Publication:
Mapeo completo de la fuerza de unión a la microtracción de la cementación en buscade diferencias debido a la contracción de polimerización.

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2021
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Objetivos: Comprobar si los movimientos transversales debidos a la contracción de polimerización de los materiales de cementado afectan diferencialmente a su unión a las estructuras cementadas, dependiendo de sus distancias al centro de la masa de cemento, y si este efecto está relacionado con al factor de configuración. Se comprobaron dos hipótesis: (1) hay una relación decreciente estadísticamente significativa entre la fuerza de la unión y las distancias transversales al centro del material de cementado y, (2) hay diferencias estadísticamente significativas entre los diferentes espesores de cemento. Materiales y métodos: 10 pares de cilindros de PMMA (15 mm Ø) se cementaron entre sí en un sistema adaptable (adhesivo Scotchbond Universal & Relyx Universal, ambos curados químicamente), sujetos a dos fuerzas diferentes (20 & 70N), formando dos grupos de 5 muestras cada uno, con diferentes factores de configuración. Las muestras se seccionaron en barras en los planos x e y. Las posiciones relativas de las barras, en cada muestra, se determinaron y clasificaron en 10 categorías según su distancia al centro de la masa de cemento y se sometieron a un test de microtracción en un dispositivo rígido. La primera hipótesis se corroboró comprobando la relación lineal entre la fuerza de tracción y las distancias al centro de la masa de cemento. La segunda hipótesis se comprobó mediante test de Mann-Whitney comparando las fuerzas de unión entre los grupos, para todas las categorías. Resultados: ANOVA de la regresión lineal entre las fuerzas de unión y las distancias fue significativa en todas las muestras excepto en una del grupo 20N, por lo que la credibilidad de la primera hipó tesis se mantiene parcialmente. Las diferencias de las fuerzas de unión entre grupos, por categorías, fueron estadísticamente significativas, por lo que la credibilidad de la segunda hipótesis se mantiene. Conclusiones: Existe una correlación negativa entre la resistencia a la microtracción y la distancia al centro de la masa. A menor espesor de cemento y mayor factor de configuración, mayor valor de resistencia a la microtracción.
Description
Trabajo de Fin de Máster en Ciencias Odontológicas, Facultad de Odontología UCM, Departamento de Odontología Conservadora y Prótesis, Curso 2020/2021
Keywords
Citation
1. Mantri SP, Mantri SS. Management of Shrinkage Stresses in Direct Restorative Light-Cured Composites: A Review. J Esthet Restor Dent. 2013;25(5):305-13. 2. Ferracane JL. Resin composite—State of the art. Dent Mater. 1 de enero de 2011;27(1):29-38. 3. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997;105(2):97- 116. 4. Craig RG. Chemistry, composition, and properties of composite resins. Dent Clin North Am. Abril de 1981;25(2):219-39. 5. Baroudi K, Rodrigues JC. Flowable Resin Composites: A Systematic Review and Clinical Considerations. J Clin Diagn Res JCDR. Junio de 2015;9(6):ZE18-24. 6. Choi KK, Ferracane JL, Hilton TJ, Charlton D. Properties of Packable Dental Composites. J Esthet Restor Dent. 2000;12(4):216-26. 7. Ilie N, Hickel R. Investigations on mechanical behaviour of dental composites. Clin Oral Investig. 2009;13(4):427-38. 