Universidad Complutense de Madrid
E-Prints Complutense

A search for dark matter in Triangulum II with the MAGIC telescopes

Impacto

Downloads

Downloads per month over past year

Barrio Uña, Juan Abel and Contreras González, José Luis and Fidalgo, David Friedrich Carreto and Fonseca González, Mª Victoria and Hoang, Kim Dinh and López Moya, Marcos and Peñil del Campo, Pablo and Saha, Lab and otros, ... (2020) A search for dark matter in Triangulum II with the MAGIC telescopes. Physics of the dark universe, 28 . ISSN 2212-6864

[img]
Preview
PDF
966kB

Official URL: https://doi.org/10.1016/j.dark.2020.100529


URLURL Type
https://www.sciencedirect.com/Publisher


Abstract

We present the first results from very-high-energy observations of the dwarf spheroidal satellite candidate Triangulum II with the MAGIC telescopes from 62.4 h of good-quality data taken between August 2016 and August 2017. We find no gamma-ray excess in the direction of Triangulum II, and upper limits on both the differential and integral gamma-ray flux are presented. Currently, the kinematics of Triangulum II are affected by large uncertainties leading to a bias in the determination of the properties of its dark matter halo. Using a scaling relation between the annihilation J-factor and heliocentric distance of well-known dwarf spheroidal galaxies, we estimate an annihilation J-factor for Triangulum II for WIMP dark matter of log[J(ann)(0.5 degrees)/GeV2 cm(-5)] = 19.35 +/- 0.37. We also derive a dark matter density profile for the object relying on results from resolved simulations of Milky Way sized dark matter halos. We obtain 95% confidence-level limits on the thermally averaged annihilation cross section for WIMP annihilation into various Standard Model channels. The most stringent limits are obtained in the tau(-)tau(+) final state, where a cross section for annihilation down to <sigma(ann)nu > = 3.05 x 10(-24) cm(3) s(-1) is excluded. (C) 2020 Elsevier B.V. All rights reserved.


Item Type:Article
Additional Information:

© 2020 Elsevier B.V. All rights reserved. Artículo escrito por 161 autores. We would also like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, Germany, the Italian INFN and INAF, Italy, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2017-87859-P, FPA2017-85668-P, FPA2017-82729C6-2-R, FPA2017-82729-C6-6-R, FPA2017-82729-C6-5-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2017-87055-C22-P, FPA2017-90566-REDC), the Indian Department of Atomic Energy, the Japanese JSPS, Japan and MEXT, Japan, the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-153/28.08.2018 and the Academy of Finland grant nr. 320045 is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia ``Severo Ochoa'' SEV-2016-0588 and SEV-2015-0548, and Unidad de Excelencia ``María de Maeztu'' MDM-2014-0369, by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka, Croatia Project 13.12.1.3.02, by the DFG, Germany Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre, Polland grant UMO-2016/22/M/ST9/00382 and by the Brazilian MCTIC, CNPq, Brazil and FAPERJ, Brazil.

Uncontrolled Keywords:Gamma-ray signals; Galaxies; Clumpy; Annihilation; Masses; Limits; Decay
Subjects:Sciences > Physics > Nuclear physics
ID Code:60975
Deposited On:29 Jun 2020 08:38
Last Modified:29 Jun 2020 09:31

Origin of downloads

Repository Staff Only: item control page