Publication:
Estudio de la capacidad volumétrica de la cámara pulpar de dientes temporales en relación con el aislamiento de células madre

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2020
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
En el año 2003, Miura y cols. demostraron la existencia de células madre en el tejido pulpar de dientes temporales. Desde entonces el número de artículos de investigación destinados a entender su aprovechamiento biológico ha aumentado exponencialmente. Sin embargo, tras la realización de una exhaustiva revisión bibliográfica, se observan lagunas en el proceso básico de recolección muestral. El objetivo principal de este proyecto de investigación es determinar la capacidad volumétrica de la cámara pulpar de incisivos, caninos y molares temporales exfoliados naturalmente o exodonciados próximos al momento de exfoliación por presentar alguna alteración eruptiva el sucesor permanente. Para la realización del proyecto, se han recogido un total de 50 dientes, ausentes de patología inflamatoria o infecciosa. Para el análisis tridimensional de la muestra se ha recurrido al uso del CBCT y el software de reconstrucción volumétrica Slicer 4.10.2®. Se intenta esclarecer cuál de estos tipos dentales es susceptible de contener una mayor cantidad de tejido pulpar remanente y, por tanto, su idoneidad para llevar a cabo el proceso básico de recolección y aislamiento celular. La capacidad volumétrica media de los distintos grupos dentales nos servirá como referencia para establecer un cribado en el proceso de selección muestral y aprovechamiento biológico de dichos dientes temporales.
In 2003, Miura et al. proved the existence of stem cells in the pulp tissue of temporary teeth. Since, the number of research articles aimed at understanding their biological use has increased exponentially. However, after carry out an exhaustive literature review, gaps in the basic sample collection process are observed. The main objective of this research is to determine the volumetric capacity of the pulp chamber of temporal incisors, canines and molars. Total of 50 teeth exfoliated or exodontized by eruptive alterations of the permanent successor have been collected without any pathology. For three-dimensional analysis of the sample, CBCT and volumetric reconstruction software Slicer 4.10.2® have been used. An attempt is made to clarify which of these dental types may contain a greater remaining pulp tissue, therefore, its suitability to carry out the basic process of cell collection and isolation. The volumetric capacity average of different dental groups will serve as a reference to establish a screening in the process of selection and biological use of naturally exfoliated deciduous teeth.
Description
Encuadrado en la línea de investigación Normalidad y patología odontopediátrica. Determinación de protocolos terapéuticos y evaluación de su aplicabilidad en la Odontopediatría
UCM subjects
Keywords
Citation
1) Nelson SJ. Wheeler's Dental Anatomy, Physiology and Occlusion-E-Book: Elsevier Health Sciences; 2014. (2) Black GV. Descriptive anatomy of the human teeth. 5th ed. Philadelphia: SS White manufacturing Company; 1897. (3) Curson MEJ, Duggal MS. Structure of Teeth. Dental disease. 