Publication:
DChaos: an R package for chaotic time series analysis

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
R Foundation for Statistical Computing
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Chaos theory has been hailed as a revolution of thoughts and attracting ever-increasing attention of many scientists from diverse disciplines. Chaotic systems are non-linear deterministic dynamic systems which can behave like an erratic and apparently random motion. A relevant field inside chaos theory is the detection of chaotic behavior from empirical time-series data. One of the main features of chaos is the well-known initial-value sensitivity property. Methods and techniques related to testing the hypothesis of chaos try to quantify the initial-value sensitive property estimating the so-called Lyapunov exponents. This paper describes the main estimation methods of the Lyapunov exponent from time series data. At the same time, we present the DChaos library. R users may compute the delayed-coordinate embedding vector from time series data, estimates the best-fitted neural net model from the delayed-coordinate embedding vectors, calculates analytically the partial derivatives from the chosen neural nets model. They can also obtain the neural net estimator of the Lyapunov exponent from the partial derivatives computed previously by two different procedures and four ways of subsampling by blocks. To sum up, the DChaos package allows the R users to test robustly the hypothesis of chaos in order to know if the data-generating process behind time series behaves chaotically or not. The package’s functionality is illustrated by examples.
Description
Keywords
Citation
H. D. Abarbanel. Analysis of observed chaotic data. Springer, 1996. [p234, 236] D. W. K. Andrews. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59(3):817–858, 1991. URL https://doi.org/10.2307/2938229. [p245] E. Bradley and H. Kantz. Nonlinear time-series analysis revisited. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(9):097610, 2015. URL https://doi.org/10.1063/1.4917289. [p232] R. Brown, P. Bryant, and H. D. Abarbanel. Computing the lyapunov spectrum of a dynamical system from an observed time series. Physical Review A, 43(6):2787, 1991. URL https://doi.org/10.1103/PhysRevA.43.2787. [p238] K.-S. Chan and H. Tong. Chaos: a statistical perspective. Springer-Verlag, 2001. URL https://doi.org/10.1007/978-1-4757-3464-5. [p234, 236] W. D. Dechert and R. Gençay. Lyapunov exponents as a nonparametric diagnostic for stability analysis.J Appl Econ, 7(S1):S41–S60, dec 1992. https://doi.org/10.1002/jae.3950070505. [p238] J. P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Rev Mod Phys, 57:617–656, 1985. https://doi.org/10.1103/RevModPhys.57.617. [p233, 238] J. P. Eckmann, S. O. Kamphorst, D. Ruelle, and S. Ciliberto. Liapunov exponents from time series. Phys Rev A, 34:4971–4979, Dec 1986. https://doi.org/10.1103/PhysRevA.34.4971. [p238] M. Faggini. Chaotic time series analysis in economics: Balance and perspectives. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(4):042101, 2014. https://doi.org/10.1063/1.4903797. [p232] A. Fernández-Díaz. Chaos theory: Current and future research and applications. McGraw-Hill, 2019. [p232] C. A. Garcia. nonlinearTseries: Nonlinear Time Series Analysis, 2019. URL https://CRAN.R-project.org/ package=nonlinearTseries. R package version 0.2.6. [p233] R. Gençay and W. D. Dechert. An algorithm for the n lyapunov exponents of an n-dimensional unknown dynamical system. Physica D, 59(1):142–157, 1992.https://doi.org/10.1016/0167- 2789(92)90210-E. [p232, 233, 238] P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena, 9(1-2):189–208, 1983. https://doi.org/10.1007/978-0-387-21830-4_12. [p236] R. Hegger, H. Kantz, and T. Schreiber. Practical implementation of nonlinear time series methods: The tisean