Publication:
Hybrid functionalized coatings on Metallic Biomaterials for Tissue Engineering

Research Projects
Organizational Units
Journal Issue
Abstract
The review encompasses state-of-the-art strategies for design and fabrication of smart biomaterials for tissue engineering. The focus of the work is mainly put on metallic biomaterials with hybrid coatings consisting of bioceramic and polymeric layers with hierarchical organization and drug-eluting capacity. Key technologies and steps to design hybrid smart and multifunctional coatings on metallic cores for bone regeneration implants and cardiovascular stents are outlined, including additive manufacturing of titanium and magnesium alloys for permanent and temporary implant applications. Three levels of hierarchical surface functionalization are described: i) in situ modification of the core material, incorporating bioactive inorganic species and phases by means of ceramic coatings via anodic electrochemical treatments; ii) post-treatment application of polymer layers, monolithic or with specific porous breath figure topography; and iii) application of a cellular therapy component (single cell or cell sheet). Recent progress in incorporation of drug-eluting functionality into such materials via direct or nanocarrier-assisted loading is also highlighted.
Description
UCM subjects
Keywords
Citation
J.M. Pollok, J.P. Vacanti Tissue engineering Semin. Pediatr. Surg., 5 (1996), pp. 191-196 View Record in ScopusGoogle Scholar [2] R. Langer, D.A. Tirrell Designing materials for biology and medicine Nature, 428 (2004), pp. 487-492 View PDFView Record in ScopusGoogle Scholar [3] M. Maisani, D. Pezzoli, O. Chassande, D. Mantovani Cellularizing hydrogel-based scaffolds to repair bone tissue: how to create a physiologically relevant micro-environment? J. Tissue Eng., 8 (2017), Article 2041731417712073 Google Scholar [4] Q. Chen, G.A. Thouas Metallic implant biomaterials Mater. Sci. Eng. R. Rep., 87 (2015), pp. 1-57 ArticleDownload PDFGoogle Scholar [5] I. Kulinets S.F. Amato, R.M. Ezzell (Eds.), 1 - Biomaterials and their Applications in Medicine, Regulatory Affairs for Biomaterials and Medical Devices, Woodhead Publishing (2015), pp. 1-10 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar [6] M. Navarro, A. Michiardi, O. Castaño, J.A. Planell Biomaterials in orthopaedics J. R. Soc. Interface, 5 (2008), pp. 1137-1158 View PDFCrossRefView Record in ScopusGoogle Scholar [7] L.L. Hench, J.M. Polak Third-generation biomedical materials Science, 295 (2002), pp. 1014-1017 View Record in ScopusGoogle Scholar [8] C. Piconi, A.A. Porporati Bioinert ceramics: zirconia and alumina I.V. Antoniac (Ed.), Handbook of Bioceramics and Biocomposites, Springer International Publishing, Cham (2016), pp. 59-89 View PDFCrossRefView Record in ScopusGoogle Scholar [9] J.S. Fernandes, P. Gentile, R.A. Pires, R.L. Reis, P.V. Hatton Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue Acta Biomater., 59 (2017), pp. 2-11 ArticleDownload PDFView Record in ScopusGoogle Scholar [10] S. Bertazzo, W.F. Zambuzzi, D.D. Campos, T.L. Ogeda, C.V. Ferreira, C.A. Bertran Hydroxyapatite surface solubility and effect on cell adhesion Colloids Surf. B: Biointerfaces, 78 (2010), pp. 177-184 ArticleDownload PDFView Record in ScopusGoogle Scholar [11] A. Civantos, E. Martínez-Campos, V. Ramos, C. Elvira, A. Gallardo, A. Abarrategi Titanium coatings and surface modifications: toward clinically useful bioactive implants ACS Biomater Sci. Eng., 3 (2017), pp. 1245-1261 View PDFCrossRefView Record in ScopusGoogle Scholar [12] N. López-Valverde, J. Flores-Fraile, J.M. Ramírez, B.M.D. Sousa, S. Herrero-Hernández, A. López-Valverde Bioactive surfaces vs. conventional surfaces in titanium dental implants: a comparative systematic review J. Clin. Med., 9 (2020), p. 2047 View PDFCrossRefGoogle Scholar [13] C. Alvarez-Lorenzo, A. Concheiro Smart drug delivery systems: from fundamentals to the clinic Chem. Commun., 50 (2014), pp. 7743-7765 View Record in ScopusGoogle Scholar [14] S. Adeosun, M. Ilomuanya, O. Gbenebor, M. Dada, C. Odili Biomaterials for drug delivery: sources, classification, synthesis, processing, and applications Adv. Funct. Mater. (2020), 10.5772/intechopen.93368 View PDFGoogle Scholar [15] B.M. Holzapfel, J.C. Reichert, J.-T. Schantz, U. Gbureck, L. Rackwitz, U. Nöth, F. Jakob, M. Rudert, J. Groll, D.W. Hutmacher How smart do biomaterials need to be? A translational science and clinical point of view Adv. Drug Deliv. Rev., 65 (2013), pp. 581-603 ArticleDownload PDFView Record in ScopusGoogle Scholar [16] C. Ning, L. Zhou, G. Tan Fourth-generation biomedical materials Mater. Today, 19 (2016), pp. 2-3 ArticleDownload PDFView Record in ScopusGoogle Scholar [17] N. Sachot, M.A. Mateos-Timoneda, J.A. Planell, A.H. Velders, M. Lewandowska, E. Engel, O. Castaño Towards 4th generation biomaterials: a covalent hybrid polymer–ormoglass architecture Nanoscale, 7 (2015), pp. 15349-15361 View PDFCrossRefView Record in ScopusGoogle Scholar [18] S. Amukarimi, S. Ramakrishna, M. Mozafari, Smart biomaterials - a proposed definition and overview of the field, Curr. Opin. Biomed. Eng., DOI https://doi.org/10.1016/j.cobme.2021.100311(2021) 100311. Google Scholar [19] M.S. Anju, D.K. Raj, B.K. Madathil, N. Kasoju, P.R. Anil Kumar Intelligent biomaterials for tissue engineering and biomedical applications: current landscape and future prospects B. Bhaskar, P. Sreenivasa Rao, N. Kasoju, V. Nagarjuna, R.R. Baadhe (Eds.), Biomaterials in Tissue Engineering and Regenerative Medicine: From Basic Concepts to State of the Art Approaches, Springer Singapore, Singapore (2021), pp. 535-560 View PDFCrossRefView Record in ScopusGoogle Scholar [20] R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Böse, J. Koolen, T.F. Lüscher, N. Weissman, R. Waksman Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial Lancet, 369 (2007), pp. 1869-1875 ArticleDownload PDFView Record in ScopusGoogle Scholar [21] W. Wang, K.W.K. Yeung Bone grafts and biomaterials substitutes for bone defect repair: a review Bioact. Mater., 2 (2017), pp. 224-247 ArticleDownload PDFView Record in ScopusGoogle Scholar [22] H.T. Aro, A.J. Aho Clinical use of bone allografts Ann. Med., 25 (1993), pp. 403-412 View PDFCrossRefView Record in ScopusGoogle Scholar [23] K. Prasad, O. Bazaka, M. Chua, M. Rochford, L. Fedrick, J. Spoor, R. Symes, M. Tieppo, C. Collins, A. Cao, D. Markwell, K.K. Ostrikov, K. Bazaka Metallic biomaterials: current challenges and opportunities, materials (Basel, Switzerland) 10 (2017), p. 884 View PDFCrossRefView Record in ScopusGoogle Scholar [24] A.J. Salgado, O.P. Coutinho, R.L. Reis Bone tissue engineering: state of the art and future trends Macromol. Biosci., 4 (2004), pp. 743-765 View PDFView Record in ScopusGoogle Scholar [25] P.H. Grewe, D. Thomas, A. Machraoui, J. Barmeyer, K.M. Muller Coronary morphologic findings after stent implantation Am. J. Cardiol., 85 (2000), pp. 554-558 ArticleDownload PDFView Record in ScopusGoogle Scholar [26] D. Buccheri, D. Piraino, G. Andolina, B. Cortese Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment J. Thorac. Dis., 8 (2016), pp. E1150-E1162 View PDFCrossRefView Record in ScopusGoogle Scholar [27] B.J. Luthringer, F. Feyerabend, R. Willumeit-Romer Magnesium-based implants: a mini-review Magnes. Res., 27 (2014), pp. 142-154 View Record in ScopusGoogle Scholar [28] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia Ti based biomaterials, the ultimate choice for orthopaedic