Publication:
Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2020-04-30
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper we develop a mathematical model for the spread of the coronavirus disease 2019 (COVID-19). We use a compartmental model (but not a SIR, SEIR or other general purpose model) and take into account the known special characteristics of this disease, as the existence of infectious undetected cases. We study the particular case of China (including Chinese Mainland, Macao, Hong-Kong and Taiwan, as done by the World Health Organization in its reports about COVID-19), the country spreading the disease, and use its reported data to identify the modelparameters, which can be of interest for estimating the spread of COVID-19 in other countries. The model is also able to estimate the needs of beds in hospitals for intensive care units. Finally, we also study the behavior of the outputs returned by our model when considering incomplete data (by truncating them at some dates before and after the peak of daily reported cases). By comparing those results with real observation we can estimate the error produced by the model when identifying the parameters at early stages of the epidemic.
Description
Keywords
Citation
[1] Anderson M. Population biology of infectious diseases: part 1. Nature 1979;280:361–7. [2] Ivorra B, Martínez-López B, Sánchez-Vizcaíno JM, Ramos AM. Mathematical formulation and validation of the Be-FAST model for classical swine fever virus spread between and within farms. Ann Oper Res 2014;219(1):25–47. [3] Martínez-López B, Ivorra B, Ramos AM, Sánchez-Vizcaíno JM. A novel spatial and stochastic model to evaluate the within- and between-farm transmission of classical swine fever virus. i. general concepts and description of the model. Vet Microbiol 2011;147(3–4):300–9. [4] Thieme HR. Mathematics in population biology. Mathematical Biology Series. Princeton University Press; 2003. [5] Brauer F, Castillo-Chávez C. Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, Springer; 2001. ISBN 978-1-4757-3516-1. https://www.springer.com/gp/book/9781441931825. [6] Yan D, Cao H. The global dynamics for an age-structured tuberculosis transmission model with the exponential progression rate. Applied Mathematical Modelling 2019;75:769–86. doi:10.1016/j.apm.2019.07.003. http://www.sciencedirect.com/science/article/pii/S0307904X19304044. [7] Wang C, Horby PW, Hayden F, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020;395:470–3. doi:10.1016/S0140-6736(20)30185-9. [8] Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses - a statement of the coronavirus study group. bioRxiv 2020:1–20. doi:10.1101/2020.02.07.937862. [9] Organization WH. Naming the coronavirus disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/ novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes- it; 2020a. [10] Wang L, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (covid-19) implicate special control measures. J Med Virol 2020. doi:10.1002/jmv.25748. [11] Organization W.H.. Statement on the second meeting of the international health regulations (2005). emergency committee regarding the outbreak of novel coronavirus (2019-ncov). https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-theinternational-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov); 2020b. [12] Organization W.H.. Director-general’s opening remarks at the media briefing on COVID-19 - 11 march 2020. https://www.who.int/dg/speeches/detail/ who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020; 2020c. [13] Roosa K, Lee Y, Luo R, Kirpich A, Rothenberg R, Hyman J, et al. Real-time forecasts of the COVID-19 epidemic in china from february 5th to february 24th, 2020. Infect Dis Modell 2020;5:256–63. doi:10.1016/j.idm.2020.02.002. [14] Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis 2020. doi:10.1016/S1473-3099(20)30144-4. [15] Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARScov2). Science 2020. doi:10.1126/science.abb3221. [16] Russell T.W., Hellewell J., Abbott S., Golding N., Gibbs H., Jarvis C.I., et al. Using a delay-adjusted case fatality ratio to estimate under-reporting. Report from the Centre for Mathematical Modelling of Infectious Diseases. https://cmmid.github.io/topics/covid19/severity/global_cfr_estimates.html; 2020a. [17] Ivorra B, Ramos AM, Ngom D. Be-CoDiS: A mathematical model to predict the risk of human diseases spread between countries. validation and application to the 2014 ebola virus disease epidemic. Bull Math Biol 2015;77(9):1668–704. doi:10.1007/s11538-015-0100-x. [18] Ferrández MR, Ivorra B, Ortigosa PM, Ramos AM, Redondo JL. Application of the Be-CoDis model to the 2018-19 ebola virus disease outbreak in the democratic republic of congo. ResearchGate Preprint 2019;23 July 2019:1–17. doi:10.13140/RG.2.2.13267.63521/2. [19] Ferrández MR, Ivorra B, Redondo JL, Ramos AM, Ortigosa PM. A multi-objective approach to estimate parameters of compartmental epidemiological models. application to ebola virus disease epidemics.. researchgatenet 2020:1–49. doi:10.13140/RG.2.2.25778.56006. [20] Liu T, Hu J, Kang M, Lin L, Zhong H, Xiao J, et al. Transmission dynamics of 