Publication:
Estudio sobre la relación entre la mordida cruzada posterior unilateral y la posición de los gérmenes de caninos maxilares como factor de riesgo de retención.

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2020
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Objetivo: Determinar y comparar la angulación y posición del germen de loscaninos maxilares permanente en pacientes con mordida cruzada posterior unilateral. Materiales y métodos: Se realizó un estudio observacional, comparativo,transversal y retrospectivo. Tras la revisión de historias clínicas incluidas en el programa de salud de la facultad de odontología y aplicar los criterios de selección de la muestra se reclutaron los registros de 106 niños/as con diagnóstico de mordida cruzada posterior unilateral para posteriormente estudiar las variables posición y angulación de los caninos maxilares mediante análisis de Power-Short(PS), Warford (W) y Ericson-Kurol (EK) así como la distancia entre la cúspide canina y el plano oclusal (CCPO). El estudio estadístico se realizó mediante el programa IBM SPSS statistics 26 donde se procedió a un análisis descriptivo de medidas de tendencia central y se aplicaron las pruebas estadísticas de Kruskal Wallis y Wilcoxon. Resultado: Se analizaron un total de 212 caninos. Las angulaciones de estos dientes para el lado de la mordida cruzada fueron superiores en análisis de PS con una media de 13,88º y posiciones con mayor frecuencia en el sector II en EK que su contralateral con una p < 0,05. Los datos obtenidos en los análisis de W representaron un promedio de 77º y CCPO de 15, 3 mm para el lado de MCP con una p > 0,05. Conclusiones: En el lado de la maloclusión la posición y angulación del germen del canino presentó de 2,7 a 2,8 veces más riesgo de impactación que el contralateral.
Aim: To determine and compare the angulation and position of the germ of the permanent maxillary canines in patients with unilateral posterior crossbite. Materials and methods: An observational, comparative, cross-sectional and retrospective study was carried out. After reviewing the medical records included in the dental department health program and applying the sample selection criteria, the records of 106 children with a diagnosis of unilateral posterior crossbite were recruited to subsequently study the position and angulation variables of the maxillary canines by Power-Short (PS), Warford (W) and Ericson-Kurol (EK) analysis as well as the distance between the canine cusp and the occlusal plane (CCPO). The statistical study was accomplished using the IBM SPSS statistics V.26 programme where a descriptive analysis of measures of central tendency was executed and the statistical tests of Kruskal Wallis andWilcoxon were applied. Result: A total of 212 canines were analyzed. The angulations of these teeth on the crossbite side were higher in PS analysis with an average of 13. 88º and positions more frequently in sector II in EK analysis than their contralateral with p <0.05. The data obtained in the analysis of W represented an average of 77º and CCPO of 15.3 mm for the MCP side with a p> 0.05. Conclusions: On the malocclusion side, the position and angulation of the canine germ presented 2.7 to 2.8 times more risk of impaction than the contralateral one.
Description
Encuadrado en la línea de investigación : Normalidad y patología odontopediátrica. Determinación de protocolos terapéuticos y evaluación de su aplicabilidad en Odontopediatría.