implants – a review Prog. Mater. Sci., 54 (2009), pp. 397-425 ArticleDownload PDFGoogle Scholar [29] I. Gotman Characteristics of metals used in implants J. Endourol., 11 (1997), pp. 383-389 View PDFCrossRefView Record in ScopusGoogle Scholar [30] M. Long, H.J. Rack Titanium alloys in total joint replacement—a materials science perspective Biomaterials, 19 (1998), pp. 1621-1639 ArticleDownload PDFGoogle Scholar [31] H.J. Rack, J.I. Qazi Titanium alloys for biomedical applications Mater. Sci. Eng. C, 26 (2006), pp. 1269-1277 ArticleDownload PDFView Record in ScopusGoogle Scholar [32] C.Y. Guo, J.P. Matinlinna, A.T.H. Tang Effects of surface charges on dental implants: past, present, and future Int. J. Biomater., 2012 (2012), p. 5 Google Scholar [33] L.S. Rhoads, W.T. Silkworth, M.L. Roppolo, M.S. Whittingham Cytotoxicity of nanostructured vanadium oxide on human cells in vitro Toxicol. in Vitro, 24 (2010), pp. 292-296 ArticleDownload PDFView Record in ScopusGoogle Scholar [34] S.V. Verstraeten, L. Aimo, P.I. Oteiza Aluminium and lead: molecular mechanisms of brain toxicity Arch. Toxicol., 82 (2008), pp. 789-802 View PDFCrossRefView Record in ScopusGoogle Scholar [35] D.V. Gunderov, A.V. Polyakov, I.P. Semenova, G.I. Raab, A.A. Churakova, E.I. Gimaltdinova, I. Sabirov, J. Segurado, V.D. Sitdikov, I.V. Alexandrov, N.A. Enikeev, R.Z. Valiev Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing Mater. Sci. Eng. A, 562 (2013), pp. 128-136 ArticleDownload PDFView Record in ScopusGoogle Scholar [36] Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok Accelerated growth of preosteoblastic cells on ultrafine grained titanium J. Biomed. Mater. Res. A, 90 (2009), pp. 1239-1242 View PDFCrossRefView Record in ScopusGoogle Scholar [37] E. Matykina, R. Arrabal, R.Z. Valiev, J.M. Molina-Aldareguia, P. Belov, I. Sabirov Electrochemical anisotropy of nanostructured titanium for biomedical implants Electrochim. Acta, 176 (2015), pp. 1221-1232 ArticleDownload PDFView Record in ScopusGoogle Scholar [38] M. Niinomi Recent metallic materials for biomedical applications Metall. Mater. Trans. A, 33 (2002), p. 477 View PDFCrossRefGoogle Scholar [39] Y. Li, H. Jahr, J. Zhou, A.A. Zadpoor Additively manufactured biodegradable porous metals Acta Biomater., 115 (2020), pp. 29-50 ArticleDownload PDFGoogle Scholar [40] F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen In vitro and in vivo corrosion measurements of magnesium alloys Biomaterials, 27 (2006), pp. 1013-1018 ArticleDownload PDFView Record in ScopusGoogle Scholar [41] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen In vivo corrosion of four magnesium alloys and the associated bone response Biomaterials, 26 (2005), pp. 3557-3563 ArticleDownload PDFView Record in ScopusGoogle Scholar [42] N.T. Kirkland, N. Birbilis Magnesium Biomaterials: Design, Testing, and Best Practice Springer (2014) Google Scholar [43] Y.F. Zheng, X.N. Gu, F. Witte Biodegradable metals Mater. Sci. Eng. R. Rep., 77 (2014), pp. 1-34 ArticleDownload PDFCrossRefGoogle Scholar [44] E.D. McBride Absorbable metal in bone surgery: a further report on the use of magnesium alloys J. Am. Med. Assoc., 111 (1938), pp. 2464-2467 View PDFCrossRefView Record in ScopusGoogle Scholar [45] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend Degradable biomaterials based on magnesium corrosion Curr. Opinion Solid State Mater. Sci., 12 (2008), pp. 63-72 ArticleDownload PDFView Record in ScopusGoogle Scholar [46] T. Okuma Magnesium and bone strength Nutrition, 17 (2001), pp. 679-680 ArticleDownload PDFView Record in ScopusGoogle Scholar [47] R.W. Li, N.T. Kirkland, J. Truong, J. Wang, P.N. Smith, N. Birbilis, D.R. Nisbet The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells J. Biomed. Mater. Res. A, 102 (2014), pp. 4346-4357 View PDFView Record in ScopusGoogle Scholar [48] A. Hartwig Role of magnesium in genomic stability Mutat. Res. Fundam. Mol. Mech. Mutagen., 475 (2001), pp. 113-121 ArticleDownload PDFGoogle Scholar [49] S. Kamrani, C. Fleck Biodegradable magnesium alloys as temporary orthopaedic implants: a review Biometals, 32 (2019), pp. 185-193 View PDFCrossRefView Record in ScopusGoogle Scholar [50] J. Walker, S. Shadanbaz, T.B. Woodfield, M.P. Staiger, G.J. Dias Magnesium biomaterials for orthopedic application: a review from a biological perspective J Biomed Mater Res B Appl Biomater, 102 (2014), pp. 1316-1331 View PDFCrossRefView Record in ScopusGoogle Scholar [51] M. Peron, J. Torgersen, F. Berto Mg and its alloys for biomedical applications: exploring corrosion and its interplay with mechanical failure Metals, 7 (2017), p. 252 View PDFCrossRefView Record in ScopusGoogle Scholar [52] G. Song, S. Song A possible biodegradable magnesium implant material Adv. Eng. Mater., 9 (2007), pp. 298-302 View PDFCrossRefView Record in ScopusGoogle Scholar [53] S. Gonzalez, E. Pellicer, S. Suriach, M.D. Bar, J. Sort Biodegradation and Mechanical Integrity of Magnesium and Magnesium Alloys Suitable for Implants InTech (2013) Google Scholar [54] L.J. Liu, M. Schlesinger Corrosion of magnesium and its alloys Corros. Sci., 51 (2009), pp. 1733-1737 ArticleDownload PDFView Record in ScopusGoogle Scholar [55] W.F. Ng, K.Y. Chiu, F.T. Cheng Effect of pH on the in vitro corrosion rate of magnesium degradable implant material Mater. Sci. Eng., C, 30 (2010), pp. 898-903 ArticleDownload PDFView Record in ScopusGoogle Scholar [56] B. Zberg, P. Uggowitzer, J. Löffler Towards a new generation of biodegradable implants: MgZnCa glasses without hydrogen evolution Nat. Mater., 8 (2009), pp. 887-891 View PDFCrossRefView Record in ScopusGoogle Scholar [57] M.-S. Song, R.-C. Zeng, Y.-F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X.-B. Chen Recent advances in biodegradation controls over Mg alloys for bone fracture management: a review J. Mater. Sci. Technol., 35 (2019), pp. 535-544 ArticleDownload PDFView Record in ScopusGoogle Scholar [58] Y.H. Bouchi, B.D. Gogas Biocorrodible metals for coronary revascularization: lessons from PROGRESS-AMS, BIOSOLVE-I, and BIOSOLVE-II Glob. Cardiol. Sci. Pract., 2015 (2015), p. 63 View PDFCrossRefGoogle Scholar [59] N.T. Kirkland, M.P. Staiger, D. Nisbet, C.H.J. Davies, N. Birbilis Performance-driven design of biocompatible Mg alloys JOM, 63 (2011), pp. 28-34 View PDFCrossRefView Record in ScopusGoogle Scholar [60] X.B. Chen, N.T. Kirkland, H. Krebs, M.A. Thiriat, S. Virtanen, D. Nisbet, N. Birbilis In vitro corrosion survey of Mg–xCa and Mg–3Zn–yCa alloys with and without calcium phosphate conversion coatings Corros. Eng. Sci. Technol., 47 (2013), pp. 365-373 Google Scholar [61] Z. Li, X. Gu, S. Lou, Y. Zheng The development of binary Mg-Ca alloys for use as biodegradable materials within bone Biomaterials, 29 (2008), pp. 1329-1344 ArticleDownload PDFView Record in ScopusGoogle Scholar [62] X.B. Chen, N. Birbilis, T.B. Abbott A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium Corros. Sci., 53 (2011), pp. 2263-2268 ArticleDownload PDFView Record in ScopusGoogle Scholar [63] X.B. Chen, N. Birbilis, T.B. Abbott Effect of [Ca2+] and [PO43-] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D Corros. Sci., 55 (2012), pp. 226-232 ArticleDownload PDFView Record in ScopusGoogle Scholar [64] R. Rojaee, M. Fathi, K. Raeissi Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating Mater. Sci. Eng., C, 33 (2013), pp. 3817-3825 ArticleDownload PDFView Record in ScopusGoogle Scholar [65] R.-C. Zeng, L.-y Cui, K. Jiang, R. Liu, B.-D. Zhao, Y.