2019 novel coronavirus (2019-ncov). bioRxiv 2020. doi:10.1101/2020.01.25.919787. [21] Organization W.H.. Coronavirus disease (COVID-2019) Situation reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/; 2020d. [22] Organization W.H.. Coronavirus disease 2019 (COVID-19) situation report – 24. https://www.who.int/docs/default-source/coronaviruse/ situation-reports/20200213-sitrep-24-covid-19.pdf?sfvrsn=9a7406a4_4; 2020e. [23] Organization W.H.. Coronavirus disease 2019 (COVID-19) situation report – 28. https://www.who.int/docs/default-source/coronaviruse/ situation-reports/20200217-sitrep-28-covid-19.pdf?sfvrsn=a19cf2ad_2; 2020f. [24] Organization W.H.. Coronavirus disease 2019 (COVID-19) situation report – 31. https://www.who.int/docs/default-source/coronaviruse/ situation-reports/20200220-sitrep-31-covid-19.pdf?sfvrsn=dfd11d24_2; 2020g. [25] Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 2020;27(2). doi:10.1093/jtm/taaa021. [26] Chen S, Yang J, Yang W, Barnighausen T. COVID-19 control in China during mass population movements at New Year. Lancet 2020;395(10226):764–6. doi:10.1016/S0140-6736(20)30421-9. [27] Organization W.H.. Report of the WHO-China Joint Mission on Coronavirus Disease 2019. https://www.who.int/docs/default-source/coronaviruse/ who-china-joint-mission-on-covid-19-final-report.pdf; 2020h. [28] Organization W.H.. Rolling updates in coronavirus disease COVID-19. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen; 2020i. [29] Diekmann O, Heesterbeek H, Britton T. Understanding Infectious Disease Dynamics. Princeton Series in Theoretical and Computational Biology, Princeton University Press; 2013. ISBN 978-1-4008-4562-0. http://www.jstor.org/stable/j.cttq9530. [30] Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 2002;180(1–2):29–48. doi:10.1101/2020.02.22.20025791. [31] Bank W.. World Bank Open Data. https://data.worldbank.org/; 2020. [32] Luo W, Majumder M, D L. The role of absolute humidity on transmission rates of the COVID-19 outbreak.. MedRxiv 2020. doi:10.1101/2020.02.12.20022467. [33] Wang M, Aili Jiang MD, Gong L. Temperature significantly change COVID-19 transmission in 429 cities. MedRxiv 2020. doi:10.1101/2020.02.22.20025791. [34] for Disease Prevention E.C., Control. Discharge criteria for confirmed COVID-19 cases – when is it safe to discharge COVID-19 cases from the hospital or end home isolation?https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-Discharge-criteria.pdf; 2020. [35] Lekone P, Finkenstädt B. Statistical inference in a stochastic epidemic seir model with control intervention: ebola as a case study.. Biometrics 2006;62(4):1170–7. doi:10.1111/j.1541-0420.2006.00609.x. [36] Rhys HI. Machine Learning with R, the tidyverse, and mlr. Manning Publications; 2020. ISBN 9781617296574. https://books.google.es/books?id=jRzYDwAAQBAJ. [37] Ferrández MR, Puertas-Martín S, Redondo JL, Ivorra B, Ramos AM, Ortigosa PM. High-performance computing for the optimization of high-pressure thermal treatments in food industry. J Supercomput 2018;75:1187–202. doi:10.1007/s11227-018-2351-4. [38] Ferrández MR, Redondo JL, Ivorra B, Ramos AM, Ortigosa PM. Preference-based multi-objectivization applied to decision support for high-pressure thermal processes in food treatment. Appl Soft Comput 2019;79:326–40. doi:10.1016/j.asoc.2019.03.050. B. Ivorra, M.R. Ferrández and M. Vela-Pérez et al. / Commun Nonlinear Sci Numer Simulat 88 (2020) 105303 21 [39] Ruiz AB, Saborido R, Luque M. A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J Global Optim 2015;62(1):101–29. [40] Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of COVID-19 disease. MedRxiv 2020. doi:10.1101/2020. 03.09.20033357. [41] Organization W.H.. Report of the who-china joint mission on coronavirus disease 2019 (covid-19). https://www.who.int/docs/default-source/ coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf; 2020j. [42] (JHU) J.H.U.. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE). https://gisanddata.maps.arcgis.com/apps/ opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6; 2020. [43] news B.. Tracking coronavirus: Map, data and timeline. https://bnonews.com/index.php/2020/01/the-latest-coronavirus-cases/; 2020. [44] for Disease Control C., Prevention. Using an epi curve to determine mode of spread. https://www.cdc.gov/training/QuickLearns/epimode/; 2020. [45] Organization W.H.. Coronavirus disease 2019 (COVID-19) situation report – 25. https://www.who.int/docs/default-source/coronaviruse/ situation-reports/20200214-sitrep-25-covid-19.pdf?sfvrsn=61dda7d_2; 2020k. [46] Qiu J. Covert coronavirus infections could be seeding new outbreaks. Nature 2020. doi:10.1038/d41586-020-00822-x. [47] Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the diamond princess cruise ship, yokohama, japan 2020. Euro Surveill 2020;25(10). doi:10.2807/1560-7917.ES.2020.25.10.2000180. [48] Russell TW, Hellewell J, Abbott S, Jarvis CI, van Zandvoort K, et al. Using a delay-adjusted case fatality ratio to estimate under-reporting. Centre for Mathematical Modeling ofInfectious Diseases Repository 2020. https://cmmid.github.io/topics/covid19/severity/global_cfr_estimates.html.
Collections