypholoceras) in the Lower Aalenian, together with typical Mediterranean Grammoceratinae (Vacekia), Tmetoceratinae (Tmetoceras) and rare Hammatoceratidae (Bredya and Czernyiceras). No typically Tethyan phylloceratids were found among the 20 identified species (corresponding to 9 genera), but the relative abundance of Grammoceratinae throughout the Aalenian or the global nature of the "Compton cooling event".

Acknowledgments

This study has been supported by Projects CGL2011-23947 and CGL2011-25894 (Ministerio de Educación y Ciencia, Spain) and/or the Group de Investigación no UCM910431 (Complutense University, Madrid, Spain). The laboratory work was supported by the Consortium Petrobras-Galp-Partex of Portugal. The authors are grateful to the Centro Nacional de Microscopía Electrónica (Complutense University of Madrid, Spain) for the SEM photo-graphs; to Claudia Magno for her preliminary work on a part of the studied material; to Dr. Mena Scheun-Mark-Gregory for her help with the ammonite photography; to Inês Pena dos Reis for the English revision of the text; and to Dr. Gilles Escarguel, Dr. Fabienne Giraud-Guillot, Dr. Pascal Neige and an anonymous reviewer for the scientific revision of the manuscript.

References

References

This study has been supported by Projects CGL2011-23947 and CGL2011-25894 (Ministerio de Educación y Ciencia, Spain) and/or the Group de Investigación no UCM910431 (Complutense University, Madrid, Spain). The laboratory work was supported by the Consortium Petrobras-Galp-Partex of Portugal. The authors are grateful to the Centro Nacional de Microscopía Electrónica (Complutense University of Madrid, Spain) for the SEM photo-graphs; to Claudia Magno for her preliminary work on a part of the studied material; to Dr. Mena Scheun-Mark-Gregory for her help with the ammonite photography; to Inês Pena dos Reis for the English revision of the text; and to Dr. Gilles Escarguel, Dr. Fabienne Giraud-Guillot, Dr. Pascal Neige and an anonymous reviewer for the scientific revision of the manuscript.