-F. Zheng In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(l-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants ACS Appl. Mater. Interfaces, 8 (2016), pp. 10014-10028 View PDFCrossRefView Record in ScopusGoogle Scholar [66] L.-Y. Cui, S.-D. Gao, P.-P. Li, R.-C. Zeng, F. Zhang, S.-Q. Li, E.-H. Han Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31 Corros. Sci., 118 (2017), pp. 84-95 ArticleDownload PDFView Record in ScopusGoogle Scholar [67] L. Zhang, J. Zhang, C.-F. Chen, Y. Gu Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications Corros. Sci., 91 (2015), pp. 7-28 ArticleDownload PDFCrossRefGoogle Scholar [68] E. Matykina, R. Arrabal, M. Mohedano, A. Pardo, M.C. Merino, E. Rivero Stability of plasma electrolytic oxidation coating on titanium in artificial saliva J. Mater. Sci. Mater. Med., 24 (2013), pp. 37-51 View PDFCrossRefView Record in ScopusGoogle Scholar [69] A. Santos-Coquillat, R. Gonzalez Tenorio, M. Mohedano, E. Martinez-Campos, R. Arrabal, E. Matykina Tailoring of antibacterial and osteogenic properties of Ti6Al4V by plasma electrolytic oxidation Appl. Surf. Sci., 454 (2018), pp. 157-172 ArticleDownload PDFView Record in ScopusGoogle Scholar [70] Y. Chen, Z. Xu, C. Smith, J. Sankar Recent advances on the development of magnesium alloys for biodegradable implants Acta Biomater., 10 (2014), pp. 4561-4573 ArticleDownload PDFGoogle Scholar [71] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. von Schnakenburg Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta Biomaterials, 27 (2006), pp. 4955-4962 ArticleDownload PDFView Record in ScopusGoogle Scholar [72] D. Vojtěch, J. Kubásek, J. Serák, P. Novák Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation Acta Biomater., 7 (2011), pp. 3515-3522 ArticleDownload PDFView Record in ScopusGoogle Scholar [73] H. Kabir, K. Munir, C. Wen, Y. Li Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives Bioact. Mater., 6 (2021), pp. 836-879 ArticleDownload PDFView Record in ScopusGoogle Scholar [74] G. Lütjering, J.C. Williams Technological aspects G. Lütjering, J.C. Williams (Eds.), Titanium, Springer, Berlin Heidelberg, Berlin, Heidelberg (2007), pp. 53-173 View Record in ScopusGoogle Scholar [75] I. Sabirov, N.A. Enikeev, M.Y. Murashkin, R.Z. Valiev Nanostructures in materials subjected to severe plastic deformation I. Sabirov, N.A. Enikeev, M.Y. Murashkin, R.Z. Valiev (Eds.), Bulk Nanostructured Materials with Multifunctional Properties, Springer International Publishing, Cham (2015), pp. 11-26 View PDFCrossRefView Record in ScopusGoogle Scholar [76] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe Laser additive manufacturing of metallic components: materials, processes and mechanisms Int. Mater. Rev., 57 (2013), pp. 133-164 Google Scholar [77] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann Additive manufacturing of metals Acta Mater., 117 (2016), pp. 371-392 ArticleDownload PDFView Record in ScopusGoogle Scholar [78] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang Additive manufacturing of metallic components – process, structure and properties Prog. Mater. Sci., 92 (2018), pp. 112-224 ArticleDownload PDFView Record in ScopusGoogle Scholar [79] S.Y. Liu, Y.C. Shin Additive manufacturing of Ti6Al4V alloy: a review Mater. Des., 164 (2019), p. 23 Google Scholar [80] R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru, M.P. Sealy Additive manufacturing of magnesium alloys Bioact. Mater., 5 (2020), pp. 44-54 ArticleDownload PDFView Record in ScopusGoogle Scholar [81] N.E. Putra, M.J. Mirzaali, I. Apachitei, J. Zhou, A.A. Zadpoor Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution Acta Biomater., 109 (2020), pp. 1-20 ArticleDownload PDFView Record in ScopusGoogle Scholar [82] F. Li, J. Li, H. Kou, G. Xu, T. Li, L. Zhou Anisotropic porous titanium with superior mechanical compatibility in the range of physiological strain rate for trabecular bone implant applications Mater. Lett., 137 (2014), pp. 424-427 ArticleDownload PDFView Record in ScopusGoogle Scholar [83] F. Li, J. Li, H. Kou, L. Zhou Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications Mater. Sci. Eng., C, 60 (2016), pp. 485-488 ArticleDownload PDFView Record in ScopusGoogle Scholar [84] F. Li, J. Li, T. Huang, H. Kou, L. Zhou Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications J. Mech. Behav. Biomed. Mater., 65 (2017), pp. 814-823 ArticleDownload PDFView Record in ScopusGoogle Scholar [85] R. Wauthle, S.M. Ahmadi, S. Amin Yavari, M. Mulier, A.A. Zadpoor, H. Weinans, J. Van Humbeeck, J.-P. Kruth, J. Schrooten Revival of pure titanium for dynamically loaded porous implants using additive manufacturing Mater. Sci. Eng., C, 54 (2015), pp. 94-100 ArticleDownload PDFView Record in ScopusGoogle Scholar [86] W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition Acta Mater., 85 (2015), pp. 74-84 ArticleDownload PDFView Record in ScopusGoogle Scholar [87] F.S.L. Bobbert, A.A. Zadpoor Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone J. Mater. Chem. B, 5 (2017), pp. 6175-6192 View PDFCrossRefView Record in ScopusGoogle Scholar [88] X.-Y. Zhang, G. Fang, S. Leeflang, A.A. Zadpoor, J. Zhou Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials Acta Biomater., 84 (2019), pp. 437-452 ArticleDownload PDFGoogle Scholar [89] I.A.J. van Hengel, N.E. Putra, M. Tierolf, M. Minneboo, A.C. Fluit, L.E. Fratila-Apachitei, I. Apachitei, A.A. Zadpoor Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria Acta Biomater., 107 (2020), pp. 325-337 Google Scholar [90] Z.G. Karaji, R. Hedayati, B. Pouran, I. Apachitei, A.A. Zadpoor Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials Mater. Sci. Eng. C Mater. Biol. Appl., 76 (2017), pp. 406-416 Google Scholar [91] L.E. Murr, K.N. Amato, S.J. Li, Y.X. Tian, X.Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, F. Medina, R.B. Wicker Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting J. Mech. Behav. Biomed. Mater., 4 (2011), pp. 1396-1411 ArticleDownload PDFView Record in ScopusGoogle Scholar [92] S.J. Li, L.E. Murr, X.Y. Cheng, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B. Wicker Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting Acta Mater., 60 (2012), pp. 793-802 ArticleDownload PDFView Record in ScopusGoogle Scholar [93] J. Sun, Y. Yang, D. Wang Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting Mater. Des., 49 (2013), pp. 545-552 ArticleDownload PDFView Record in ScopusGoogle Scholar [94] R. Yan, D. Luo, H. Huang, R. Li, N. Yu, C. Liu, M. Hu, Q. Rong Electron beam melting in the fabrication of three-dimensional mesh titanium mandibular prosthesis scaffold Sci. Rep., 8 (2018) Google Scholar [95] H.R. Cho, T.S. Roh, K.W. Shim, Y.O. Kim, D.H. Lew, I.S. Yun Skull reconstruction with custom made three-dimensional titanium implant Arch. Craniofac. Surg., 16 (2015), p. 11 ArticleDownload PDFGoogle Scholar [96] E.-K. Park, J.-Y. Lim, I.-S. Yun, J.-S. Kim, S.-H. Woo, D.-S. Kim, K.