UCM subjects
Keywords
Citation
1.García - Fajardo Palacios C, Cacho Casado A, Fonte Trigo A, Perez - Varela JC.Diagnosis and treatment planning in orthognathic surgery. RCOE. 2007 Jan 1;12(1–2):37–47. 2. Diéguez-Pérez M, Joaquín De Nova-García M, Mourelle-Martínez R, GonzálezAranda C. The influence of crossbite in early development of mandibular bone asymmetries in paediatric patients. J Clin Exp Dent. 2017 Oct 14;9(9):1115–35. Available from: http://dx.doi.org/10.4317/jced.54110 3. Zou J, Meng M, Law CS, Rao Y, Zhou X. Common dental diseases in children and malocclusion. Vol. 10, International Journal of Oral Science. Sichuan University Press; 2018. 4. Yu X, Zhang H, Sun L, Pan J, Liu Y, Chen L. Prevalence of malocclusion and occlusal traits in the early mixed dentition in Shanghai, China. PeerJ.2019;2019(4). 5. Wagner Y, Heinrich-Weltzien R. Occlusal characteristics in 3-year-old children -results of a birth cohort study. BMC Oral Health. 2015 Aug 7;15(1). 6. Carvalho AC, Paiva SM, Scarpelli AC, Viegas CM, Ferreira FM, Pordeus IA.Prevalence of malocclusion in primary dentition in a population-based sample of Brazilian preschool children. Eur J Paediatr Dent. 2011 Jun;12(2):107–11.Available from: http://www.ncbi.nlm.nih.gov/pubmed/21668282 7. Alhammadi MS, Halboub E, Fayed MS, Labib A, El-Saaidi C. Global distribution of malocclusion traits: A systematic review. Dental Press J Orthod. 2018;23(6):1– 10. 8. Rapeepattana S, Thearmontree A, Suntornlohanakul S. Etiology of Malocclusion and Dominant Orthodontic Problems in Mixed Dentition: A Cross-sectional Study in a Group of Thai Children Aged 8-9 Years. 9. Reiser E, Skoog V, Gerdin B, Andlin-Sobocki A. Association between Cleft Size and Crossbite in Children with Cleft Palate and Unilateral Cleft Lip and Palate. Cleft Palate-Craniofacial J. 2010 Mar;47(2):175–81. 10. Juan Pablo Sorolla P. Anomalías craneofaciales. Rev Médica Clínica Las Condes.2010 Jan;21(1):5–15. 11. Dieguez Perez M, De Nova Garvia J. Aplicación de la ortopantomografía al estudio de la simetría del desarrollo mandibular en niños con mordida cruzada unilateral.Universidad Complutense de Madrid. Universidad Complutense de Madrid; 2012. 12. Doriguêtto PVT, Carrada CF, Scalioni FAR, Abreu LG, Devito KL, Paiva SM, et al. Malocclusion in children and adolescents with Down syndrome: A systematic review and meta-analysis. Int J Paediatr Dent. 2019;29(4):524–41. 13. Hsieh YJ, Liao YF, Shetty A. Predictors of poor dental arch relationship in young children with unilateral cleft lip and palate. Clin Oral Investig. 2012 Aug;16(4):1261–6. 14. Lövgren ML, Dahl O, Uribe P, Ransjö M, Westerlund A. Prevalence of impacted maxillary canines—an epidemiological study in a region with systematically implemented interceptive treatment. Eur J Orthod [Internet]. 2019 Sep 21 [cited 2020 Feb 4];41(5):454–9. 15. Pittman L, Shipley TS, Martin CA, Xiang J, Ngan PW. CBCT evaluation of condylar changes in children with unilateral posterior crossbites and a functional shift. Semin Orthod. 2019 Mar 1;25(1):36–45. 16. Germa A, Cé ;, Ment B ; C, Weissenbach M, Heude B, Forhan A, et al. Early risk factors for posterior crossbite and anterior open bite in the primary dentition. Angle Orthod. 2016;86(5):832. 17. Boronat-Catalá M, Bellot-Arcís C, Montiel-Company JM, Almerich-Silla JM,Catalá-Pizarro M. Does breastfeeding have a long-term positive effect on dental occlusion? J Clin Exp Dent. 2019 Oct 1;11(10):e947–51. 18. Chen X, Xia B, Ge L. Effects of breast-feeding duration, bottle-feeding duration and non-nutritive sucking habits on the occlusal characteristics of primary dentition. BMC Pediatr. 2015 Apr 21;15(1). 19. Iodice G, Danzi G, Cimino R, Paduano S, Michelotti A. Association between posterior crossbite, skeletal, and muscle asymmetry: a systematic review. Eur J Orthod [Internet]. 