Universidad Complutense de Madrid
E-Prints Complutense

Spin transition nanoparticles made electrochemically

Impacto

Downloads

Downloads per month over past year

Pozo, Guillermo and Presa Muñoz del Toro, Patricia de la and Prato, Rafael and Morales Casero, Irene and Marín Palacios, María Pilar and Fransaer, Jan and Dominguez-Benetton, Xochitl (2020) Spin transition nanoparticles made electrochemically. Nanoscale, 12 (9). pp. 5412-5421. ISSN 2040-3364

[img]
Preview
PDF
Creative Commons Attribution.

3MB

Official URL: http://dx.doi.org/10.1039/c9nr09884d


URLURL Type
https://pubs.rsc.org/Publisher


Abstract

Materials displaying novel magnetic ground states signify the most exciting prospects for nanoscopic devices for nanoelectronics and spintronics. Spin transition materials, e.g., spin liquids and spin glasses, are at the forefront of this pursuit; but the few synthesis routes available do not produce them at the nanoscale. Thus, it remains an open question if and how their spin transition nature persists at such small dimensions. Here we demonstrate a new route to synthesize nanoparticles of spin transition materials, gas-diffusion electrocrystallization (GDEx), wherein the reactive precipitation of soluble metal ions with the products of the oxygen reduction reaction (ORR), i.e., in situ produced H_2O_2, OH^-, drives their formation at the electrochemical interface. Using mixtures of Cu^(2+) and Zn^(2+) as the metal precursors, we form spin transition materials of the herbertsmithite family-heralded as the first experimental material known to exhibit the properties of a quantum spin liquid (QSL). Single-crystal nanoparticles of similar to 10-16 nm were produced by GDEx, with variable Cu/Zn stoichiometry at the interlayer sites of Zn_xCu_(4-x)(OH)_6Cl_2. For x = 1 (herbertsmithite) the GDEx nanoparticles demonstrated a quasi-QSL behavior, whereas for x = 0.3 (0.3 < x < 1 for paratacamite) and x = 0 (clinoatacamite) a spin-glass behavior was evidenced. Finally, our discovery not only confirms redox reactions as the driving force to produce spin transition nanoparticles, but also proves a simple way to switch between these magnetic ground states within an electrochemical system, paving the way to further explore its reversibility and overarching implications.


Item Type:Article
Additional Information:

©2020 Royal Society of Chemistry
G. Pozo acknowledges the funding from the European Union's Horizon 2020 research and innovation programme MSCA-IF-2017, under grant agreement no. 796320 (MAGDEx: Unmet MAGnetic properties in micro and nano-particles by synthesis through gas diffusion electrocrystallisation, (GDEx).; X. Dominguez-Benetton thanks to VITO's strategic research funds and management for the possibility to conduct this pioneering research. GP, RP, JF, and XDB thank the support from the Flemish SIM MaRes programme, under grant agreement no. 150626 (Get-A-Met project). XDB and JF thanks the funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654100 (CHPM2030 project). This work has been supported by the Ministerio Espanol de Economia y Competitividad (MINECO) RTI2018-095856-B-C21, and Comunidad de Madrid S2013/MIT-2850 NANOFRONTMAG projects. We would also like to acknowledge Myriam Mertens for fruitful discussions and her support on XRD analysis, as well as Kristof Tirez and Wilfried Brusten for assistance with analytical measurements.

Uncontrolled Keywords:Negative magnetization; Reduction; Lattices
Subjects:Sciences > Physics > Materials
Sciences > Physics > Solid state physics
ID Code:59962
Deposited On:21 Apr 2020 17:50
Last Modified:21 Apr 2020 17:50

Origin of downloads

Repository Staff Only: item control page