8. Blackham JT, Vandewalle KS, Lien W. Properties of hybrid resin composite systems containing prepolymerized filler particles. Oper Dent. 2009;34(6):697-702. 9. Diemer F, Stark H, Helfgen E-H, Enkling N, Probstmeier R, Winter J, et al. In vitro cytotoxicity of different dental resin-cements on human cell lines. J Mater Sci Mater Med [Internet]. 2021 [citado 14 de mayo de 2021];32(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817560/ 10.Braga R, Cesar P, Gonzaga C. Mechanical properties of resin cements with different activation modes. J Oral Rehabil. 1 de marzo de 2002;29:257-62. 11.El-Badrawy WA, El-Mowafy OM. Chemical versus dual curing of resin inlay cements. J Prosthet Dent. 1 de junio de 1995;73(6):515-24. 12.Caughman WF, Chan DCN, Rueggeberg FA. Curing potential of dual-polymerizable resin cements in simulated clinical situations. J Prosthet Dent. 1 de mayo de 2001;85(5):479-84. 13.Lu H, Mehmood A, Chow A, Powers JM. Influence of polymerization mode on flexural properties of esthetic resin luting agents. J Prosthet Dent. 1 de diciembre de 2005;94(6):549-54. 14.Noronha Filho JD, Brandão NL, Poskus LT, Guimarães JGA, Silva EM da. A critical analysis of the degree of conversion of resin-based luting cements. J Appl Oral Sci. Octubre de 2010;18(5):442-6. 15.Hasegawa EA, Boyer DB, Chan DCN. Hardening of dual-cured cements under composite resin inlays. J Prosthet Dent. 1 de agosto de 1991;66(2):187-92. 16.Hofmann N, Papsthart G, Hugo B, Klaiber B. Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding flexural strength, modulus and surface hardness. J Oral Rehabil. 2001;28(11):1022-8. 17.Niemi A, Perea-Lowery L, Alaqeel SM, Ramakrishnaiah R, Vallittu PK. Dual-curing resin cementwith colour indicator for adhesively cemented restorations to dental tissues: Change of colour by curing and some physical properties. Saudi J Biol Sci. Enero de 2020;27(1):395-400. 18.Mourouzis P, Koulaouzidou E, Palaghias G, Helvatjoglu-Antoniades M. Color match of luting composites and try-in pastes: the impact on the final color of CAD/CAM lithium disilicate restora tions. Int J Esthet Dent. 2018;13(1):98-109. 19.Fonseca RG, Cruz CADS, Adabo GL, Vaz LG. Comparison of the tensile bond strengths of cast metal crowns luted with resin cements. J Oral Rehabil. 2004;31(11):1080-4. 20.Macorra García JC de la. Polymerization contraction of composite resin restorative materials. Odontologia conservadora. 1999;2(1):24-35. 21.Ferracane JL. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater Off Publ Acad Dent Mater. enero de 2005;21(1):36-42. 22.Lutz F, Krejci I, Barbakow F. Quality and durability of marginal adaptation in bonded composite restorations. Dent Mater. 1 de abril de 1991;7(2):107-13. 23.Hansen EK, Asmussen E. Marginal adaptation of posterior resins: effect of dentin-bonding agent and hygroscopic expansion. Dent Mater Off Publ Acad Dent Mater. Marzo de 1989;5(2):122-6. 24.Davidson CL, De Gee AJ, Feilzer A. The Competition between the Composite-Dentin Bond Strength and the Polymerization Contraction Stress. J Dent Res. 1 de diciembre de 1984;63(12):1396-9. 25.Venhoven BAM, de Gee AJ, Davidson CL. Polymerization contraction and conversion of light curing BisGMA-based methacrylate resins. Biomaterials. 1 de septiembre de 1993;14(11):871-5. 26.Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerization shrinkage stress in poly-merbased restoratives. J Dent. 1 de noviembre de 1997;25(6):435-40. 