Publication:
Utilización de bloques de raíces dentales autógenas para la reconstrucción de la cresta alveolar como enfoque novedoso y menos invasivo que los bloques de hueso autólogo. Revisión sistemática y metaanálisis.

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Esta revisión sistemática se propuso investigar los resultados clínicos de los bloques de raíces dentales autógenas utilizados para el aumento de la cresta frente a los bloques de hueso autógeno: tasas de supervivencia, reabsorción del bloque, supervivencia del implante, complicaciones posquirúrgicas y hallazgos histológicos. Siguió las directrices PRISMA. Se realizó una búsqueda automatizada en cuatro bases de datos, complementada con una búsqueda manual de artículos relevantes publicados antes de diciembre de 2020. La calidad de la evidencia aportada se evaluó con la herramienta Newcastle-Ottawa Quality Assessment Scale y la herramienta Joanna Briggs Institute Critical Appraisal. Ocho artículos cumplieron los criterios de inclusión y se sometieron a análisis. Los artículos incluyeron un total de 166 pacientes, que recibieron 133 bloques de raíces dentales autógenas y 41 bloques óseos autógenos, con tasas de supervivencia de los bloques del 99,8% y el 100%, respectivamente. Los bloques de raíces dentales presentaron una ganancia ósea media similar a la de los bloques de hueso autógeno, pero mostraron una menor reabsorción. La tasa de supervivencia de los implantes fue del 99,4% para los bloques de raíz dental autógena y del 100% para los bloques de hueso autógeno. La reconstrucción de crestas alveolares atróficas mediante bloques de raíces dentales autógenos parece ser una opción satisfactoria en cuanto a la supervivencia del bloque óseo y de los implantes colocados posteriormente. Se necesitan más investigaciones que aporten datos a largo plazo para confirmar estos resultados.
This systematic review set out to investigate the clinical outcomes of autogenous tooth root blocks used for ridge augmentation versus autogenous bone blocks: survival rates, block resorption, implant survival, post-surgical complications, and histology findings. This review followed PRISMA guidelines. An automated search was made in four databases, supplemented by a manual search for relevant articles published before December 2020. The quality of evidence provided was assessed with the Newcastle-Ottawa Quality Assessment Scale tool and the Joanna Briggs Institute Critical Appraisal tool. Eight articles fulfilled the inclusion criteria and underwent analysis. The articles included a total of 166 patients, who received 133 autogenous tooth root blocks and 41 autogenous bone blocks showing block survival rates of 99.8% and 100%, respectively. Tooth root blocks presented a mean bone gain that was similar to autologous bone blocks but showed less resorption. The implant survival rate was 99.4% for autogenous tooth root blocks and 100% for autogenous bone blocks. Reconstruction of atrophic alveolar crests by means of autogenous tooth root blocks appears to be a satisfactory option in terms of the survival of the bone block and the implants placed subsequently. More research providing long term data is needed to confirm these findings.
Description
Trabajo de Fin de Máster en Ciencias Odontológicas, Facultad de Odontología, Departamento de Especialidades Clínicas Odontológicas, Curso 2020/2021
Keywords
Citation
1. Tan WL, Wong TL, Wong MC, Lang NP A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res 2007; 23: 1–21. 2. Van der Weijden F, Dell'Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol 2009; 36: 1048–1058. 3. Araújo MG, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol 2005; 32: 212–218. 4. Urban IA, Monje A. Guided Bone Regeneration in Alveolar Bone Reconstruction. Oral Maxillofac Surg Clin North Am 2019; 31: 331-338 5. Starch-Jensen T, Becktor JP. Maxillary Alveolar Ridge Expansion with Split- Crest Technique Compared with Lateral Ridge Augmentation with Autogenous Bone Block Graft: a Systematic Review. J Oral Maxillofac Res. 2019; 10: 2. 