package. Chaos: An Interdisciplinary Journal of Nonlinear Science, 9(2):413–435, 1999. https://doi.org/10.1063/1.166424. [p233, 237] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359 – 366, 1989. https://doi.org/10.1016/0893-6080(89)90020-8. [p239] J. P. Huke and D. S. Broomhead. Embedding theorems for non-uniformly sampled dynamical systems. Nonlinearity, 20(9):2205–2244, 2007. https://doi.org/10.1088/0951-7715/20/9/011. [p234, 235] H. Kantz. A robust method to estimate the maximal lyapunov exponent of a time series. Physics Letters A, 185(1):77 – 87, 1994. URL https://doi.org/10.1016/0375-9601(94)90991-1. [p233, 237] H. Kantz and T. Schreiber. Determinism and predictability. Nonlinear time series analysis, pages 42–57, 1997. [p237] H. Kantz and T. Schreiber. Nonlinear time series analysis, volume 7. Cambridge university press, 2004. [p234, 236, 237] M. B. Kennel, R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phasespace reconstruction using a geometrical construction. Phys Rev A, 45:3403–3411, 1992. https://doi.org/10.1103/PhysRevA.45.3403. [p236] Z. Lu and R. L. Smith. Estimating local lyapunov exponents. Fields Institute Communications, 11: 135–151, 1997. [p238] D. F. McCaffrey, S. Ellner, A. R. Gallant, and D. W. Nychka. Estimating the lyapunov exponent of a chaotic system with nonparametric regression. J Am Stat Assoc, 87(419):682–695, 1992. https://doi.org/10.1080/01621459.1992.10475270. [p233, 238] A. F. D. Narzo. tseriesChaos: Analysis of Nonlinear Time Series, 2019. https://CRAN.R-project. org/package=tseriesChaos. R package version 0.1-13.1. [p233] D. Nychka, S. Ellner, A. R. Gallant, and D. McCaffrey. Finding chaos in noisy systems. J R Stat Soc Series B Stat Methodol, 54(2):399–426, 1992. https://www.jstor.org/stable/2346135. [p233,238] M. T. Rosenstein, J. J. Collins, and C. J. D. Luca. A practical method for calculating largest lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65(1):117 – 134, 1993. https://doi.org/10.1016/0167-2789(93)90009-P. [p237] D. Ruelle and F. Takens. On the nature of turbulence. Communications in Mathematical Physics, 20(3): 167–192, 1971. URL https://doi.org/10.1007/BF01646553.[p234] J. E. Sandubete and L. Escot. DChaos: Chaotic Time Series Analysis, 2021. https://CRAN.Rproject.org/package=DChaos. R package version 0.1-6. [p233] M. Sano and Y. Sawada. Measurement of the lyapunov spectrum from a chaotic time series. Physical review letters, 55(10):1082, 1985. https://doi.org/10.1103/PhysRevLett.55.1082. [p238] M. Shintani and O. Linton. Is there chaos in the world economy? a nonparametric test using consistent standard errors. International Economic Review, 44(1):331–357, 2003. URL https://doi.org/10.1111/ 1468-2354.t01-1-00073. [p238, 240] M. Shintani and O. Linton. Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos. J Econom, 120(1):1–33, may 2004. https://doi.org/10.1016/S0304- 4076(03)00205-7. [p233, 238, 242, 245, 249] F. Takens. Detecting strange attractors in turbulence. Springer Berlin Heidelberg, 1981. [p234, 236] L. Tang, H. Lv, F. Yang, and L. Yu. Complexity testing techniques for time series data: A comprehensive literature review. Chaos Solitons & Fractals, 81:117–135, 2015. URL https://doi.org/10.1016/j.chaos.2015.09.002. [p232] Y.-J. Whang and O. Linton. The asymptotic distribution of nonparametric estimates of the lyapunov exponent for stochastic time series. J Econom, 91(1):1 – 42, 1999. URL https://doi.org/10.1016/S0304-4076(98)00047-5. [p238] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining lyapunov exponents from a time series. Physica D, 16(3):285 – 317, 1985. URL https://doi.org/10.1016/0167-2789(85)90011-9.[p237] D. Wuertz, T. Setz, and Y. Chalabi. fNonlinear: Rmetrics - Nonlinear and Chaotic Time Series Modelling, 2017. URL https://CRAN.R-project.org/package=fNonlinear. R package version 3042.79. [p233]
Collections