2016 [cited 2019 Oct 14];38(6):638–51. Available from: https://academic.oup.com/ejo/article-abstract/38/6/638/2739003 20. Lenguas L, Alarcón JA, Venancio F, Kassem M, Martín C. Surface electromyographic evaluation of jaw muscles in children with unilateral crossbite and lateral shift in the early mixed dentition. Sexual dimorphism. Med Oral Patol Oral Cir Bucal. 2012 Nov;17(6):e1096. 21. Throckmorton GS, Buschang PH, Hayasaki H, Pinto AS. Changes in the masticatory cycle following treatment of posterior unilateral crossbite in children. Am J Orthod Dentofac Orthop. 2001;120(5):521–9. 22. Andrade A da S, Gameiro GH, Derossi M, Gavião MBD. Posterior crossbite and functional changes. A systematic review. Angle Orthod [Internet]. 2009 Mar [cited 2019 Oct 12];79(2):380–6. Available from:http://www.ncbi.nlm.nih.gov/pubmed/19216602 23. Lopatienė K, Trumpytė K. Relationship between unilateral posterior crossbite and mandibular asymmetry during late adolescence. Vol. 20, Stomatologija, Baltic Dental and Maxillofacial Journal. 2018. 24. Diéguez Pérez M, De Nova García J, Mourelle Martínez MR, Feijoo García G.Indicators of jawbone asymmetry through analysis of panoramic radiographs. Eur J Paediatr Dent. 2016;17(2):136–40. 25. Michelotti A, Rongo R, Valentino R, D’Antò V, Bucci R, Danzi G, et al.Evaluation of masticatory muscle activity in patients with unilateral posterior crossbite before and after rapid maxillary expansion. Eur J Orthod. 2019;41(1):46–53. 26. Negishi S, Richards LC, Kasai K. Relation of dietary preference to masticatory movement and masticatory exercises in Japanese children. Arch Oral Biol. 2019 Dec 1;108:104540. 27. Andrade A da S, Gavião MBD, Gameiro GH, De Rossi M. Characteristics of masticatory muscles in children with unilateral posterior crossbite. Braz Oral Res [Internet]. [cited 2019 Oct 12];24(2):204–10. Available from:http://www.ncbi.nlm.nih.gov/pubmed/20658040 28. Farella M, Michelotti A, Iodice G, Milani S, Martina R. Unilateral posterior crossbite is not associated with TMJ clicking in young adolescents. J Dent Res [Internet]. 2007 Feb 12 [cited 2020 Mar 6];86(2):137–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17251512 29. Dos Sanos Venacio F, Martin Alvaro M concepcion, Alarcon Perez JA, Lenguas Silva A. Cambios kinesiográficos tras la corrección de la mordida cruzada posterior unilateral en dentición mixta primera fase. Universidad Complutense de Madrid; 2016. 30. Seemann J, Kundt G, Stahl De Castrillon F. Zusammenhang von Okklusionsbefunden und orofazialem myofunktionellen Status im Milch-und frühen Wechselgebiss : Teil IV: Zusammenhang zwischen Platzverhältnissen und orofazialen Dysfunktionen. J Orofac Orthop. 2011 Mar;72(1):21–32. 31. Dutra ALT, Cardoso AC, Locks A, Bezerra ACB. Assessment of treatment for functional posterior cross-bites in patients at the deciduous dentition phase. Braz Dent J [Internet]. 2004 [cited 2019 Oct 13];15(1):54–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15322646 32. Vucic S, Dhamo B, Jaddoe VWV, Wolvius EB, Ongkosuwito EM. Dental development and craniofacial morphology in school-age children. Am J Orthod Dentofac Orthop [Internet]. 2019;156(2):229-237.e4. Available from: https://doi.org/10.1016/j.ajodo.2018.09.014 33. Jain S, Debbarma S. Patterns and prevalence of canine anomalies in orthodontic patients. Dent Med Med Pharm REPORTS. 2019;92(1):72–8. 34. Laurenziello M, Montaruli G, Gallo C, Tepedino M, Guida L, Perillo L, et al Determinants of maxillary canine impaction: Retrospective clinical and radiographic study. J Clin Exp Dent [Internet]. 2017 [cited 2020 Feb 5];9(11):1304–13. Available from: http://dx.doi.org/10.4317/jced.54095 35. Hereman V, Cadenas De Llano-Pérula M, Willems G, Coucke W, Wyatt J,Verdonck A. Associated parameters of canine impaction in patients with unilateral cleft lip and palate after secondary alveolar bone grafting: a retrospective study.Eur J Orthod. 