2nd ed. Boston: MA. Elsevier; 2003. (4) Waggoner WF, Nelson T. Restorative dentistry for the primary dentition. Pediatric Dentistry: Elsevier; 2019. p. 304-328. e3. (5) MUTHU DMK, SHIVA D. Paediatric Dentistry: Principles and Practice: Elsevier India; 2011. (6) Pineda Paz C. Atlas de Anatomía Dental. Perú: SAM; 2004. (7) Fuks AB, Kupietzky A, Guelmann M. Pulp therapy for the primary dentition. Pediatric Dentistry: Elsevier; 2019. p. 329-351. e1. (8) Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003; 100(10): 5807-12. (9) Caleya Zambrano AM. Estudio de la reabsorción fisiológica de molares temporales y su correlación con parámetros de maduración dentaria. [Tesis Doctoral]. Madrid. E-prints, Universidad Complutense; 2014. (10) Monteiro J, Day P, Duggal M, Morgan C, Rodd H. Pulpal status of human primary teeth with physiological root resorption. Int J Paediatr Dent. 2009; 19(1): 16-25. (11) Nanci A. Ten Cate's Oral Histology-E-Book: Development, Structure, and Function. Elsevier Health Sciences; 2017. (12) Bolan M, de Carvalho Rocha MJ. Histopathologic study of physiological and pathological resorptions in human primary teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007; 104(5): 680-5. (13) Zhu Y, Shang L, Chen X, Kong X, Liu N, Bai Y, et al. Deciduous dental pulp stem cells are involved in osteoclastogenesis during physiologic root resorption. J Cell Physiol. 2013; 228(1): 207-15. (14) Shimazaki E, Karakida T, Yamamoto R, Kobayashi S, Fukae M, Yamakoshi Y et al. TGF-β and Physiological Root Resorption of Deciduous Teeth. Int J Mol Sci. 2017; 18(1): 49. (15) Bernardi L, Luisi SB, Fernandes R, Dalberto TP, Valentim L, Chies JAB et al. The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. J Endod. 2011; 37(7): 973-9. (16) Sanz Coarasa AC. Análisis de la asimetría en el proceso de reabsorción radicular de los molares temporales inferiores.[Tesis Doctoral]. Madrid. E-prints, Universidad Complutense; 2015. (17) Yildirim S, Yapar M, Sermet U, Sener K, Kubar A. The role of dental pulp cells in resorption of deciduous teeth. Oral Surgery, Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 105(1): 113-20. (18) Wang C, Wang Y, Liu N, Cai C, Xu L. Effect of tumor necrosis factor α on ability of SHED to promote osteoclastogenesis during physiological root resorption. Biomed Pharmacother. 2019; 114: 108803. (19) Wang L, Zhou Z, Chen Y, Yuan S, Du Y, Ju X, et al. The alpha 7 nicotinic acetylcholine receptor of deciduous dental pulp stem cells regulates osteoclastogenesis during physiological root resorption. Stem Cells Dev. 2017; 26(16):1186-98. (20) Pimentel-Parra G, Murcia-Ordoñez B. Células madre, una nueva alternativa médica. Perinatología y Reproducción Humana. 2017; 31(1): 28-33. (21) Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol. 2018; 19(9): 594. (22) Bissels U, Eckardt D, Bosio A. Characterization and classification of stem cells. Regenerative Medicine: Springer; 2013. p. 155-176. (23) Hyun I. The bioethics of stem cell research and therapy. J Clin Invest. 2010; 120(1): 71-5. (24) Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012; 10(6): 678-84. (25) Sanz AR, Carrión FS, Chaparro AP. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering. Periodontol 2000. 2015; 67(1): 251-67. (26) Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry-part I: stem cell sources. J Prosthodont Res. 2012;56(3): 151-65. (27) Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry-Part II: Clinical applications. J Prosthodont Res. 2012; 56(4): 229-48. (28) Sánchez-Caro J, Abellán F. Investigación biomédica en España: aspectos bioéticos, jurídicos y científicos. Granada: Comares; 2007. (29) Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic transplants of bone marrow. Transplantation. 1968; 6(2): 230-47. (30) Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L. Immunological characterization of multipotent mesenchymal stromal cells—The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy. 2013; 15(9): 1054-61. (31) Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol. 2006; 36(10): 2566-73. (32) Tyndall A, Walker UA, Cope A, Dazzi F, De Bari C, Fibbe W et al. Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005-2007. (33) Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97(25): 13625-30. (34) Seo B, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet. 2004; 364(9429): 149-55. (35) Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008; 34(2): 166-71. (36) Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS One. 2006; 1(1): e79. (37) Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology. 2005; 24(2): 155-65. (38) Mitrano TI, Grob MS, Carrion F, Nova‐ Lamperti E, Luz PA, Fierro FS, et al. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol. 2010; 81(6): 917-25. (39) Hara K, Yamada Y, Nakamura S, Umemura E, Ito K, Ueda M. Potential characteristics of stem cells from human exfoliated deciduous teeth compared with bone marrow–derived mesenchymal stem cells for mineralized tissue-forming cell biology. J Endod. 2011; 37(12): 1647-52. (40) Taguchi T, Yanagi Y, Yoshimaru K, Zhang X, Matsuura T, Nakayama K et al. Regenerative medicine using stem cells from human exfoliated deciduous teeth (SHED): a promising new treatment in pediatric surgery. Surg Today. 2019; 49(4): 316-22. (41) Kanafi MM, Rajeshwari YB, Gupta S, Dadheech N, Nair PD, Gupta PK et al. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy. 2013; 15(10): 1228-36. (42) Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012; 122(1): 80-90. (43) Shen C, Li L, Feng T, Li J, Yu M, Lu Q et al. Dental pulp stem cells derived conditioned medium promotes angiogenesis in hindlimb ischemia. Tissue Engineering and Regenerative Medicine. 2015; 12(1): 59-68. (44) Loo ZX, Kunasekaran W, Govindasamy V, Musa S, Abu Kasim NH. Comparative analysis of cardiovascular development related genes in stem cells isolated from deciduous pulp and adipose tissue. ScientificWorld Journal. 2014; 186508. (45) Yamaza T, Alatas FS, Yuniartha R, Yamaza H, Fujiyoshi JK, Yanagi Y et al. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther. 2015;6: 171. (46) Chen K, Xiong H, Xu N, Shen Y, Huang Y, Liu C. Chondrogenic potential of stem cells from human exfoliated deciduous teeth in vitro and in vivo. Acta Odontol Scand. 2014; 72(8): 664-72. (47) Király M, Kádár K, Horváthy DB, Nardai P, Rácz GZ, Lacza Z, et al. Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int. 2011; 59(3): 371-81. (48) Huang G, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009; 88(9): 792-806. (49) Tziafas D, Kodonas K. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod. 2010; 36(5): 781-89. (50) Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008; 34(8): 962-69. (51) Sakai V, Zhang Z, Dong Z, Neiva K, Machado M, Shi S et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010; 89(8): 791-6. (52) Seo B, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K et al. SHED repair critical‐ size calvarial defects in mice. Oral Dis. 2008; 14(5): 428-34. (53) Su W, Pan Y. Stem cells from human exfoliated deciduous teeth differentiate toward neural cells in a medium dynamically cultured with Schwann cells in a series of polydimethylsiloxanes scaffolds. J Neural Eng. 2016; 13(4): 046005. (54) Martinez Saez D, Sasaki RT, Neves Ad C, da Silva M, Cavenaghi Pereira. Stem Cells from Human Exfoliated Deciduous Teeth: A Growing Literature. Cells Tissues Organs. 2016; 202(5-6): 269-80. (55) Xie J, Rao N, Zhai Y, Li J, Zhao Y, Ge L et al. Therapeutic effects of stem cells from human exfoliated deciduous teeth on diabetic peripheral neuropathy. Diabetology & Metab Syndr. 2019; 11(1): 38. (56) Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010; 1(1): 5. (57) Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod. 2009; 35(11): 153642. (58) Kunimatsu R, Nakajima K, Awada T, Tsuka Y, Abe T, Ando K, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow–derived mesenchymal stem cells. Biochem Biophys Res Commun. 