Publication:
Complex Ginzburg–Landau equation with generalized finite differences

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2020-12-20
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper we obtain a novel implementation for irregular clouds of nodes of the meshless method called Generalized Finite Difference Method for solving the complex Ginzburg–Landau equation. We derive the explicit formulae for the spatial derivative and an explicit scheme by splitting the equation into a system of two parabolic PDEs. We prove the conditional convergence of the numerical scheme towards the continuous solution under certain assumptions. We obtain a second order approximation as it is clear from the numerical results. Finally, we provide several examples of its application over irregular domains in order to test the accuracy of the explicit scheme, as well as comparison with other numerical methods.
Description
Keywords
Citation
1. Shokri, A.; Dehghan, M. A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation. CMES Comput. Model. Eng. Sci. 2012, 84, 333–358. 2. Wang, B. Existence of Time Periodic Solutions for the Ginzburg-Landau Equations of Superconductivity. J. Math. Anal. Appl. 1999, 232, 394–412. 3. Du, Q.; Gunburger, M.D.; Peterson, J.S. Modeling and Analysis of a Periodic Ginzburg–Landau Model for Type-II Superconductors. SIAM J. Appl. Math. 1992, 53, 689–717. 4. Wang, T.; Guo, B. Analysis of some finite difference schemes for two?dimensional Ginzburg-Landau equation. Numer. Methods Partial Differ. Equ. 2011, 25, 1340–1363. 5. Geiser, J.; Nasari, A. Comparison of Splitting Methods for Deterministic/Stochastic Gross-Pitaevskii Equation. Math. Comput. Appl. 2019, 24, 76. 6. Geiser, J. Iterative Splitting Method as Almost Asymptotic Symplectic Integrator for Stochastic Nonlinear Schrödinger Equation. AIP Conf. Proc. 2017, 1863, 560005. 7. Geiser, J.; Nasari, A. Simulation of multiscale Schrödinger equation with extrapolated splitting approaches. AIP Conf. Proc. 2019, 2116, 450006. 8. Trofimov, V.A.; Peskov, N.V. Comparison of finite difference schemes for the Gross-Pitaevskii equation. Math. Model. Anal. 2009, 14, 109–126. 9. Liszka, T.; Orkisz, J. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 1980, 11, 83–95. 10. Benito, J.J.; Ureña, F.; Gavete, L. Influence of several factors in the generalized finite difference method. Appl. Math. Model. 2001, 25, 1039–1053. 11. Gavete, L.; Benito, J.J.; Ureña, F. Generalized finite differences for solving 3D elliptic and parabolic equations. Appl. Math. Model. 2016, 40, 955–965. 12. Ureña, F.; Benito, J.J.; Gavete, L. Application of the generalized finite difference method to solve the advection diffusion equation. J. Comput. Appl. Math. 2011, 235, 1849–1855. 13. Wang, Y.; Gu, Y.; Liu, J. A domain–decomposition generalized finite difference method for stress analysis in three-dimensional composite materials. Appl. Math. Lett. 2020, 104, 106226. 14. Ureña, F.; Gavete, L.; Benito, J.J.; García, A.; Vargas, A.M. Solving the telegraph equatio. Eng. Anal. Bound. Elem. 2020, 112, 13–24. 15. Benito, J.J.; García, A.; Gavete, M.L.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A.M. Numerical Simulation of a Mathematical Model for Cancer Cell Invasion. Biomed. J. Sci. Tech. Res. 2019, 23, 17355–17359. 16. Benito, J.J.; García, A.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A.M. On the numerical solution to a parabolic-elliptic system with chemotactic and periodic terms using Generalized Finite Differences. Eng. Anal. Bound. Elem. 2020, 113, 181–190. 17. Lancaster, P.; Salkauskas, K. Curve and Surface Fitting; Academic Press Inc.: London, UK, 1986. 18. Gavete, L.; Ureña, F.; Benito, J.J.; Garcia, A.; Ureña, M.; Salete, E. Solving second order non-linear elliptic partial differential equations using generalized finite difference method. J. Comput. Appl. Math. 2017, 318, 378–387. 19. Fan, C.M.; Huang, Y.K.; Li, P.W.; Chiu, C.L. Application of the generalized finite-difference method to inverse biharmonic boundary value problems. Numer. Heat Transf. Part B Fundam. 2014, 65, 129–154. 20. Ureña, F.; Gavete, L.; Garcia, A.; Benito, J.J.; Vargas, A.M. Solving second order non-linear parabolic PDEs using generalized finite difference method (GFDM). J. Comput. Appl. Math. 2019, 354, 221–241. 21. Isaacson, E.; Keller, H.B. Analysis of Numerical Methods; John Wiley & Sons Inc.: New York, NY, USA, 1966. 22. Kong, L.; Kuang, L. Efficient numerical schemes for two-dimensional Ginzburg-Landau equation in superconductivity. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 6325–6327.
Collections