Publication:
Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-03-17
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebra. In particular, well-known types, such as the Milne-Pinney or Kummer-Schwarz equations, are recovered as special cases of this classification. The analogous problem for systems of second-order differential equations in the real plane is considered for a special case that enlarges the generalized Ermakov systems.
Description
Keywords
Citation
1. Lie, S. Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen, B. G. Teubner: Leipzig, Germany, 1891. 2. Cariñena, J.F.; de Lucas, J. Lie systems: Theory, generalisations and applications. Dissertationes Math. 2011, 479, 1–162. 3. Ibragimov, N.K. Integration of systems of first-order equations admitting a nonlinear superposition. J. Nonl. Math. Phys. 2009, 16, 137–147. 4. Ballesteros, A.; Blasco, A.; Herranz, F.J.; de Lucas, J.; Sardón, C. Lie-Hamilton systems on the plane: Theory, classification and applications. J. Diff. Equations 2015, 258, 2873–2907. 5. Cariñena, J.F.; de Lucas, J.; Rañada, M.F. Recent applications of the theory of Lie systems in Ermakov systems. Symmetry Integrability Geom. Methods Appl. 2008, 4, doi:10.3842/SIGMA.2008.031. 6. Cariñena, J.F.; Grabowski, J.; de Lucas, J. Superposition rules for higher-order systems and their applications. J. Phys. A: Math. Theor. 2012, 45, doi:10.1088/1751-8113/45/18/185202. 7. González-López, A.; Kamran, N.; Olver, P.J. Lie algebras of vector fields in the real plane. Proc. Lond. Math. Soc. 1992, 64, 339–368. 8. Shnider, S.; Winternitz, P. Classification of systems of nonlinear ordinary differential equations with superposition principles. J. Math. Phys. 1984, 25, 3155–3165. 9. Ibragimov, N.K.; Gainetdinova A.A. Three-dimensional dynamical systems admitting nonlinear superposition with three-dimensional Vessiot-Guldberg-Lie algebras. Appl. Math. Lett. 2016, 52, 126–131. 10. Cariñena, J.F.; de Lucas, J. Superposition rules and second-order Riccati equations. J. Geom. Mech. 2011, 3, 1–22. 11. Ibragimov, N.Kh. Group analysis of ordinary differential equations and the invariance principle in mathematical physics. Uspekhi Mat. Nauk 1992, 47, 83–144. 12. Ovsyannikov, L.V. Lectures on the Theory of Group Properties of Differential Equations; Ibragimov, N.K., Ed.; World Scientific: Singapore, 2013. 13. Wei, J.; Norman, E. Lie algebraic solution of linear differential equations. J. Math. Phys. 1963, 4, 575–581. 14. Campoamor-Stursberg, R. Reduction of the symmetry algebra of ODEs by means of additional constraints associated to a subalgebra. Cubo Math. J. 2006, 8, 25–34. 15. Šnobl, L.; Winternitz, P. Classification and Identification of Lie Algebras; American Mathematical Society: Providence, RI, USA, 2014. 16. Lahno, V.I.; Spichak, S.V.; Stognii’, V.I. Symmetry Analysis of Evolution Type Equations; Institute of Computer Science: Moscow-Izhevsk, UK, 2004. (In Russian) 17. Perelomov, A.M. Integrable Systems of Classical Mechanics and Lie Algebras; Birkhäuser Verlag: Basel, Switzerland, 1990. 18. Subag, E.M.; Baruch, E.M.; Birman, J.L.; Mann, A. Strong contractions of the representations of the three dimensional Lie algebras. J. Phys. A: Math. Theor. 2012, 45, doi:10.1088/1751-8113/45/26/265206.
Collections