Publication:
Overcoming the solid solubility limit of Te in Ge by ion implantation and pulsed laser melting recrystallization

Research Projects
Organizational Units
Journal Issue
Abstract
Germanium hyperdoped with deep level donors, such as tellurium, would lead to dopant-mediated sub-band gap mid-infrared photoresponse at room temperature. We use a combination of non-equilibrium techniques to supersaturate Ge with Te via ion implantation followed by pulsed laser melting (PLM). Typically, liquid N2 (77K) temperatures are used to avoid implantation-induced Ge surface porosity. In this work, alternatively, we report on the use of slightly higher implantation temperatures (143 K) together with an amorphous Si (a-Si) capping layer. We demonstrate that the solid solubility limit of Te in Ge is overcome upon recovering the crystallinity of the material after laser processing.
Description
©IEEE. Spanish Conference on Electron Devices (CDE) (13.2021. Sevilla) This work is part of the project TEC2017-84378-R, funded by MICINN and European Social Fund and project MADRID-PV2 (P2018/EMT-4308) funded by the Comunidad Autónoma de Madrid with the support from FEDER Funds. Parts of this research were carried out at IBC at the Helmholtz–Zentrum Dresden–Rossendorf e. V., a member of the Helmholtz Association. Authors would like to thank Ulrich Kentsch for his assistance with the lowtemperature implantations. D. Caudevilla would also acknowledge grant PRE2018-083798, financed by MICINN and European Social Fund. D. Pastor acknowledges financial support from the program Ramón y Cajal (Grant No. RYC2014-16936).
Keywords
Citation
Collections