2018 Nov 30; 40(6):575–82. Available from: https://academic.oup.com/ejo/article/40/6/575/4948040 36. Uribe P, Ransjö M, Westerlund A. Clinical predictors of maxillary canine impaction: a novel approach using multivariate analysis. Eur J Orthod.2017;39(2):153–60. 37. Devi MSA, Padmanabhan S. Role of polymorphisms of MSX1 and PAX9 genes in palatal impaction of maxillary canines. J Orthod. 2019 Feb 10; 46(1):14–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31056064 38. PACIFICI L, ANGELIS F DE, OREFICI A, CIELO A, TATULLO M.Retrospective Analysis of the Correlation Between the Facial Biotype and the Inclination of the Upper Canine Cusp Axis to the Occlusal Plane. Oral Implantol (Rome). 2016;9(Suppl 1/2016 to N 4/2016):1. 39. Alqerban A, Storms AS, Voet M, Fieuws S, Willems G. Early prediction of maxillary canine impaction. Dentomaxillofacial Radiol. 2016;45(3). 40. Leonardi M, Armi P, Franchi L, Baccetti T. Two interceptive approaches to palatally displaced canines: A prospective longitudinal study. Angle Orthod. 2004 Oct;74(5):581–6. 41. Yan B, Sun Z, Fields H, Wang L, Luo L. Etiologic factors for buccal and palatal maxillary canine impaction: A perspective based on cone-beam computed tomography analyses. Am J Orthod Dentofac Orthop. 2013 Apr;143(4):527–34. 42. Margot R, Maria CDLP, Ali A, Annouschka L, Anna V, Guy W. Prediction of maxillary canine impaction based on panoramic radiographs. Clin Exp Dent Res [Internet]. 2019 Feb 26 [cited 2020 Mar 4];6(1):44–50. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/cre2.246 43. Cacciatore G, Poletti L, Sforza C. Early diagnosed impacted maxillary canines and the morphology of the maxilla: a three-dimensional study. Prog Orthod [Internet].2018 Dec 1 [cited 2019 Sep 14];19(1). Available from: https://doi.org/10.1186/s40510-018-0220-6 44. Garib DG, Lancia M, Kato RM, Oliveira TM, das Neves LT. Risk of developing palatally displaced canines in patients with early detectable dental anomalies: A retrospective cohort study. J Appl Oral Sci. 2016 Nov 1;24(6):549–54. 45. Alejos-Montante K, Martínez-Zumarán A, Torre-Delgadillo G, Rosales-Berber MÁ ángel, Garrocho-Rangel A, Pozos-Guillén A. Early identification of permanent maxillary canine impaction: A radiographic comparative study in a Mexican population. 2019 Mar 1 [cited 2019 Oct 14];11(3). Available from: http://dx.doi.org/10.4317/jced.55285 46. Alqerban A, Jacobs R, Fieuws S, Willems G. Predictors of root resorption associated with maxillary canine impaction in panoramic images. Eur J Orthod. 2016;38(3):292–9. 47. Jacobs SG. The impacted maxillary canine. Further observations on aetiology,radiographic localization, prevention/interception of impaction, and when to suspect impaction. Aust Dent J. 1996;41(5):310–6. 48. Sudhakar S, Patil K, Mahima VG. Localization of impacted permanent maxillary canine using single panoramic radiograph. Indian J Dent Res. 2009 Jul 1;20(3):340–5. 49. Warford JH, Grandhi RK, Tira DE. Prediction of maxillary canine impaction using sectors and angular measurement. Am J Orthod Dentofac Orthop. 2003;124(6):651–5. 50. Malik D e. S, Fida M, Sukhia RH. Correlation between radiographic parameters for the prediction of palatally impacted maxillary canines. J Orthod. 2019; 51. Björksved M, Magnuson A, Bazargani SM, Lindsten R, Bazargani F. Are panoramic radiographs good enough to render correct angle and sector position in palatally displaced canines? Am J Orthod Dentofac Orthop. 2019;155(3):380–7. 52. Alqerban A, Jacobs R, Fieuws S, Willems G. Radiographic predictors for maxillary canine impaction. Am J Orthod Dentofac Orthop [Internet]. 2015;147(3):345–54. Available from: http://dx.doi.org/10.1016/j.ajodo.2014.11.018 53. Alhammadi MS, Asiri HA, Almashraqi AA. Incidence, severity and orthodontic treatment difficulty index of impacted canines in Saudi population. J Clin Exp Dent. 2018 Apr 1;10(4):e327–34. 54. Sajnani AK, King NM. Early prediction of maxillary canine impaction from panoramic radiographs. Am J Orthod Dentofac Orthop [Internet]. 