Universidad Complutense de Madrid
E-Prints Complutense

A multi-dating approach to age-modelling long continental records: The 135 ka El Cañizar de Villarquemado sequence (NE Spain)

Impacto

Downloads

Downloads per month over past year

Valero Garcés, B. L. and González Sampériz, P. and Gil Romera, G. and Moreno, A. and Oliva Urcia, Belén and Aranbarri, J. and García Prieto, Elisa and Frugone, M. and Morellón, Mario and Arnold, Lee J. and Demuro, M. and Hardiman, Steven and Blockleyk, S.P.E. and Lane, C.S. (2019) A multi-dating approach to age-modelling long continental records: The 135 ka El Cañizar de Villarquemado sequence (NE Spain). Quaternary Geochronology, 54 (101006). ISSN 1871-1014, ESSN: 1878-0350

[img] PDF
Restringido a Repository staff only

3MB

Official URL: https://www.sciencedirect.com/science/article/pii/S1871101418301158



Abstract

We present a multidisciplinary dating approach - including radiocarbon, Uranium/Thorium series (U/Th), paleomagnetism, single-grain optically stimulated luminescence (OSL), polymineral fine-grain infrared stimulated luminescence (IRSL) and tephrochronology - used for the development of an age model for the Cañizar de Villarquemado sequence (VIL) for the last ca. 135 ka. We describe the protocols used for each technique and discuss the positive and negative results, as well as their implications for interpreting the VIL sequence and for dating similar terrestrial records. In spite of the negative results of some techniques, particularly due to the absence of adequate sample material or insufficient analytical precision, the multi-technique strategy employed here is essential to maximize the chances of obtaining robust age models in terrestrial sequences. The final Bayesian age model for VIL sequence includes 16 AMS 14C ages, 9 single-grain quartz OSL ages and 5 previously published polymineral fine-grain IRSL ages, and the accuracy and resolution of the model are improved by incorporating information related to changes in accumulation rate, as revealed by detailed sedimentological analyses. The main paleohydrological and vegetation changes in the sequence are coherent with global Marine Isotope Stage (MIS) 6 to 1 transitions since the penultimate Termination, although some regional idiosyncrasies are evident, such as higher moisture variability than expected, an abrupt inception of the last glacial cycle and a resilient response of vegetation in Mediterranean continental Iberia in both Terminations.


Item Type:Article
Uncontrolled Keywords:Bayesian age model, Radiocarbon, OSLIRS, LLast, glacial cycle, Mediterranean, Continental sequences
Subjects:Sciences > Geology > Stratigraphic geology
ID Code:58691
Deposited On:27 Jan 2020 19:16
Last Modified:28 Jan 2020 08:26

Origin of downloads

Repository Staff Only: item control page