-W. Shim Cranioplasty enhanced by three-dimensional printing: custom-made three-dimensional-printed titanium implants for skull defects Arch. Craniofac. Surg., 27 (2016), pp. 943-949 View Record in ScopusGoogle Scholar [97] K.S. Hamid, S.G. Parekh, S.B. Adams Salvage of severe foot and ankle trauma with a 3D printed scaffold Foot Ankle Int., 37 (2016), pp. 433-439 View PDFCrossRefView Record in ScopusGoogle Scholar [98] Y. Qin, P. Wen, H. Guo, D. Xia, Y. Zheng, L. Jauer, R. Poprawe, M. Voshage, J.H. Schleifenbaum Additive manufacturing of biodegradable metals: current research status and future perspectives Acta Biomater., 98 (2019), pp. 3-22 ArticleDownload PDFGoogle Scholar [99] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui Additive manufacturing (3D printing): a review of materials, methods, applications and challenges Compos. Part B, 143 (2018), pp. 172-196 ArticleDownload PDFView Record in ScopusGoogle Scholar [100] I. Gibson, D.W. Rosen, B. Stucker Additive Manufacturing Technologies Springer (2014) Google Scholar [101] W.E. Frazier Metal additive manufacturing: a review J. Mater. Eng. Perform., 23 (2014), pp. 1917-1928 View PDFCrossRefView Record in ScopusGoogle Scholar [102] ASTM, F2792-12a Standard Terminology for Additive Manufacturing Technologies ASTM International, West Conshohocken (2012) Google Scholar [103] B. Wysocki, P. Maj, R. Sitek, J. Buhagiar, K.J. Kurzydlowski, W. Swieszkowski Laser and electron beam additive manufacturing methods of fabricating titanium bone implants Appl. Sci.-Basel, 7 (2017) Google Scholar [104] Y.L. Hao, S.J. Li, R. Yang Biomedical titanium alloys and their additive manufacturing Rare Metals, 35 (2016), pp. 661-671 View PDFCrossRefView Record in ScopusGoogle Scholar [105] T.S. Jang, D. Kim, G. Han, C.B. Yoon, H.D. Jung Powder based additive manufacturing for biomedical application of titanium and its alloys: a review Biomed. Eng. Lett., 10 (2020), pp. 505-516 View PDFCrossRefView Record in ScopusGoogle Scholar [106] H. Attar, S. Ehtemam-Haghighi, N. Soro, D. Kent, M.S. Dargusch Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: advantages, challenges and opinion for future development J. Alloys Compd., 827 (2020) Google Scholar [107] Z.A. Mierzejewska, R. Hudak, J. Sidun Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications Materials, 12 (2019) Google Scholar [108] N.A.W. Dai, L.C. Zhang, J.X. Zhang, X. Zhang, Q.Z. Ni, Y. Chen, M.L. Wu, C. Yang Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes Corros. Sci., 111 (2016), pp. 703-710 ArticleDownload PDFView Record in ScopusGoogle Scholar [109] G. Sander, J. Tan, P. Balan, O. Gharbi, D.R. Feenstra, L. Singer, S. Thomas, R.G. Kelly, J.R. Scully, N. Birbilis Corrosion of additively manufactured alloys: a review Corrosion, 74 (2018), pp. 1318-1350 View PDFCrossRefView Record in ScopusGoogle Scholar [110] G. Kasperovich, J. Hausmann Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting J. Mater. Process. Technol., 220 (2015), pp. 202-214 ArticleDownload PDFView Record in ScopusGoogle Scholar [111] J.J. Yang, H.C. Yu, J. Yin, M. Gao, Z.M. Wang, X.Y. Zeng Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting Mater. Des., 108 (2016), pp. 308-318 ArticleDownload PDFView Record in ScopusGoogle Scholar [112] Y. Zhai, H. Galarraga, D.A. Lados Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM Eng. Fail. Anal., 69 (2016), pp. 3-14 ArticleDownload PDFView Record in ScopusGoogle Scholar [113] D.I. Seo, J.B. Lee Influence of heat treatment parameters on the corrosion resistance of additively manufactured Ti-6Al-4V alloy J. Electrochem. Soc., 167 (2020) Google Scholar [114] A. Acquesta, T. Monetta As-built EBM and DMLS Ti-6Al-4V parts: topography-corrosion resistance relationship in a simulated body fluid Metals, 10 (2020) Google Scholar [115] S. Cecchel, D. Ferrario, G. Cornacchia, M. Gelfi Development of heat treatments for selective laser melting Ti6Al4V alloy: effect on microstructure, Mechanical properties, and corrosion resistance Adv. Eng. Mater., 22 (2020) Google Scholar [116] J. Fojt, V. Hybasek, Z. Kacenka, E. Pruchova Influence of surface finishing on corrosion behaviour of 3D printed TiAlV alloy Metals, 10 (2020) Google Scholar [117] L.Y. Chen, J.C. Huang, C.H. Lin, C.T. Pan, S.Y. Chen, T.L. Yang, D.Y. Lin, H.K. Lin, J.S.C. Jang Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting Mater. Sci. Eng. A, 682 (2017), pp. 389-395 ArticleDownload PDFView Record in ScopusGoogle Scholar [118] C.H. Qian, H.Z. Xu, Q. Zhong The influence of process parameters on corrosion behavior of Ti6Al4V alloy processed by selective laser melting J. Laser Appl., 32 (2020) Google Scholar [119] T.M. Chiu, M. Mahmoudi, W. Dai, A. Elwany, H. Liang, H. Castaneda Corrosion assessment of Ti-6Al-4V fabricated using laser powder-bed fusion additive manufacturing Electrochim. Acta, 279 (2018), pp. 143-151 ArticleDownload PDFView Record in ScopusGoogle Scholar [120] X.W. Yang, X.R. Dong, W.Y. Li, W.Y. Feng, Y.X. Xu Effect of solution and aging treatments on corrosion performance of laser solid formed Ti-6Al-4V alloy in a 3.5 wt.% NaCl solution J. Mater. Res. Technol., 9 (2020), pp. 1559-1568 ArticleDownload PDFView Record in ScopusGoogle Scholar [121] N.W. Dai, L.C. Zhang, J.X. Zhang, Q.M. Chen, M.L. Wu Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution Corros. Sci., 102 (2016), pp. 484-489 ArticleDownload PDFView Record in ScopusGoogle Scholar [122] Y. Xiao, N.W. Dai, Y. Chen, J.X. Zhang, S.W. Choi On the microstructure and corrosion behaviors of selective laser melted CP-Ti and Ti-6Al-4V alloy in Hank's artificial body fluid Mater. Res. Express, 6 (2019) Google Scholar [123] B. Zhao, H. Wang, N. Qiao, C. Wang, M. Hu Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo Mater. Sci. Eng., C, 70 (2017), pp. 832-841 ArticleDownload PDFView Record in ScopusGoogle Scholar [124] Y.Z. Xu, Y. Lu, K.L. Sundberg, J.Y. Liang, R.D. Sisson Effect of annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4V J. Mater. Eng. Perform., 26 (2017), pp. 2572-2582 View PDFCrossRefView Record in ScopusGoogle Scholar [125] X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting Corros. Sci., 145 (2018), pp. 80-89 ArticleDownload PDFView Record in ScopusGoogle Scholar [126] J.J. Yang, H.H. Yang, H.C. Yu, Z.M. Wang, X.Y. Zeng Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 48A (2017), pp. 3583-3593 View PDFCrossRefView Record in ScopusGoogle Scholar [127] Y. Li, H. Jahr, J. Zhou, A.A. Zadpoor Additively manufactured biodegradable porous metals Acta Biomater., 115 (2020), pp. 29-50 ArticleDownload PDFGoogle Scholar [128] S. Liu, H. Guo A review of SLMed magnesium alloys: processing, properties, alloying elements and postprocessing Metals, 10 (2020) Google Scholar [129] K. Wei, Z. Wang, X. Zeng Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg–Zn–Zr components Mater. Lett., 156 (2015), pp. 187-190 ArticleDownload PDFView Record in ScopusGoogle Scholar [130] M. Salehi, S. Maleksaeedi, H. Farnoush, M.L.S. Nai, G.K. Meenashisundaram, M. Gupta An investigation into interaction between magnesium powder and Ar gas: implications for selective laser melting of magnesium Powder Technol., 333 (2018), pp. 252-261 ArticleDownload PDFView Record in ScopusGoogle Scholar [131] J. Guo, Y. Zhou, C. Liu, Q. Wu, X. Chen, J. Lu Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency Materials, 9 (2016), p. 823 View PDFCrossRefView Record in ScopusGoogle Scholar [132] X. Wang, C. Chen, M. Zhang Effect of laser power on formability, microstructure and mechanical properties of selective laser melted Mg-Al-Zn alloy Rapid Prototyp. J., 26 (2020), pp. 841-854 View PDFCrossRefView Record in ScopusGoogle Scholar [133] J. Suchy, M. Horynova, L. Klakurkova, D. Palousek, D. Koutny, L. Celko Effect of laser parameters on processing of biodegradable magnesium alloy WE43 via selective laser melting method Materials (Basel), 13 (2020) Google Scholar [134] K. Wei, M. Gao, Z. Wang, X. Zeng Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy Mater. Sci. Eng. A, 611 (2014), pp. 212-222 ArticleDownload PDFView Record in ScopusGoogle Scholar [135] F. Bär, L. Berger, L. Jauer, G. Kurtuldu, R. Schäublin, J.H. Schleifenbaum, J.F. Löffler Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis Acta Biomater., 98 (2019), pp. 36-49 ArticleDownload PDFView Record in ScopusGoogle Scholar [136] C.C. Ng, M.M. Savalani, H.C. Man, I. Gibson Layer manufacturing of magnesium and its alloy structures for future applications Virtual and Physical Prototyping, 5 (2010), pp. 13-19 View PDFCrossRefView Record in ScopusGoogle Scholar [137] M. Savalani Monica, M. Pizarro Jorge Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium Rapid Prototyp. J., 22 (2016), pp. 115-122 Google Scholar [138] H. Hu, X. Liu, C. Ding Preparation and in vitro evaluation of nanostructured TiO2/TCP composite coating by plasma electrolytic oxidation J. Alloys Compd., 498 (2010), pp. 172-178 ArticleDownload PDFView Record in ScopusGoogle Scholar [139] C. Liu, M. Zhang, C. Chen Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing Mater. Sci. Eng. A, 703 (2017), pp. 359-371 ArticleDownload PDFGoogle Scholar [140] K. Wei, X. Zeng, Z. Wang, J. Deng, M. Liu, G. Huang, X. Yuan Selective laser melting of Mg-Zn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical property Mater. Sci. Eng. A, 756 (2019), pp. 226-236 ArticleDownload PDFView Record in ScopusGoogle Scholar [141] Y. Zhou, P. Wu, Y. Yang, D. Gao, P. Feng, C. Gao, H. Wu, Y. Liu, H. Bian, C. Shuai The microstructure, mechanical properties and degradation behavior of laser-melted Mg Sn alloys J. Alloys Compd., 687 (2016), pp. 109-114 ArticleDownload PDFView Record in ScopusGoogle Scholar [142] D. Zhang, D. Qiu, S. Zhu, M. Dargusch, D. StJohn, M. Easton Grain refinement in laser remelted Mg-3Nd-1Gd-0.5Zr alloy Scr. Mater., 183 (2020), pp. 12-16 ArticleDownload PDFCrossRefGoogle Scholar [143] Y. Yin, Q. Huang, L. Liang, X. Hu, T. Liu, Y. Weng, T. Long, Y. Liu, Q. Li, S. Zhou, H. Wu In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications J. Alloys Compd., 785 (2019), pp. 38-45 ArticleDownload PDFView Record in ScopusGoogle Scholar [144] Y. Yang, C. Lu, S. Peng, L. Shen, D. Wang, F. Qi, C. Shuai Laser additive manufacturing of Mg-based composite with improved degradation behaviour Virtual and Physical Prototyping, 15 (2020), pp. 278-293 View PDFCrossRefGoogle Scholar [145] K. Wei, X. Zeng, Z. Wang, J. Deng, M. Liu, G. Huang, X. Yuan Selective laser melting of Mg-Zn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical property Mater. Sci. Eng. A, 756 (2019), pp. 226-236 ArticleDownload PDFView Record in ScopusGoogle Scholar [146] X. Niu, H. Shen, J. Fu, J. Yan, Y. Wang Corrosion behaviour of laser powder bed fused bulk pure magnesium in hank’s solution Corros. Sci., 157 (2019), pp. 284-294 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar [147] A. Wichelhaus, J. Emmerich, T. Mittlmeier A case of implant failure in partial wrist fusion applying magnesium-based headless bone screws Case Rep. Orthop., 2016 (2016), Article 7049130 View Record in ScopusGoogle Scholar [148] C. Plaass, C. von Falck, S. Ettinger, L. Sonnow, F. Calderone, A. Weizbauer, J. Reifenrath, L. Claassen, H. Waizy, K. Daniilidis, C. Stukenborg-Colsman, H. Windhagen Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies – 3 year results of a randomized clinical trial J. Orthop. Sci., 23 (2018), pp. 321-327 ArticleDownload PDFView Record in ScopusGoogle Scholar [149] Y. Li, J. Zhou, P. Pavanram, M.A. Leeflang, L.I. Fockaert, B. Pouran, N. Tümer, K.U. Schröder, J.M.C. Mol, H. Weinans, H. Jahr, A.A. Zadpoor Additively manufactured biodegradable porous magnesium Acta Biomater., 67 (2018), pp. 378-392 ArticleDownload PDFView Record in ScopusGoogle Scholar [150] M. Li, F. Benn, T. Derra, N. Kroger, M. Zinser, R. Smeets, J.M. Molina-Aldareguia, A. Kopp, J. L.L Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications Mater. Sci. Eng. C Mater. Biol. Appl., 119 (2021), Article 111623 ArticleDownload PDFView Record in ScopusGoogle Scholar [151] Y. Li, H. Jahr, X.Y. Zhang, M.A. Leeflang, W. Li, B. Pouran, F.D. Tichelaar, H. Weinans, J. Zhou, A.A. Zadpoor Biodegradation-affected fatigue behavior of additively manufactured porous magnesium Addit. Manuf., 28 (2019), pp. 299-311 ArticleDownload PDFView Record in ScopusGoogle Scholar [152] N. Wegner, D. Kotzem, Y. Wessarges, N. Emminghaus, C. Hoff, J. Tenkamp, J. Hermsdorf, L. Overmeyer, F. Walther Corrosion and corrosion fatigue properties of additively manufactured magnesium alloy WE43 in comparison to titanium alloy Ti-6Al-4V in physiological environment Materials (Basel), 12 (2019) Google Scholar [153] A. Kopp, T. Derra, M. Muther, L. Jauer, J.H. Schleifenbaum, M. Voshage, O. Jung, R. Smeets, N. Kroger Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds Acta Biomater., 98 (2019), pp. 23-35 ArticleDownload PDFView Record in ScopusGoogle Scholar [154] M. Wolff, J. Schaper, M. Suckert, M. Dahms, F. Feyerabend, T. Ebel, R. Willumeit-Römer, T. Klassen Metal injection molding (MIM) of magnesium and its alloys Metals, 6 (2016), p. 118 View PDFCrossRefView Record in ScopusGoogle Scholar [155] M. Wolff, T. Mesterknecht, A. Bals, T. Ebel, R. Willumeit-Römer FFF of Mg-Alloys for Biomedical Application, Magnesium Technology 2019 Springer (2019), pp. 43-49 View PDFCrossRefView Record in ScopusGoogle Scholar [156] M. Salehi, S. Maleksaeedi, M.L.S. Nai, M. Gupta Towards additive manufacturing of magnesium alloys through integration of binderless 3D printing and rapid microwave sintering Addit. Manuf., 29 (2019) Google Scholar [157] M. Salehi, S. Maleksaeedi, M.A.B. Sapari, M.L.S. Nai, G.K. Meenashisundaram, M. Gupta Additive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing Mater. Des., 169 (2019) Google Scholar [158] E. Marin, M. Pressacco, S. Fusi, A. Lanzutti, S. Turchet, L. Fedrizzi Characterization of grade 2 commercially pure trabecular titanium structures Mater. Sci. Eng., C, 33 (2013), pp. 2648-2656 ArticleDownload PDFView Record in ScopusGoogle Scholar [159] A. Nouri, C. Wen 1 - Introduction to surface coating and modification for metallic biomaterials C. Wen (Ed.), Surface Coating and Modification of Metallic Biomaterials, Woodhead Publishing (2015), pp. 3-60 ArticleDownload PDFView Record in ScopusGoogle Scholar [160] R.I.M. Asri, W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, M.R. Raza Corrosion and surface modification on biocompatible metals: a review Mater. Sci. Eng., C, 77 (2017), pp. 1261-1274 ArticleDownload PDFView Record in ScopusGoogle Scholar [161] G. Manivasagam, D. Dhinasekaran, A. Rajamanickam Biomedical implants: corrosion and its prevention - a review Recent Patents on Corrosion Science, 2 (2010), pp. 40-54 View PDFCrossRefGoogle Scholar [162] A. Bekmurzayeva, W.J. Duncanson, H.S. Azevedo, D. Kanayeva Surface modification of stainless steel for biomedical applications: revisiting a century-old material Mater. Sci. Eng., C, 93 (2018), pp. 1073-1089 ArticleDownload PDFView Record in ScopusGoogle Scholar [163] B. Lohberger, N. Eck, D. Glaenzer, H. Lichtenegger, L. Ploszczanski, A. Leithner Cobalt chromium molybdenum surface modifications alter the osteogenic differentiation potential of human mesenchymal stem cells Materials, 13 (2020), p. 4292 View PDFCrossRefView Record in ScopusGoogle Scholar [164] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki TiO2 nanotubes: self-organized electrochemical formation, properties and applications Curr. Opinion Solid State Mater. Sci., 11 (2007), pp. 3-18 ArticleDownload PDFGoogle Scholar [165] I.S. Luke Yeo Modifications of dental