27.Feilzer AJ, De Gee AJ, Davidson CL. Quantitative determination of stress reduction by flow in composite restorations. Dent Mater. 1 de julio de 1990;6(3):167-71. 28.Feilzer AJ, de Gee AJ, Davidson CL. Setting stresses in composites for two different curing modes. Dent Mater. 1 de enero de 1993;9(1):2-5. 29.Labella R, Lambrechts P, Van Meerbeek B, Vanherle G. Polymerization shrinkage and elasticityof flowable composites and filled adhesives. Dent Mater. 1 de marzo de 1999;15(2):128-37. 30.Dauvillier BS, Aarnts MP, Feilzer AJ. Developments in Shrinkage Control of Adhesive Restoratives. J Esthet Restor Dent. 2000;12(6):291-9. 31.Calheiros FC, Sadek FT, Braga RR, Cardoso PEC. Polymerization contraction stress of low-shrink-age composites and its correlation with microleakage in class V restorations. J Dent. 1 de julio de 2004;32(5):407-12. 32.Ferracane JL. Placing Dental Composites—A Stressful Experience. Oper Dent. 1 de enero de 2008;33(3):247-57. 33.Poggio C, Lombardini M, Gaviati S, Chiesa M. Evaluation of Vickers hardness and depth of cureof six composite resins photo-activated with different polymerization modes. J Conserv Dent. 7 de enero de 2012;15(3):237. 34.Feilzer AJ, De Gree, A.J, Davidson, C.L. Setting Stress in Composite Resin in Relation to Configuration of the Restoration - A.J. Feilzer, A.J. De Gee, C.L. Davidson, 1987. J Dent Res. 66(11):1636- 9. 35.Macorra García JC de la, Gómez Fernández S. Quantification of the configuration factor in classI and II cavities and simulated cervical erosions [Internet]. 1996 [citado 22 de mayo de 2021]. Dis ponible en: https://eprints.ucm.es/5056/1/Quantification_of_configuration_fac tor_in_class_I_and_II_ca.pdf 36.Hansen EK. Visible light-cured composite resins: polymerization contraction, contraction pat- tern and hygroscopic expansion. Eur J Oral Sci. 1982;90(4):329-35. 37.Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent Mater. 1 de octubre de 2005;21(10):962-70. 38.Versluis A, Tantbirojn D, Douglas WH. Do Dental Composites Always Shrink Toward the Light? J Dent Res. 1 de junio de 1998;77(6):1435-45. 39.Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent Mater. 1 de octubre de 1991;7(4):281-7. 40.Cabrera E, de la Macorra JC. Polymerization Shrinkage Influences Microtensile Bond Strength.J Dent Res. 1 de marzo de 2007;86(3):227-31. 41.Miguel A, de la Macorra JC. A predictive formula of the contraction stress in restorative and luting materials attending to free and adhered surfaces, volume and deformation. Dent Mater. 1 de mayo de 2001;17(3):241-6. 42.Jantarat J, Palamara JEA, Messer HH. An investigation of cuspal deformation and delayed recovery after occlusal loading. J Dent. 1 de julio de 2001;29(5):363-70. 43.Sakaguchi RL, Brust EW, Cross M, DeLong R, Douglas WH. Independent movement of cusps during occlusal loading. Dent Mater. 1 de julio de 1991;7(3):186-90. 44.Tantbirojn D, Versluis A, Pintado MR, DeLong R, Douglas WH. Tooth deformation patterns in molars after composite restoration. Dent Mater. 1 de julio de 2004;20(6):535-42. 45.Sterzenbach G, Karajouli G, Tunjan R, Spintig T, Bitter K, Naumann M. Damage of lithium-disil-icate all-ceramic restorations by an experimental self-adhesive resin cement used as core build-ups.Clin Oral Investig. 1 de marzo de 2015;19(2):281-8. 46.Cunha LG, Alonso RCB, Pfeifer CSC, Correr-Sobrinho L, Ferracane JL, Sinhoreti MAC. Modulated photoactivation methods: Influence on contraction stress, degree of conversion and push-out bond strength of composite restoratives. J Dent. 1 de abril de 2007;35(4):318-24. 