6. Stern A, Green J. Sinus lift procedures: an overview of current techniques. Dent Clin North Am. 2012; 56: 219-233 7. Toledano-Serrabona J, Sánchez-Garcés MÁ, Sánchez-Torres A, Gay-Escoda C. Alveolar distraction osteogenesis for dental implant treatments of the vertical bone atrophy: A systematic review. Med Oral Patol Oral Cir Bucal. 2019; 24: 70- 75. 8. Liu J, Kerns DG. Mechanisms of Guided Bone Regeneration: A Review. Open Dent J 2014; 8: 56-65. 9. Sanz-Sanchez I, Carrillo de Albornoz A, Figuero E, Schwarz F, Jung R, Sanz M, Thoma D. Effects of lateral bone augmentation procedures on peri-implant health or disease: a systematic review and meta-analysis. Clin Oral Implants Res 2018; 29: 18–31 10. Misch CM. Maxillary autogenous bone grafting. Dent Clin North Am 2011; 55: 697–713. 11. Corinaldesi G, Pieri F, Marchetti C, Fini M, Aldini NN, Giardino R. Histologic and histomorphometric evaluation of alveolar ridge augmentation using bone grafts and titanium micromesh in humans. J Periodontol. 2007; 78: 1477-1484. 12. Aloy-Prósper A, Peñarrocha-Oltra D, Peñarrocha-Diago M, Peñarrocha-Diago M. The outcome of intraoral onlay block bone grafts on alveolar ridge augmentations: a systematic review. Med Oral Patol Oral Cir Bucal. 2015; 20: 251-258. 13. Khoury F, Hanser T. Three-Dimensional Vertical Alveolar Ridge Augmentation in the Posterior Maxilla: A 10-year Clinical Study. Int J Oral Maxillofac Implants. 2019; 34: 471‐480. 14. Nampo T, Watahiki J, Enomoto A, Taguchi T, Ono M, Nakano H, et al. A new method for alveolar bone repair using extracted teeth for the graft material. J Periodontol 2010; 8: 1264-72. 15. Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontol 2000 1999; 19: 74-86. 16. Pérez-González F, Molinero-Mourelle P, Sánchez-Labrador L, Sáez-Alcaide LM, Limones A, Cortés-Bretón Brinkmann J, López-Quiles J. Assessment of clinical outcomes and histomorphometric findings in alveolar ridge augmentation procedures with allogeneic bone block grafts: A systematic review and meta- analysis. Med Oral Patol Oral Cir Bucal. 2020; 25: 291-298. 17. Linde A. Dentin matrix proteins: composition and possible functions in calcification. Anat Rec 1989; 224: 154-66. 18. Bakhshalian N, Hooshmand S, Campbell SC, Kim JS, Brummel- Smith K, Arjmandi BH. Biocompatibility and microstructural analysis of osteopromotive property of allogenic demineralized dentin matrix. Int J Oral Maxillofac Implants 2013; 28: 1655-1662. 19. Kim YK, Kim SG, Oh JS, Jin SC, Son JS, Kim SY, et al. Analysis of the inorganic component of autogenous tooth bone graft material. J Nanosci Nanotechnol 2011; 11: 7442-7445. 20. Kim YK, Lee J, Um IW, et al. Tooth-derived bone graft material. J Korean Assoc Oral Maxillofac Surg 2013; 39: 103–111. 21. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097. 22. Wells GA, Shea B, O’Connel D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. http://www.ohri.ca/pro- grams/clinical_epidemiology/oxford.asp. 23. Joanna Briggs Institute Reviewers Manual. Chapter 7: Systematic reviews of etiology and risk. Available from URL: https://reviewersmanual.joannabriggs.org/2017 (last accessed 22 Nov 2020). 24. Parvini P, Sader R, Sahin D, Becker J, Schwarz F. Radiographic outcomes following lateral alveolar ridge augmentation using autogenous tooth roots. Int J Implant Dent 2018; 4: 31. 25. Schwarz F, Hazar D, Becker K, Sader R, Becker J. Efficacy of autogenous tooth roots for lateral alveolar ridge augmentation and staged implant placement. A prospective controlled clinical study. J Clin Periodontol 2018; 45: 996-1004. 26. Xiao W, Hu C, Chu C, Man Y. Autogenous Dentin Shell Grafts Versus Bone Shell Grafts for Alveolar Ridge Reconstruction: A Novel Technique with Preliminary Results of a Prospective Clinical Study. Int J Periodontics Restorative Dent 2019; 39: 885-893. 27. Schwarz F, Sahin D, Becker K, Sader R, Becker J. Autogenous tooth roots for lateral extraction socket augmentation and staged implant placement. A prospective observational study. Clin Oral Implants Res. 2019; 30: 439-446. 28. Shejali J, Thomas R, Kumar T, Shah R, Mehta DS, Gayathri GV. Immediate Ridge Augmentation Using Autogenous Tooth Root as a Block Graft in a Periodontally Hopeless Extraction Site: A Pilot Study. J Oral Implantol. 2020; 46: 41-49. 29. Kim E. Autogenous fresh demineralized tooth graft prepared at chairside for dental implant. Maxillofacial plastic and reconstructive surgery 2015; 37(1): 8-8. 