2018; 501(1): 193-8. (59) Rosa V, Zhang Z, Grande RHM, Nör ,J.E. Dental pulp tissue engineering in fulllength human root canals. J Dent Res. 2013; 92(11): 970-75. (60) Prasad MGS, Ramakrishna J, Babu DN. Allogeneic stem cells derived from human exfoliated deciduous teeth (SHED) for the management of periapical lesions in permanent teeth: Two case reports of a novel biologic alternative treatment. J Dent Res Dent Clin Dent Prospects 2017 Spring;11(2):117-122. (61) de Cara, Sueli Patricia Harumi Miyagi, Origassa CST, de Sá Silva F, Moreira MSN, de Almeida DC, Pedroni ACF, et al. Angiogenic properties of dental pulp stem cells conditioned medium on endothelial cells in vitro and in rodent orthotopic dental pulp regeneration. Heliyon 2019;5(4):e01560. (62) Fu X, Jin L, Ma P, Fan Z, Wang S. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine. J Periodontol 2014 06;85(6):845-851. (63) Gao X, Shen Z, Guan M, Huang Q, Chen L, Qin W, et al. Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration. Tissue Engineering Part A 2018;24(17-18):1341-1353. (64) Qiao YQ, Zhu LS, Cui SJ, Zhang T, Yang RL, Zhou YH. Local Administration of Stem Cells from Human Exfoliated Primary Teeth Attenuate Experimental Periodontitis in Mice. Chin J Dent Res. 2019; 22(3): 157-63. (65) Luo P, Jiang C, Ji P, Wang M, Xu J. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR. Stem Cell Res Ther. 2019; 10(1): 216. (66) Ogasawara N, Kano F, Hashimoto N, Mori H, Yao L, Linze X, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis. Osteoarthritis and Cartilage. 2020; 28(6): 831-41. (67) Behnia A, Haghighat A, Talebi A, Nourbakhsh N, Heidari F. Transplantation of stem cells from human exfoliated deciduous teeth for bone regeneration in the dog mandibular defect. World J Stem Cells. 2014; 6(4): 505-10. (68) Alkaisi A, Mutum SS, Ahmad ZAR, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013; 71(10): 1758. (69) Sebastian A, Kannan T, Norazmi M, Nurul A. Interleukin‐ 17A promotes osteogenic differentiation by increasing OPG/RANKL ratio in stem cells from human exfoliated deciduous teeth (SHED). J Tissue Eng Regen Med. 2018; 12(8): 1856-66. (70) Lee J, Kim H, Park J, Lee D, Zhang S, Green DW, et al. Developing palatal bone using human mesenchymal stem cell and stem cells from exfoliated deciduous teeth cell sheets. J Tissue Eng Regen Med. 2019; 13(2): 319-27. (71) Hiraki T, Kunimatsu R, Nakajima K, Abe T, Yamada S, Rikitake K, et al. Stem cellderived conditioned media from human exfoliated deciduous teeth promote bone regeneration. Oral Dis. 2020; 26(2): 381-90. (72) Prahasanti C, Subrata LH, Saskianti T, Suardita K, Ernawati DS. Combined Hydroxyapatite Scaffold and Stem Cell from Human Exfoliated Deciduous Teeth Modulating Alveolar Bone Regeneration via Regulating Receptor Activator of Nuclear Factor-Κb and Osteoprotegerin System. Iran J Basic Med Sci. 2019; 44(5): 415. (73) Novais A, Lesieur J, Sadoine J, Slimani L, Baroukh B, Saubaméa B et al. Priming dental pulp stem cells from human exfoliated deciduous teeth with fibroblast growth factor‐ 2 enhances mineralization within tissue‐ engineered constructs implanted in craniofacial bone defects. Stem Cells Transl Med. 2019; 8(8): 844-57. (74) Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res. 2015; 293: 189-97. (75) Fujii H, Matsubara K, Sakai K, Ito M, Ohno K, Ueda M et al. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res. 2015; 1613: 59-72. (76) Chen Y, Lai P, Chien Y, Lee P, Lai Y, Ma H et al. Improvement of Impaired Motor Functions by Human Dental Exfoliated Deciduous Teeth Stem Cell-Derived Factors in a Rat Model of Parkinson’s Disease. Int J Mol Sci. 2020; 21(11): 3807. (77) Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A. 2013; 19(1-2): 24-9. (78) Zhu S, Min D, Zeng J, Ju Y, Liu Y, Chen X. Transplantation of Stem Cells from Human Exfoliated Deciduous Teeth Decreases Cognitive Impairment from Chronic Cerebral Ischemia by Reducing Neuronal Apoptosis in Rats. Stem Cells Int.2020; 2020: 6393075. (79) Li Y, Yang Y, Ren J, Xu F, Chen F, Li A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther. 2017; 8(1): 198. (80) Nicola F, Marques MR, Odorcyk F, Petenuzzo L, Aristimunha D, Vizuete A et al. Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion. Mol Neurobiol. 2019; 56(1): 748-60. (81) Rossato C, Brandao WN, Castro SB, de Almeida DC, Maranduba CM, Camara NO, et al. Stem cells from human-exfoliated deciduous teeth reduce tissue-infiltrating inflammatory cells improving clinical signs in experimental autoimmune encephalomyelitis. Biologicals. 2017; 49: 62-8. (82) Shimojima C, Takeuchi H, Jin S, Parajuli B, Hattori H, Suzumura A et al. Conditioned Medium from the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Experimental Autoimmune Encephalomyelitis. J Immunol. 2016;196(10): 4164-71. (83) Sugimura-Wakayama Y, Katagiri W, Osugi M, Kawai T, Ogata K, Sakaguchi K et al. Peripheral nerve regeneration by secretomes of stem cells from human exfoliated deciduous teeth. Stem Cells Dev. 2015; 24(22): 2687-99. (84) Pereira LV, Bento RF, Cruz DB, Marchi C, Salomone R, Oiticicca J et al. Stem cells from human exfoliated deciduous teeth (SHED) differentiate in vivo and promote facial nerve regeneration. Cell Transplant. 2019; 28(1): 55-64. (85) Kim G, Shin K, Pae E. Zinc up-regulates insulin secretion from β cell-like cells derived from stem cells from human exfoliated deciduous tooth (SHED). Int J Mol Sci. 2016; 17(12): 2092. (86) Xu Y, Chen J, Zhou H, Wang J, Song J, Xie J et al. Effects and mechanism of stem cells from human exfoliated deciduous teeth combined with hyperbaric oxygen therapy in type 2 diabetic rats. Clinics. 2020; 75: e1656. (87) Rao N, Wang X, Zhai Y, Li J, Xie J, Zhao Y et al. Stem cells from human exfoliated deciduous teeth ameliorate type II diabetic mellitus in Goto-Kakizaki rats. Diabetes Metab Syndr. 2019; 11(1): 1-11. (88) Rao N, Wang X, Xie J, Li J, Zhai Y, Li X et al. Stem Cells from Human Exfoliated Deciduous Teeth Ameliorate Diabetic Nephropathy In Vivo and In Vitro by Inhibiting Advanced Glycation End Product-Activated Epithelial-Mesenchymal Transition. Stem Cells Int. 2019; 2: 1-15. (89) Takahashi Y, Yuniartha R, Yamaza T, Sonoda S, Yamaza H, Kirino K et al. Therapeutic potential of spheroids of stem cells from human exfoliated deciduous teeth for chronic liver fibrosis and hemophilia A. Pediatr Surg Int. 2019; 35(12): 1379-88. (90) Matsushita Y, Ishigami M, Matsubara K, Kondo M, Wakayama H, Goto H et al. Multifaceted therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for acute liver failure in rats. J Tissue Eng Regen Med. 2017; 11(6): 188896. (91) Hattori Y, Kim H, Tsuboi N, Yamamoto A, Akiyama S, Shi Y et al. Therapeutic potential of stem cells from human exfoliated deciduous teeth in models of acute kidney injury. PLoS One. 2015; 10(10): e0140121. (92) Wakayama H, Hashimoto N, Matsushita Y, Matsubara K, Yamamoto N, Hasegawa Y, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy. 2015; 17(8): 1119-29. (93) Kim JH, Kim GH, Kim JW, Pyeon HJ, Lee JC, Lee G, et al. In Vivo Angiogenic Capacity of Stem Cells from Human Exfoliated Deciduous Teeth with Human Umbilical Vein Endothelial Cells. Mol Cells. 2016;39(11): 790-6. (94) Pham TTM, Kato H, Yamaza H, Masuda K, Hirofuji Y, Sato H, et al. Altered development of dopaminergic neurons differentiated from stem cells from human exfoliated deciduous teeth of a patient with Down syndrome. BMC Neurol. 