implant surfaces at the microand nano-level for enhanced osseointegration Materials, 13 (2020), p. 89 View Record in ScopusGoogle Scholar [166] R. Imani, M. Pazoki, A. Iglič TiO2 nanostructured materials: synthesis and applications Handbook of Functional Nanomaterials (2013), pp. 309-335 View Record in ScopusGoogle Scholar [167] K. Von Der Mark, J. Park, S. Bauer, P. Schmuki Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix Cell Tissue Res., 339 (2010), pp. 131-153 Google Scholar [168] K. Subramani Titanium surface modification techniques for implant fabrication - from microscale to the nanoscale J. Biomimetics Biomater. Tissue Eng., 5 (2010), pp. 39-56 View Record in ScopusGoogle Scholar [169] L. Zhao, P.K. Chu, Y. Zhang, Z. Wu Antibacterial coatings on titanium implants J. Biomed. Mater. Res. B Appl. Biomater., 91 (2009), pp. 470-480 View PDFCrossRefView Record in ScopusGoogle Scholar [170] F. Wang, C. Li, S. Zhang, H. Liu Role of TiO2 nanotubes on the surface of implants in osseointegration in animal models: a systematic review and meta-analysis J. Prosthodont., 29 (2020), pp. 501-510 View PDFCrossRefView Record in ScopusGoogle Scholar [171] R. Ion, M.G. Necula, A. Mazare, V. Mitran, P. Neacsu, P. Schmuki, A. Cimpean Drug delivery systems based on titania nanotubes and active agents for enhanced osseointegration of bone implants Curr. Med. Chem., 27 (2020), pp. 854-902 View PDFCrossRefView Record in ScopusGoogle Scholar [172] K. Subramani, W. Ahmed, P. Pachauri Titanium nanotubes as carriers of osteogenic growth factors and antibacterial drugs for applications in dental implantology Emerging Nanotechnologies in Dentistry (Second edition) (2018), pp. 125-136 ArticleDownload PDFView Record in ScopusGoogle Scholar [173] E.P. Su, D.F. Justin, C.R. Pratt, V.K. Sarin, V.S. Nguyen, S. Oh, S. Jin Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces Bone Joint J., 100B (2018), pp. 9-16 View Record in ScopusGoogle Scholar [174] Q. Wang, J.Y. Huang, H.Q. Li, A.Z.J. Zhao, Y. Wang, K.Q. Zhang, H.T. Sun, Y.K. Lai Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications Int. J. Nanomedicine, 12 (2017), pp. 151-165 Google Scholar [175] A.R. Ribeiro, S. Gemini-Piperni, S.A. Alves, J.M. Granjeiro, L.A. Rocha Titanium dioxide nanoparticles and nanotubular surfaces: potential applications in nanomedicine Metal. Nanopart. Pharma. (2017), pp. 101-121 View PDFCrossRefView Record in ScopusGoogle Scholar [176] K. Gulati, S. Ivanovski Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges Expert Opin. Drug Deliv., 14 (2017), pp. 1009-1024 View PDFCrossRefView Record in ScopusGoogle Scholar [177] N.K. Awad, S.L. Edwards, Y.S. Morsi A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants Mater. Sci. Eng. C, 76 (2017), pp. 1401-1412 ArticleDownload PDFView Record in ScopusGoogle Scholar [178] H.C. Li, Z. Ma Research process of the effect of titanium dioxide nanotubes on peri-implant cells Chin. J. Tissue Eng. Res., 20 (2016), pp. 7899-7904 View Record in ScopusGoogle Scholar [179] D. Khudhair, A. Bhatti, Y. Li, H.A. Hamedani, H. Garmestani, P. Hodgson, S. Nahavandi Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations Mater. Sci. Eng. C, 59 (2016), pp. 1125-1142 ArticleDownload PDFView Record in ScopusGoogle Scholar [180] J. Huang, K. Zhang, Y. Lai Recent advances in synthesis, modification, and applications of TiO2 nanotube arrays by electrochemical anodization Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (2016), pp. 1379-1416 View PDFCrossRefView Record in ScopusGoogle Scholar [181] M. Kulkarni, A. Mazare, E. Gongadze, Š. Perutkova, V. Kralj-Iglic, I. Milošev, P. Schmuki, A. Iglič, M. Mozetič Titanium nanostructures for biomedical applications Nanotechnology, 26 (2015) Google Scholar [182] A.F. Cipriano, C. Miller, H. Liu Anodic growth and biomedical applications of TiO2 nanotubes J. Biomed. Nanotechnol., 10 (2014), pp. 2977-3003 View PDFCrossRefView Record in ScopusGoogle Scholar [183] S. Minagar, J. Wang, C.C. Berndt, E.P. Ivanova, C. Wen Cell response of anodized nanotubes on titanium and titanium alloys J. Biomed. Mater. Res. A, 101 A (2013), pp. 2726-2739 View PDFCrossRefView Record in ScopusGoogle Scholar [184] C.J. Frandsen, K.S. Brammer, S. Jin Variations to the nanotube surface for bone regeneration Int. J. Biomater., 2013 (2013) Google Scholar [185] K.S. Brammer, S. Oh, C.J. Frandsen, S. Jin TiO2 nanotube structures for enhanced cell and biological functionality JOM, 62 (2010), pp. 50-55 View PDFCrossRefView Record in ScopusGoogle Scholar [186] E. Matykina, A. Conde, J. de Damborenea, D.M.Y. Marero, M.A. Arenas Growth of TiO2-based nanotubes on Ti–6Al–4V alloy Electrochim. Acta, 56 (2011), pp. 9209-9218 ArticleDownload PDFView Record in ScopusGoogle Scholar [187] Y. Fu, A. Mo A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications Nanoscale Res. Lett., 13 (2018), p. 187 View PDFView Record in ScopusGoogle Scholar [188] C.-M. Han, E.-J. Lee, H.-E. Kim, Y.-H. Koh, J.-H. Jang Porous TiO2 films on Ti implants for controlled release of tetracycline-hydrochloride (TCH) Thin Solid Films, 519 (2011), pp. 8074-8076 ArticleDownload PDFView Record in ScopusGoogle Scholar [189] J.M. Macak, P. Schmuki Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes Electrochim. Acta, 52 (2006), pp. 1258-1264 ArticleDownload PDFView Record in ScopusGoogle Scholar [190] C. Pérez-Jorge, A. Conde, M.A. Arenas, R. Pérez-Tanoira, E. Matykina, J.J. De Damborenea, E. Gómez-Barrena, J. Esteban In vitro assessment of Staphylococcus epidermidis and Staphylococcus aureus adhesion on TiO2 nanotubes on Ti-6Al-4V alloy J. Biomed. Mater. Res. A, 100 A (2012), pp. 1696-1705 View PDFCrossRefView Record in ScopusGoogle Scholar [191] C. Pérez-Jorge Peremarch, R. Pérez Tanoira, M.A. Arenas, E. Matykina, A. Conde, J.J. de Damborenea, E. Gómez Barrena, J. Esteban Bacterial adherence to anodized titanium alloy J. Phys. Conf. Ser., 252 (2010), p. 012011 View PDFCrossRefView Record in ScopusGoogle Scholar [192] N.K. Allam, K. Shankarb, C.A. Grimes Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes J. Mater. Chem., 18 (2008), pp. 2341-2348 View PDFCrossRefView Record in ScopusGoogle Scholar [193] A. Roguska, A. Belcarz, P. Suchecki, M. Andrzejczuk, M. Lewandows Ka Antibacterial composite layers on Ti: role of ZnO nanoparticles Arch. Metall. Mater., 61 (2016), pp. 213-216 View PDFCrossRefView Record in ScopusGoogle Scholar [194] U.F. Gunputh, H. Le, K. Lawton, A. Besinis, C. Tredwin, R.D. Handy Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus Nanotoxicology, 14 (2020), pp. 97-110 View PDFCrossRefView Record in ScopusGoogle Scholar [195] C. Pan, T. Liu, Y. Yang, T. Liu, Z. Gong, Y. Wei, L. Quan, Z. Yang, S. Liu Incorporation of Sr2+ and Ag nanoparticles into TiO2 nanotubes to synergistically enhance osteogenic and antibacterial activities for bone repair Mater. Des., 196 (2020) Google Scholar [196] D. Ding, C. Ning, L. Huang, F. Jin, Y. Hao, S. Bai, Y. Li, M. Li, D. Mao Anodic fabrication and bioactivity of Nb-doped TiO2 nanotubes Nanotechnology, 20 (2009) Google Scholar [197] Z.J. Guo, P. Hu, Y.B. Li, B. Zhou, L.J. Wang, L. Zhang Fabrication of pH-sensitive membrane on Ag-loaded titania nanotube and its antibacterial properties Chinese J. Inorg. Chem., 30 (2014), pp. 1299-1304 View Record in ScopusGoogle Scholar [198] L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu, P.K. Chu Antibacterial nano-structured titania coating incorporated with silver nanoparticles Biomaterials, 32 (2011), pp. 5706-5716 