Universidad Complutense de Madrid
E-Prints Complutense

Biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite

Impacto

Downloads

Downloads per month over past year



Greiner, Martina and Fernández Díaz, Lurdes and Griesshaber, Erika and Zenkert, Moritz N. and Yin, Xiaofei and Ziegler, Andreas and Veintemillas Verdaguer, Sabino and Schmahl, Wolfgang W. (2018) Biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite. Minerals, 8 (315). pp. 1-31. ISSN 2075-163X

[img]
Preview
PDF
Creative Commons Attribution.

25MB

Official URL: https://www.mdpi.com/journal/minerals



Abstract

We present results of bioaragonite to apatite conversion in bivalve, coral and cuttlebone skeletons, biological hard materials distinguished by specific microstructures, skeletal densities, original porosities and biopolymer contents. The most profound conversion occurs in the cuttlebone of the cephalopod Sepia officinalis, the least effect is observed for the nacreous shell portion of the bivalve Hyriopsis cumingii. The shell of the bivalve Arctica islandica consists of cross-lamellar aragonite, is dense at its innermost and porous at the seaward pointing shell layers. Increased porosity facilitates infiltration of the reaction fluid and renders large surface areas for the dissolution of aragonite and conversion to apatite. Skeletal microstructures of the coral Porites sp. and prismatic H. cumingii allow considerable conversion to apatite. Even though the surface area in Porites sp. is significantly larger in comparison to that of prismatic H. cumingii, the coral skeleton consists of clusters of dense, acicular aragonite. Conversion in the latter is sluggish at first as most apatite precipitates only onto its surface area. However, the process is accelerated when, in addition, fluids enter the hard tissue at centers of calcification. The prismatic shell portion of H. cumingii is readily transformed to apatite as we find here an increased porosity between prisms as well as within the membranes encasing the prisms. In conclusion, we observe distinct differences in bioaragonite to apatite conversion rates and kinetics depending on the feasibility of the reaction fluid to access aragonite crystallites. The latter is dependent on the content of biopolymers within the hard tissue, their feasibility to be decomposed, the extent of newly formed mineral surface area and the specific biogenic ultra- and microstructures.


Item Type:Article
Uncontrolled Keywords:Bioaragonite; Apatite; Microstructure; Dissolution-reprecipitation; Mineral replacement
Subjects:Sciences > Geology > Mineralogy
ID Code:59688
Deposited On:23 Mar 2020 12:28
Last Modified:23 Mar 2020 13:28

Origin of downloads

Repository Staff Only: item control page