2018; 18(1): 132. (95) Han X, Nonaka K, Kato H, Yamaza H, Sato H, Kifune T, et al. Osteoblastic differentiation improved by bezafibrate-induced mitochondrial biogenesis in deciduous tooth-derived pulp stem cells from a child with Leigh syndrome. Biochem Biophys Rep. 2019; 17: 32-7. (96) Fujiyoshi J, Yamaza H, Sonoda S, Yuniartha R, Ihara K, Nonaka K, et al. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilson’s disease. Sci Rep. 2019; 9(1): 1-14. (97) Hirofuji S, Hirofuji Y, Kato H, Masuda K, Yamaza H, Sato H, et al. Mitochondrial dysfunction in dopaminergic neurons differentiated from exfoliated deciduous toothderived pulp stem cells of a child with Rett syndrome. Biochem Biophys Res Commun. 2018; 498(4): 898-904. (98) Griesi‐ Oliveira K, Sunaga DY, Alvizi L, Vadasz E, Passos‐ Bueno MR. Stem cells as a good tool to investigate dysregulated biological systems in autism spectrum disorders. Autism Res. 2013; 6(5): 354-61. (99) Nguyen HTN, Kato H, Sato H, Yamaza H, Sakai Y, Ohga S et al. Positive effect of exogenous brain-derived neurotrophic factor on impaired neurite development and mitochondrial function in dopaminergic neurons derived from dental pulp stem cells from children with attention deficit hyperactivity disorder. Biochem Biophys Res Commun. 2019; 513(4): 1048-54. (100) Huang T, Wang G, Tseng C, Su W. Epidermal cells differentiated from stem cells from human exfoliated deciduous teeth and seeded onto polyvinyl alcohol/silk fibroin nanofiber dressings accelerate wound repair. Mater Sci Eng C Mater Biol Appl. 2019; 104: 109986. (101) Dai Y, Ni S, Ma K, Ma Y, Wang Z, Zhao X. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro. Stem Cell Res Ther. 2019; 10(1): 1-14. 102) Tsai CL, Chuang PC, Kuo HK, Chen YH, Su WH, Wu PC. Differentiation of Stem Cells From Human Exfoliated Deciduous Teeth Toward a Phenotype of Corneal Epithelium In Vitro. Cornea. 2015; 34(11): 1471-7. (103) Li X, Yuan X, Zhai Y, Yu S, Jia R, Yang L, et al. Treatment with stem cells from human exfoliated deciduous teeth and their derived conditioned medium improves retinal visual function and delays the degeneration of photoreceptors. Stem Cells Dev. 2019; 28(22): 1514-26. (104) Hemphill BE. Measurement of tooth size (odontometrics). A companion to dental anthropology. Wiley Online Library. 2015:287-310. (105) Barberia E, Suarez MC, Villalon G, Maroto M, Garcia-Godoy F. Standards for mesiodistal and buccolingual crown size and height of primary molars in a sample of Spanish children. Eur J Paediatr Dent. 2009;10(4): 169-75. (106) Amano M, Agematsu H, Abe S, Usami A, Matsunaga S, Suto K, et al. Threedimensional analysis of pulp chambers in maxillary second deciduous molars. J Dent. 2006; 34(7): 503-8. (107) Dabawala S, Chacko V, Suprabha B, Rao A, Natarajan S, Ongole R. Evaluation of pulp chamber dimensions of primary molars from bitewing radiographs. Pediatr Dent. 2015; 37(4): 361-5. (108) Morse DR. Age-related changes of the dental pulp complex and their relationship to systemic aging. Oral Surg Oral Med Oral Pathol. 1991; 72(6): 721-45. (109) Baccouche C, Ghoul-Mazgar S, Baaziz A, Said F, Ben Salem K. Topography of the pulp chamber in the maxillary primary molars of a Tunisian children. Indian J Dent Res. 2013;24(2):206-210. (110) Ma J, Shi S, Ide Y, Saka H, Matsunaga S, Agematsu H. Volume measurement of crowns in mandibular primary central incisors by micro-computed tomography. Acta Odontol Scand. 2013; 71(5): 1032-37. (111) Wang Y, Chang H, Kuo C, Chen S, Guo M, Huang G et al. A study on the root canal morphology of primary molars by high-resolution computed tomography. J Dent Sci. 2013; 8(3): 321-27. (112) Terlemez A, Alan R, Gezgin O. Evaluation of the periodontal disease effect on pulp volume. J Endod. 2018; 44(1): 111-4. (113) Kramer W, Ireland R. Measurements of the primary teeth. J Dent Child. 