ArticleDownload PDFView Record in ScopusGoogle Scholar [199] X. Chen, K. Cai, J. Fang, M. Lai, J. Li, Y. Hou, Z. Luo, Y. Hu, L. Tang Dual action antibacterial TiO2 nanotubes incorporated with silver nanoparticles and coated with a quaternary ammonium salt (QAS) Surf. Coat. Technol., 216 (2013), pp. 158-165 ArticleDownload PDFView Record in ScopusGoogle Scholar [200] S. Mei, H. Wang, W. Wang, L. Tong, H. Pan, C. Ruan, Q. Ma, M. Liu, H. Yang, L. Zhang, Y. Cheng, Y. Zhang, L. Zhao, P.K. Chu Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes Biomaterials, 35 (2014), pp. 4255-4265 ArticleDownload PDFView Record in ScopusGoogle Scholar [201] N. Esfandiari, A. Simchi, R. Bagheri Size tuning of Ag-decorated TiO2 nanotube arrays for improved bactericidal capacity of orthopedic implants J. Biomed. Mater. Res. A, 102 (2014), pp. 2625-2635 View PDFCrossRefView Record in ScopusGoogle Scholar [202] M.Y. Lan, S.L. Lee, H.H. Huang, P.F. Chen, C.P. Liu, S.W. Lee Diameter selective behavior of human nasal epithelial cell on Ag-coated TiO2 nanotubes Ceram. Int., 40 (2014), pp. 4745-4751 ArticleDownload PDFView Record in ScopusGoogle Scholar [203] B. Li, J. Hao, Y. Min, S. Xin, L. Guo, F. He, C. Liang, H. Wang, H. Li Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method Mater. Sci. Eng. C, 51 (2015), pp. 80-86 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar [204] L. Zhang, L. Zhang, Y. Yang, W. Zhang, H. Lv, F. Yang, C. Lin, P. Tang Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubes J. Biomed. Mater. Res. B Appl. Biomater., 104 (2016), pp. 1004-1012 View PDFCrossRefView Record in ScopusGoogle Scholar [205] A. Roguska, M. Pisarek, M. Andrzejczuk, M. Lewandowska, K.J. Kurzydlowski, M. Janik-Czachor Surface characterization of Ca-P/Ag/TiO2 nanotube composite layers on Ti intended for biomedical applications J. Biomed. Mater. Res. A, 100 A (2012), pp. 1954-1962 View PDFCrossRefView Record in ScopusGoogle Scholar [206] Y. Bai, Y. Bai, C. Wang, J. Gao, W. Ma Fabrication and characterization of gold nanoparticle-loaded TiO2 nanotube arrays for medical implants J. Mater. Sci. Mater. Med., 27 (2016), pp. 1-11 Google Scholar [207] M.P. Neupane, I.S. Park, T.S. Bae, H.K. Yi, M. Uo, F. Watari, M.H. Lee Titania nanotubes supported gelatin stabilized gold nanoparticles for medical implants J. Mater. Chem., 21 (2011), pp. 12078-12082 View PDFCrossRefView Record in ScopusGoogle Scholar [208] T. Yang, S. Qian, Y. Qiao, X. Liu Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles Colloids Surf. B: Biointerfaces, 145 (2016), pp. 597-606 ArticleDownload PDFView Record in ScopusGoogle Scholar [209] J. Rosenbaum, D.L. Versace, S. Abbad-Andallousi, R. Pires, C. Azevedo, P. Cénédese, P. Dubot Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants Biomater. Sci., 5 (2017), pp. 455-462 View Record in ScopusGoogle Scholar [210] K. Indira, U. Kamachi Mudali, N. Rajendran In vitro bioactivity and corrosion resistance of Zr incorporated TiO 2 nanotube arrays for orthopaedic applications Appl. Surf. Sci., 316 (2014), pp. 264-275 ArticleDownload PDFView Record in ScopusGoogle Scholar [211] K. Indira, U.K. Mudali, N. Rajendran In-vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications J. Biomater. Appl., 29 (2014), pp. 113-129 View PDFCrossRefView Record in ScopusGoogle Scholar [212] W. Liu, S. Chen, Z. Zhang, T.J. Webster Antibacterial properties of TiO2 nanotubes incorporated with ZnO Proceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC (2014) Google Scholar [213] B. Chen, Y. You, A. Ma, Y. Song, J. Jiao, L. Song, E. Shi, X. Zhong, Y. Li, C. Li Zn-incorporated TiO2 nanotube surface improves osteogenesis ability through influencing immunomodulatory function of macrophages Int. J. Nanomedicine, 15 (2020), pp. 2095-2118 View PDFCrossRefView Record in ScopusGoogle Scholar [214] X. Qiao, J. Yang, Y. Shang, S. Deng, S. Yao, Z. Wang, Y. Guo, C. Peng Magnesium-doped nanostructured titanium surface modulates macrophage-mediated inflammatory response for ameliorative osseointegration Int. J. Nanomedicine, 15 (2020), pp. 7185-7198 View PDFCrossRefView Record in ScopusGoogle Scholar [215] L. Bai, R. Wu, Y. Wang, X. Wang, X. Zhang, X. Huang, L. Qin, R. Hang, L. Zhao, B. Tang Osteogenic and angiogenic activities of silicon-incorporated TiO2 nanotube arrays J. Mater. Chem. B, 4 (2016), pp. 5548-5559 View PDFCrossRefView Record in ScopusGoogle Scholar [216] X. Zhao, T. Wang, S. Qian, X. Liu, J. Sun, B. Li Silicon-doped titanium dioxide nanotubes promoted bone formation on titanium implants Int. J. Mol. Sci., 17 (2016) Google Scholar [217] G. Li, Q.M. Zhao, L. Cheng, H.L. Yang Selenium-doped titanium dioxide nanotubes show promise as corrosion-resistant bone-implant material Mater. Perform., 55 (2016), pp. 32-35 View Record in ScopusGoogle Scholar [218] Y.H. Jeong, E.J. Kim, W.A. Brantley, H.C. Choe Morphology of hydroxyapatite nanoparticles in coatings on nanotube-formed Ti-Nb-Zr alloys for dental implants Vacuum, 107 (2014), pp. 297-303 ArticleDownload PDFView Record in ScopusGoogle Scholar [219] S. Swain, T.R. Rautray, R. Narayanan Sr, Mg, and Co substituted hydroxyapatite coating on TiO2 nanotubes formed by electrochemical methods Adv. Sci. Lett., 22 (2016), pp. 482-487 View PDFCrossRefView Record in ScopusGoogle Scholar [220] S.A. Alves, S.B. Patel, C. Sukotjo, M.T. Mathew, P.N. Filho, J.P. Celis, L.A. Rocha, T. Shokuhfar Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: a promising strategy for an efficient biofunctional implant surface Appl. Surf. Sci., 399 (2017), pp. 682-701 ArticleDownload PDFView Record in ScopusGoogle Scholar [221] H. Liu, X. Huang, H. Yu, X. Yang, X. Zhang, R. Hang, B. Tang A cytocompatible micro/nano-textured surface with Si-doped titania mesoporous arrays fabricated by a one-step anodization Mater. Sci. Eng. C, 73 (2017), pp. 120-129 ArticleDownload PDFGoogle Scholar [222] X. Zhang, X. Zhang, B. Wang, J. Lan, H. Yang, Z. Wang, X. Chang, S. Wang, X. Ma, H. Qiao, H. Lin, S. Han, Y. Huang Synergistic effects of lanthanum and strontium to enhance the osteogenic activity of TiO2 nanotube biological interface Ceram. Int., 46 (2020), pp. 13969-13979 ArticleDownload PDFView Record in ScopusGoogle Scholar [223] W. Liu, P. Su, S. Chen, N. Wang, J. Wang, Y. Liu, Y. Ma, H. Li, Z. Zhang, T.J. Webster Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO2 nanoparticle-decorated TiO2 nanotubes Nanomedicine, 10 (2015), pp. 713-723 View PDFCrossRefView Record in ScopusGoogle Scholar [224] W. Liu, P. Su, A. Gonzales, S. Chen, N. Wang, J. Wang, H. Li, Z. Zhang, T.J. Webster Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling Int. J. Nanomedicine, 10 (2015), pp. 1997-2019 View PDFView Record in ScopusGoogle Scholar [225] A. Roguska, A. Belcarz, M. Pisarek, G. Ginalska, M. Lewandowska TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy Mater. Sci. Eng. C, 51 (2015), pp. 158-166 ArticleDownload PDFView Record in ScopusGoogle Scholar [226] Y. Wang, D. Zhang, C. Wen, Y. Li Processing and characterization of SrTiO3-TiO2 nanoparticle-nanotube heterostructures on titanium for biomedical applications ACS Appl. Mater. Interfaces, 7 (2015), pp. 16018-16026 View PDFCrossRefView Record in ScopusGoogle Scholar [227] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy Surf. Coat. Technol., 130 (2000), pp. 195-206 ArticleDownload PDFView Record in ScopusGoogle Scholar [228] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey Plasma electrolysis for surface engineering Surf. Coat. Technol., 122 (1999), pp. 73-93 