2012;142(1):45–51. Available from: http://dx.doi.org/10.1016/j.ajodo.2012.02.021 55. Naoumova J, Alfaro GE, Peck S. Space conditions, palatal vault height, and tooth size in patients with and without palatally displaced canines: A prospective cohort study. Angle Orthod. 2018 Nov 1;88(6):726–32. 56. D’Oleo-Aracena MF, Arriola-Guillén LE, Rodríguez-Cárdenas YA, Ruíz-Mora GA. Skeletal and dentoalveolar bilateral dimensions in unilateral palatally impacted canine using cone beam computed tomography. Prog Orthod. 2017 Dec 1;18(1). 57. Grisar K, Piccart F, Al-Rimawi AS, Basso I, Politis C, Jacobs R. Threedimensional position of impacted maxillary canines: Prevalence, associated pathology and introduction to a new classification system. Clin Exp Dent Res[Internet]. 2019 Feb 1 [cited 2019 Oct 13];5(1):19–25. Available from: http://doi.wiley.com/10.1002/cre2.151 58. Nagpal A, Pai KM, Setty S, Sharma G. Localization of impacted maxillary canines using panoramic radiography. J Oral Sci [Internet]. 2009 Mar [cited 2019 Sep 14];51(1):37–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19325198 59. Jung Y, Liang H, Benson B, Flint D, Cho B. The assessment of impacted maxillary canine position with panoramic radiography and cone beam CT. Dentomaxillofacial Radiol. 2012;41(5):356. 60. Pico CLVR, do Vale FJF, Caramelo FJSFA, Corte-Real A, Pereira SMA.Comparative analysis of impacted upper canines: Panoramic radiograph Vs cone beam computed tomography. J Clin Exp Dent. 2017 Oct 1;9(10):e1176–82. 61. Naoumova J, Kurol J, Kjellberg H. A systematic review of the interceptive treatment of palatally displaced maxillary canines. Eur J Orthod [Internet]. 2011 Apr 1 [cited 2020 Feb 10];33(2):143–9. Available from: https://academic.oup.com/ejo/article-ookup/doi/10.1093/ejo/cjq045 62. Almasoud NN. Extraction of primary canines for interceptive orthodontic treatment of palatally displaced permanent canines: A systematic review. [cited 2020 Feb 10]; Available from: www.who.int/trialsearch/ 63. Naoumova J, Kjellberg H. The use of panoramic radiographs to decide when interceptive extraction is beneficial in children with palatally displaced canines based on a randomized clinical trial. Eur J Orthod [Internet]. 2018 [cited 2020 Mar 5];565–74. Available from: http://www.fou.nu/is/sverige, 64. Arriola-Guillén LE, Ruíz-Mora GA, Rodríguez-Cárdenas YA, Aliaga-Del Castillo A, Boessio-Vizzotto M, Dias-Da Silveira HL. Influence of impacted maxillary canine orthodontic traction complexity on root resorption of incisors: A retrospective longitudinal study. Am J Orthod Dentofac Orthop. 2019 Jan 1;155(1):28–39. 65. Huang YS, Lin YC, Hung CY, Lai YL. Surgical considerations and management of bilateral labially impacted canines. J Dent Sci. 2016 Jun 1;11(2):202–6. 66. Argimon J, Jiménez J. Métodos de investigación clínica y epidemiológica. Elsevier 4ta Edición. 2013. 148 p. 67. Coulter J, Richardson A. Normal eruption of the maxillary canine quantified in three dimensions. Eur J Orthod. 1997;19(2):171–83. 68. Becker A, Chaushu S, Jerusalem I. Etiology of maxillary canine impaction: A review. Am J Orthod Dentofac Orthop [Internet]. 2015 Oct 1 [cited 2019 Oct 13];148(4):557–67. Available from: http://dx.doi.org/10.1016/j.ajodo.2015.06.013 69. Alif SM, Haque S, Nimmi N, Ashraf A, Khan SH, Khan MH. Panoramic radiological study to identify locally displaced maxillary canines in bangladeshi population. Imaging Sci Dent. 2011 Dec;41(4):155–9. 70. Gupta S, Solanki J, Tomar D. Evaluation of radiographic techniques for localization of impacted maxillary canines. Int J Stomatol Occlusion Med. 2015;8(4):97–104. 71. Ericson S, Kurol J. Radiographic examination of ectopically erupting maxillary canines. Am J Orthod Dentofac Orthop. 1987;91(6):483–92. 72. Ghaffar F, Sukhia RH, Fida M. Association between maxillary transverse discrepancy and occurrence of potentially impacted maxillary canines in mixed dentition patients. Int Orthod. 2019.