1959; 26: 252-61. (114) Philippas GG. Influence of occlusal wear and age on formation of dentin and size of pulp chamber. J Dent Res. 1961;40(6):1186-98. (115) Hess W. Formation of root-canals in human teeth. J Nat Dent Assoc. 1921; 8(9): 704-34. (116) HIBBARD E. Morphology of the root canals of the primary molar teeth. J Dent Child. 1957; 24: 250-7. (117) Barker B, Parsons K, Williams G, Mills P. Anatomy of root canals. IV deciduous teeth. Aust Dent J. 1975; 20(2): 101-6. (118) Puddhikarant P. Radiographic anatomy of pulpal chambers of primary molars. Pediatr Dent. 1983; 5: 25-9. (119) Zoremchhingi, Joseph T, Varma B, Mungara J. A study of root canal morphology of human primary molars using computerised tomography: an in vitro study. J Indian Soc Pedod Prev Dent. 2005; 23(1): 7-12. (120) Asokan S, Sooriaprakas C, Raghu V, Bairavi R. Volumetric analysis of root canal fillings in primary teeth using spiral computed tomography: an in vitro study. J Dent Child. 2012; 79(2): 46-8. (121) Fumes A, Sousa-Neto MDd, Leoni G, Versiani M, Da Silva R, Consolaro A. Root canal morphology of primary molars: a micro-computed tomography study. Eur Arch Paediatr Dent.. 2014; 15(5): 317-26. (122) Bagherian A, Kalhori KA, Sadeghi M, Mirhosseini F, Parisay I. An in vitro study of root and canal morphology of human deciduous molars in an Iranian population. J Oral Sci. 2010; 52(3): 397-403. (123) Deutsch AS, Musikant BL. Morphological measurements of anatomic landmarks in human maxillary and mandibular molar pulp chambers. J Endod. 2004; 30(6): 388-90. (124) Arpana V, Prabhakar A, Raju O. Coronal pulp dimensions in noncarious and restored deciduous second molars: A radiovisiographic study. J Dent Child. 2010; 77(1): 42-8. (125) Kandemir S. The radiographic determinability of the distance between the pulp horns in the permanent first and second molar teeth. J Oral Sci. 1998; 40(4): 143-6. (126) Omer O, Al Shalabi R, Jennings M, Glennon J, Claffey N. A comparison between clearing and radiographic techniques in the study of the root‐ canal anatomy of maxillary first and second molars. Int Endod J. 2004; 37(5): 291-6. (127) Ordinola‐ Zapata R, Bramante C, Versiani M, Moldauer B, Topham G, Gutmann J, et al. Comparative accuracy of the Clearing Technique, CBCT and Micro‐ CT methods in studying the mesial root canal configuration of mandibular first molars. Int Endod J. 2017; 50(1): 90-6. (128) Neelakantan P, Subbarao C, Subbarao CV. Comparative evaluation of modified canal staining and clearing technique, cone-beam computed tomography, peripheral quantitative computed tomography, spiral computed tomography, and plain and contrast medium–enhanced digital radiography in studying root canal morphology. J Endod. 2010; 36(9): 1547-51. (129) Scarfe WC, Levin MD, Gane D, Farman AG. Use of cone beam computed tomography in endodontics. Int J Dent. 2009: 634567. (130) Häner ST, Kanavakis G, Matthey F, Gkantidis N. Voxel‐ based superimposition of serial craniofacial CBCTs: Reliability, reproducibility and segmentation effect on hardtissue outcomes. Orthod Craniofac Res. 2020; 23(1): 92-101. (131) Pimentel PA, Bomfim RT, Andrade LCS, Ferraz EG, Ribeiro Lamberti PL, RubiraBullen IRF, et al. Dimensional error of three-dimensional images generated by different software. J Med Eng Technol. 2015; 39(8): 480-4. (132) Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J-C., Pujol S., Bauer C., Jennings D., Fennessy F.M., Sonka M., Buatti J., Aylward S.R., Miller J.V., Pieper S., Kikinis R. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012; 30(9): 1323-41. (133) Ferrán Aranaz, M. SPSS para Windows. Programación y Análisis Estadístico. Aravaca (Madrid): Mc Graw Hill; 1996. (134) Zhang N, Chen B, Wang W, Chen C, Kang J, Deng SQ, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep. 2016; 14(1): 95-102.