47.May LG, Kelly JR. Influence of resin cement polymerization shrinkage on stresses in porcelain crowns. Dent Mater. 1 de octubre de 2013;29(10):1073-9. 48.Kaisarly D, Gezawi ME. Polymerization shrinkage assessment of dental resin composites: a literature review. Odontology. 1 de septiembre de 2016;104(3):257-70. 49.Hayashi J, Shimada Y, Tagami J, Sumi Y, Sadr A. Real-Time Imaging of Gap Progress during andafter Composite Polymerization. J Dent Res. 1 de agosto de 2017;96(9):992-8. 50.Lee M-R, Cho B-H, Son H-H, Um C-M, Lee I-B. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater Off Publ Acad Dent Mater. marzo de 2007;23(3):288-95. 51.Park J, Chang J, Ferracane J, Lee IB. How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater Off Publ Acad Dent Mater. noviembre de 2008;24(11):1501-5. 52.Daronch M, Rueggeberg FA, De Goes MF. Monomer Conversion of Pre-heated Composite. J Dent Res. 1 de julio de 2005;84(7):663-7. 53.Cook WD, Beech DR, Tyas MJ. Resin-based restorative materials—a review. Aust Dent J. 1984;29(5):291-5. 54.Ernst CP, Kürschner R, Rippin G, Willershausen B. Stress reduction in resin-based composites cured with a two-step light-curing unit. Am J Dent. abril de 2000;13(2):69-72. 55.Alonso RCB, Cunha LG, Correr GM, Goes MFD, Correr-Sobrinho L, Puppin-Rontani RM, et al. Association of photoactivation methods and low modulus liners on marginal adaptation of composite restorations. Acta Odontol Scand. 1 de enero de 2004;62(6):298-304. 56.Cunha LG, Alonso RCB, Sobrinho LC, Sinhoreti MAC. Effect of Resin Liners and Photoactivation Methods on the Shrinkage Stress of a Resin Composite. J Esthet Restor Dent. 2006;18(1):29-37. 57.Xie H, Zhang F, Wu Y, Chen C, Liu W. Dentine bond strength and microleakage of flowable composite, compomer and glass ionomer cement. Aust Dent J. 2008;53(4):325-31. 58.de la Macorra JC, Pérez-Higueras JJ. Microtensile Bond Strength Test Bias Caused by Variationsin Bonded Areas. J Adhes Dent. 2014;16(3):207-19. 59.Shono Y, Terashital M, Pashley EL, Brewer PD, Pashley DH. Effects of cross-sectional area on resinenamel tensile bond strength. Dent Mater. 1 de septiembre de 1997;13(5):290-6. 60.Phrukkanon S, Burrow MF, Tyas MJ. The influence of cross-sectional shape and surface area onthe microtensile bond test. Dent Mater Off Publ Acad Dent Mater. junio de 1998;14(3):212-21. 61.Phrukkanon S, Burrow MF, Tyas MJ. Effect of cross-sectional surface area on bond strengths between resin and dentin. Dent Mater. 1 de marzo de 1998;14(2):120-8. 62.Escribano NI, Del-Nero MO, Macorra JC de la. Inverse relationship between tensile bond strength and dimensions of bonded area. J Biomed Mater Res B Appl Biomater. 2003;66B(1):419- 24. 63.Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Carvalho R, et al. Relationship between sur- face area for adhesion and tensile bond strength — Evaluation of a micro-tensile bond test. Dent Mater. 1 de julio de 1994;10(4):236-40. 64.Eckert GJ, Platt JA. A statistical evaluation of microtensile bond strength methodology for den-tal adhesives. Dent Mater. 1 de marzo de 2007;23(3):385-91. 65.Faria-e-Silva A, Boaro L, Braga R, Piva E, Arias V, Martins L. Effect of Immediate or Delayed Light Activation on Curing Kinetics and Shrinkage Stress of Dual-Cure Resin Cements. Oper Dent. 1 de marzo de 2011;36(2):196-204. 