Universidad Complutense de Madrid
E-Prints Complutense

MAGIC very large zenith angle observations of the Crab Nebula up to 100 TeV

Impacto

Downloads

Downloads per month over past year

Barrio Uña, Juan Abel and Contreras González, José Luis and Fidalgo, David Friedrich Carreto and Fonseca González, Mª Victoria and Hoang, Kim Dinh and López Moya, Marcos and Peñil del Campo, Pablo and Saha, Lab and otros, ... (2020) MAGIC very large zenith angle observations of the Crab Nebula up to 100 TeV. Astronomy & Astrophysics, 635 . ISSN 0004-6361

[img]
Preview
PDF
Creative Commons Attribution.

1MB

Official URL: https://doi.org/10.1051/0004-6361/201936899


URLURL Type
https://www.aanda.org/Publisher


Abstract

Aims. We measure the Crab Nebula gamma-ray spectral energy distribution in the 100 TeV energy domain and test the validity of existing leptonic emission models at these high energies.Methods. We used the novel very large zenith angle observations with the MAGIC telescope system to increase the collection area above 10 TeV. We also developed an auxiliary procedure of monitoring atmospheric transmission in order to assure proper calibration of the accumulated data. This employs recording optical images of the stellar field next to the source position, which provides a better than 10% accuracy for the transmission measurements.Results. We demonstrate that MAGIC very large zenith angle observations yield a collection area larger than a square kilometer. In only 56 h of observations, we detect the gamma-ray emission from the Crab Nebula up to 100 TeV, thus providing the highest energy measurement of this source to date with Imaging Atmospheric Cherenkov Telescopes. Comparing accumulated and archival MAGIC and Fermi/LAT data with some of the existing emission models, we find that none of them provides an accurate description of the 1 GeV to 100 TeV gamma-ray signal.


Item Type:Article
Additional Information:

© MAGIC Collaboration 2020. Artículo firmado por 307 autores. We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2015-69818-P, FPA2012-36668, FPA2015-68378-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210C6-6-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2015-71662-C2-2-P, FPA2017-90566-REDC), the Indian Department of Atomic Energy, the Japanese JSPS and MEXT, the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-153/28.08.2018 and the Academy of Finland grant nr. 320045 is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia "Severo Ochoa" SEV-2016-0588 and SEV-2015-0548, and Unidad de Excelencia "María de Maeztu" MDM-2014-0369, by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant UMO-2016/22/M/ST9/00382 and by the Brazilian MCTIC, CNPq and FAPERJ. This research has made use of the CTA instrument response functions provided by the CTA Consortium and Observatory, see http://www.cta-observatory.org/science/cta-performance/(version prod3b-v1) for more details.

Uncontrolled Keywords:Major upgrade; Gamma-rays; Pulsar; Energy; Performance; Telescopes; Spectrum; System
Subjects:Sciences > Physics > Nuclear physics
ID Code:60429
Deposited On:11 May 2020 11:05
Last Modified:13 May 2020 08:29

Origin of downloads

Repository Staff Only: item control page