ArticleDownload PDFGoogle Scholar [229] E. Matykina, I. Garcia, R. Arrabal, M. Mohedano, B. Mingo, J. Sancho, M.C. Merino, A. Pardo Role of PEO coatings in long-term biodegradation of a Mg alloy Appl. Surf. Sci., 389 (2016), pp. 810-823 ArticleDownload PDFView Record in ScopusGoogle Scholar [230] P. Pesode, S. Barve, Surface modification of titanium and titanium alloy by plasma electrolytic oxidation process for biomedical applications: a review, Mater. Today: Proceedings, DOI https://doi.org/10.1016/j.matpr.2020.11.294(2020). Google Scholar [231] Z. Huan, L.E. Fratila-Apachitei, I. Apachitei, J. Duszczyk Porous TiO₂ surface formed on nickel-titanium alloy by plasma electrolytic oxidation: a prospective polymer-free reservoir for drug eluting stent applications J Biomed Mater Res B Appl Biomater, 101 (2013), pp. 700-708 View PDFCrossRefView Record in ScopusGoogle Scholar [232] T.S. Narayanan, I.S. Park, M.H. Lee Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges Prog. Mater. Sci., 60 (2014), pp. 1-71 View Record in ScopusGoogle Scholar [233] C. Blawert, P.B. Srinivasan Plasma electrolytic oxidation treatment of magnesium alloys Surface Engineering of Light Alloys, Elsevier (2010), pp. 155-183 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar [234] O. Galvis, D. Quintero, J. Castaño, H. Liu, G. Thompson, P. Skeldon, F. Echeverría Formation of grooved and porous coatings on titanium by plasma electrolytic oxidation in H2SO4/H3PO4 electrolytes and effects of coating morphology on adhesive bonding Surf. Coat. Technol., 269 (2015), pp. 238-249 ArticleDownload PDFView Record in ScopusGoogle Scholar [235] A. Kazek-Kęsik, K. Kuna, W. Dec, M. Widziołek, G. Tylko, A.M. Osyczka, W. Simka In vitro bioactivity investigations of Ti-15 M o alloy after electrochemical surface modification J. Biomed. Mater. Res. B Appl. Biomater., 104 (2016), pp. 903-913 View PDFCrossRefView Record in ScopusGoogle Scholar [236] P. Whiteside, E. Matykina, J.E. Gough, P. Skeldon, G.E. Thompson In vitro evaluation of cell proliferation and collagen synthesis on titanium following plasma electrolytic oxidation J. Biomed. Mater. Res. A, 94 (2010), pp. 38-46 View PDFCrossRefView Record in ScopusGoogle Scholar [237] A. Santos-Coquillat, M. Esteban-Lucia, E. Martinez-Campos, M. Mohedano, R. Arrabal, C. Blawert, M.L. Zheludkevich, E. Matykina PEO coatings design for Mg-Ca alloy for cardiovascular stent and bone regeneration applications Mater. Sci. Eng., C, 105 (2019), Article 110026 ArticleDownload PDFView Record in ScopusGoogle Scholar [238] A. Santos-Coquillat, E. Martínez-Campos, M. Mohedano, R. Martínez-Corriá, V. Ramos, R. Arrabal, E. Matykina In vitro and in vivo evaluation of PEO-modified titanium for bone implant applications Surf. Coat. Technol., 347 (2018), pp. 358-368 ArticleDownload PDFView Record in ScopusGoogle Scholar [239] A. Fattah-alhosseini, M. Molaei, N. Attarzadeh, K. Babaei, F. Attarzadeh On the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: a review Ceram. Int., 46 (2020), pp. 20587-20607 ArticleDownload PDFView Record in ScopusGoogle Scholar [240] M. Kaseem, S. Fatimah, N. Nashrah, Y.G. Ko Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance Prog. Mater. Sci., 117 (2021), Article 100735 ArticleDownload PDFView Record in ScopusGoogle Scholar [241] P.-O. Östman, M. Hellman, L. Sennerby, Ten Years Later Results from a prospective single-centre clinical study on 121 oxidized (TiUniteTM) Brånemark implants in 46 patients Clin. Implant. Dent. Relat. Res., 14 (2012), pp. 852-860 View PDFCrossRefView Record in ScopusGoogle Scholar [242] T. Albrektsson, A. Wennerberg On osseointegration in relation to implant surfaces Clin. Implant. Dent. Relat. Res., 21 (2019), pp. 4-7 View PDFCrossRefView Record in ScopusGoogle Scholar [243] O. Banakh, L. Snizhko, T. Journot, P.-A. Gay, C. Csefalvay, O. Kalinichenko, O. Girin, L. Marger, S. Durual The influence of the electrolyte nature and PEO process parameters on properties of anodized Ti-15Mo alloy intended for biomedical applications Metals, 8 (2018), p. 370 View PDFCrossRefView Record in ScopusGoogle Scholar [244] J.M. Cordeiro, B.E. Nagay, A.L.R. Ribeiro, N.C. da Cruz, E.C. Rangel, L.M.G. Fais, L.G. Vaz, V.A.R. Barão Functionalization of an experimental Ti-Nb-Zr-Ta alloy with a biomimetic coating produced by plasma electrolytic oxidation J. Alloys Compd., 770 (2019), pp. 1038-1048 ArticleDownload PDFView Record in ScopusGoogle Scholar [245] L. Xu, C. Wu, X. Lei, K. Zhang, C. Liu, J. Ding, X. Shi Effect of oxidation time on cytocompatibility of ultrafine-grained pure Ti in micro-arc oxidation treatment Surf. Coat. Technol., 342 (2018), pp. 12-22 ArticleDownload PDFCrossRefGoogle Scholar [246] Z.Q. Yao, Y. Ivanisenko, T. Diemant, A. Caron, A. Chuvilin, J.Z. Jiang, R.Z. Valiev, M. Qi, H.J. Fecht Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation Acta Biomater., 6 (2010), pp. 2816-2825 ArticleDownload PDFView Record in ScopusGoogle Scholar [247] I.A.J. van Hengel, M. Riool, L.E. Fratila-Apachitei, J. Witte-Bouma, E. Farrell, A.A. Zadpoor, S.A.J. Zaat, I. Apachitei Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation Data Brief, 13 (2017), pp. 385-389 Google Scholar [248] V. Malinovschi, A. Marin, V. Andrei, E. Coaca, C.N. Mihailescu, C.P. Lungu, C. Radulescu, I.D. Dulama Obtaining and characterization of PEO layers prepared on CP-Ti in sodium dihydrogen phosphate dihydrate acidic electrolyte solution Surf. Coat. Technol., 375 (2019), pp. 621-636 ArticleDownload PDFView Record in ScopusGoogle Scholar [249] A.R. Rafieerad, M.R. Ashra, R. Mahmoodian, A.R. Bushroa Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: a review paper Mater. Sci. Eng., C, 57 (2015), pp. 397-413 ArticleDownload PDFView Record in ScopusGoogle Scholar [250] F. Songur, B. Dikici, M. Niinomi, E. Arslan The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6Zr alloys: the combined effect of duty cycle and the deposition frequency Surf. Coat. Technol., 374 (2019), pp. 345-354 ArticleDownload PDFView Record in ScopusGoogle Scholar [251] M. Qadir, Y. Li, K. Munir, C. Wen Calcium phosphate-based composite coating by micro-arc oxidation (MAO) for biomedical application: a review Crit. Rev. Solid State Mater. Sci., 43 (2018), pp. 392-416 View PDFCrossRefView Record in ScopusGoogle Scholar [252] S. Abbasi, F. Golestani-Fard, S.M.M. Mirhosseini, A. Ziaee, M. Mehrjoo Effect of electrolyte concentration on microstructure and properties of micro arc oxidized hydroxyapatite/titania nanostructured composite Mater. Sci. Eng., C, 33 (2013), pp. 2555-2561 ArticleDownload PDFView Record in ScopusGoogle Scholar [253] S. Abbasi, F. Golestani-Fard, H.R. Rezaie, S.M.M. Mirhosseini, A. Ziaee MAO-derived hydroxyapatite–TiO2 nanostructured bio-ceramic films on titanium Mater. Res. Bull., 47 (2012), pp. 3407-3412 ArticleDownload PDFView Record in ScopusGoogle Scholar [254] M.B. Kannan Electrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: a review Surf. Coat. Technol., 301 (2016), pp. 36-41 ArticleDownload PDFView Record in ScopusGoogle Scholar [255] D. Dzhurinskiy, Y. Gao, W.K. Yeung, E. Strumban, V. Leshchinsky, P.J. Chu, A. Matthews, A. Yerokhin, R.G. Maev Characterization and corrosion evaluation of TiO2:n-HA coatings on titanium alloy formed by plasma electrolytic oxidation Surf. Coat. Technol., 269 (2015), pp. 258-265 ArticleDownload PDFView Record in ScopusGoogle Scholar [256] W.K. Yeung, I.V. Sukhorukova, D.V. Shtansky, E.A. Levashov, I.Y. Zhitnyak, N.A. Gloushankova, P.V.
Collections