66.Burey A, Reis PJ dos, Vicentin BLS, Garbelini CCD, Hoeppner MG, Appoloni CR. Polymerization shrinkage and porosity profile of dual cure dental resin cements with different adhesion to dentin mechanisms. Microsc Res Tech. 2018;81(1):88-96. 67.De Jager N, Pallav P, Feilzer AJ. The apparent increase of the Young’s modulus in thin cement layers. Dent Mater. 1 de junio de 2004;20(5):457-62. 68.Lührs A-K, De Munck J, Geurtsen W, Van Meerbeek B. Composite cements benefit from lightcuring. Dent Mater. 1 de marzo de 2014;30(3):292-301. 69.Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Biebuyck J-J, Mestdagh M, Larbanois P,et al. A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent Mater Off Publ Acad Dent Mater. mayo de 2006;22(5):405-12. 70.Özok AR, Wu M-K, De Gee AJ, Wesselink PR. Effect of dentin perfusion on the sealing ability and microtensile bond strengths of a total-etch versus an all-in-one adhesive. Dent Mater. junio de 2004;20(5):479-86. 71.Armstrong S, Breschi L, Özcan M, Pfefferkorn F, Ferrari M, Van Meerbeek B. Academy of Dental Materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (μTBS) approach. Dent Mater. 1 de febrero de 2017;33(2):133- 43. 72.Coelho NF, Barbon FJ, Machado RG, Boscato N, Moraes RR. Response of composite resins to preheating and the resulting strengthening of luted feldspar ceramic. Dent Mater. 1 de octubre de 2019;35(10):1430-8. 73.Zeller DK, Fischer J, Rohr N. Viscous behavior of resin composite cements. Dent Mater J. 25 de enero de 2021;40(1):253-9. 74.Marocho SMS, Özcan M, Amaral R, Valandro LF, Bottino MA. Effect of seating forces on cement–ceramic adhesion in microtensile bond tests. Clin Oral Investig. enero de 2013;17(1):325-31. 75.Fok ASL, Aregawi WA. The two sides of the C-factor. Dent Mater. 1 de abril de 2018;34(4):649-56. 76.Choi KK, Condon JR, Ferracane JL. The Effects of Adhesive Thickness on Polymerization Contraction Stress of Composite. J Dent Res. 1 de marzo de 2000;79(3):812-7. 77.Escribano NI, Del-Nero MO. Inverse Relationship between Tensile Bond Strength and Dimensions of Bonded Area. Appl Biomater. 2003;66(1):419–24 78.Cabrera E, de la Macorra JC. Effects of polymerization contraction on interface’s µTBS of luting material and dentin. Clin Oral Investig. Abril de 2010;14(2):207-16. 79.Yu H, Özcan M, Yoshida K, Cheng H, Sawase T. Bonding to industrial indirect composite blocks:A systematic review and meta-analysis. Dent Mater. 1 de enero de 2020;36(1):119-34. 80.Ishikiriama SK, Valeretto TM, Franco EB, Mondelli RFL. The influence of «C-factor» and light activation technique on polymerization contraction forces of resin composite. J Appl Oral Sci. 2012;20(6):603-6. 81.Alster D, Venhoven BAM, Feilzer AJ, Davidson CL. Influence of compliance of the substrate materials on polymerization contraction stress in thin resin composite layers. Biomaterials. 1 de enero de 1997;18(4):337-41. 82.Watts DC, Marouf AS, Al-Hindi AM. Photo-polymerization shrinkage-stress kinetics in resincomposites: methods development. Dent Mater. 1 de enero de 2003;19(1):1-11. 83.Blunck U, Fischer S, Hajtó J, Frei S, Frankenberger R. Ceramic laminate veneers: effect of preparation design and ceramic thickness on fracture resistance and marginal quality in vitro. Clin Oral Investig. 1 de agosto de 2020;24(8):2745-54. 84.Jankar A, Kale Y, Kangane S, Ambekar A, Sinha M, Chaware S. Comparative evaluation of fracture resistance of Ceramic Veneer with three different incisal design preparations - An In-vitro Study. J Int Oral Health JIOH. 1 de febrero de 2014;6:48-54.