30. Kim YK, Kim SG, Um IW, Kim KW. Bone grafts using autogenous tooth blocks: a case series. Implant Dent 2013; 22: 584-589 31. Kim Y, Pang K, Yun P, Leem D, Um I. Long-term follow-up of autogenous tooth bone graft blocks with dental implants. Clinical Case Reports 2017; 5: 108-118. 32. Weibull L, Widmark G, Ivanoff CJ, Borg E, Rasmusson L. Morbidity after chin bone harvesting – A retrospective Long-term follow-up study. Clin Impl Dent Relat Res 2009; 11: 149-57. Ersanli S, Arisan V, Bedeloglu E. Evaluation of the autogenous bone block transfer for dental implant placement: symphysal or ramus harvesting? BMC Oral Health 2016; 16: 1-8. 33. Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin Impl Dent Relat Res 2003; 5:154-60, Joshi A. An investigation of post-operative morbidity following chin graft surgery. Br Dent J 2004; 196: 215-218. 34. Gomes MF, dos Anjos MJ, Nogueira TO, Guimarães SA. Histologic evaluation of the osteoinductive property of autogenous demineralized dentin matrix on surgical bone defects in rabbit skulls using human amniotic membrane for guided bone regeneration. Int J Oral Maxillofac Implants. 2001; 16: 563-71. 35. Kim YK, Lee JH, Um IW, Cho WJ. Guided Bone Regeneration Using Demineralized Dentin Matrix: Long-Term Follow-Up. J Oral Maxillofac Surg. 2016; 74: 1-9. 36. Sánchez-Labrador L, Martín-Ares M, Ortega-Aranegui R, López-Quiles J, Martínez-González JM. Autogenous Dentin Graft in Bone Defects after Lower Third Molar Extraction: A Split-Mouth Clinical Trial. Materials (Basel). 2020; 13(14): 3090. 37. Sánchez-Labrador L, Molinero-Mourelle P, Pérez-González F, Sáez-Alcaide LM, Brinkmann JC, López-Quiles J, Martínez-González JM. Clinical performance of alveolar ridge augmentation with xenogeneic bone block grafts versus autogenous bone block grafts. A systematic review. J Stomatol Oral Maxillofac Surg. 2020; 5: 1-10. 38. Pistilli R, Felice P, Piattelli M, Nisii A, Barausse C, Esposito M. Blocks of autogenous bone versus xenografts for the rehabilitation of atrophic jaws with dental implants: preliminary data from a pilot randomized controlled trial. Eur J Oral Implantol 2014; 7: 1–19. 39. Nissan J, Mardinger O, Calderon S, Romanos GE, Chaushu G. Cancellous bone block allografts for the augmentation of the anterior atrophic maxilla. Clin Implant Dent Relat Res. 2011; 13: 104-11. 40. Schwarz F, Golubovic V, Mihatovic I, Becker J. Periodontally diseased tooth roots used for lateral alveolar ridge augmentation. A proof-of-concept study. J Clin Periodontol. 2016; 43: 797-803. 41. Acocella A, Bertolai R, Colafranceschi M, Sacco R. Clinical, histological and histomorphometric evaluation of the healing of mandibular ramus bone block grafts for alveolar ridge augmentation before implant placement. J Craniomaxillofac Surg. 2010; 38: 222-230. 42. Restoy-Lozano A, Dominguez-Mompell JL, Infante-Cossio P, Lara-Chao J, Espin-Galvez F, Lopez-Pizarro V. Reconstruction of mandibular vertical defects for dental implants with autogenous bone block grafts using a tunnel approach: clinical study of 50 cases. Int J Oral Maxillofac Surg. 2015; 44: 1416-1422. 43. Carlsen A, Gorst-Rasmussen A, Jensen T. Donor site morbidity associated with autogenous bone harvesting from the ascending mandibular ramus. Implant Dent. 2013; 22(5): 503-506. 44. Parvini P, Schliephake C, Al-Maawi S, Schwarz K, Sader R, Ghanaati S, Schwarz F. Histomorphometrical assessment of vertical alveolar ridge augmentation using extracted tooth roots in the canine. Clin Oral Investig. 2020; 24: 317-323. 45. Schwarz F, Mihatovic I, Popal-Jensen I, Parvini P, Sader R. Influence of autoclavation on the efficacy of extracted tooth roots used for vertical alveolar ridge augmentation. J Clin Periodontol. 2019; 46: 502-509. 46. Becker K, Drescher D, Hönscheid R, Golubovic V, Mihatovic I, Schwarz F. Biomechanical, micro-computed tomographic and immunohistochemical analysis of early osseous integration at titanium implants placed following lateral ridge augmentation using extracted tooth roots. Clin Oral Implants Res. 2017; 28: 334- 340. grafts for alveolar ridge augmentation before implant placement. J Craniomaxillofac Surg. 2010; 38: 222-230.