Publication:
Probing the atmosphere of WASP-69 b with low- and high-resolution transmission spectroscopy

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2021-12-15
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
EDP Sciencies
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Consideration of both low- and high-resolution transmission spectroscopy is key for obtaining a comprehensive picture of exoplanet atmospheres. In studies of transmission spectra, the continuum information is well established with low-resolution spectra, while the shapes of individual lines are best constrained with high-resolution observations. In this work, we aim to merge high- with low-resolution transmission spectroscopy to place tighter constraints on physical parameters of the atmospheres. We present the analysis of three primary transits of WASP-69 b in the visible (VIS) channel of the CARMENES instrument and perform a combined low- and high-resolution analysis using additional data from HARPS-N, OSIRIS/GTC, and WFC3/HST already available in the literature. We investigate the Na I D-1 and D-2 doublet, H alpha, the Ca II infra-red triplet (IRT), and K I lambda 7699 angstrom lines, and we monitor the stellar photometric variability by performing long-term photometric observations with the STELLA telescope. During the first CARMENES observing night, we detected the planet Na I D-2 and D-1 lines at similar to 7 and similar to 3 sigma significance levels, respectively. We measured a D-2/D-1 intensity ratio of 2.5 +/- 0.7, which is in agreement with previous HARPS-N observations. Our modelling of WFC3 and OSIRIS data suggests strong Rayleigh scattering, solar to super-solar water abundance, and a highly muted Na feature in the atmosphere of this planet, in agreement with previous investigations of this target. We use the continuum information retrieved from the low-resolution spectroscopy as a prior to break the degeneracy between the Na abundance, reference pressure, and thermosphere temperature for the high-resolution spectroscopic analysis. We fit the Na I D-1 and D-2 lines individually and find that the posterior distributions of the model parameters agree with each other within 1 sigma. Our results suggest that local thermodynamic equilibrium processes can explain the observed D-2/D-1 ratio because the presence of haze opacity mutes the absorption features.
Description
Ā© ESO 2021, ArtĆ­culo firmado por 34 autores. We thank G. Zhou, J. Seidel and A. Wyttenbach for a fruitful scientific discussion. CARMENES is an instrument at the Centro AstronĆ³mico Hispano-AlemĆ”n (CAHA) at Calar Alto (AlmerĆ­a, Spain), operated jointly by the Junta de AndalucĆ­a and the Instituto de AstrofĆ­sica de AndalucĆ­a (CSIC). CARMENES was funded by the Max-Planck-Gesellschaft (MPG), the Consejo Superior de Investigaciones CientĆ­ficas (CSIC), the Ministerio de EconomĆ­a y Competitividad (MINECO) and the European Regional Development Fund (ERDF) through projects FICTS-2011-02, ICTS-2017-07-CAHA-4, and CAHA16-CE-3978, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de AstrofĆ­sica de AndalucĆ­a, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Institut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de AstrofĆ­sica de Canarias, Hamburger Sternwarte, Centro de AstrobiologĆ­a and Centro AstronĆ³mico Hispano-AlemĆ”n), with additional contributions by the MINECO, the Deutsche Forschungsgemeinschaft (DFG) through the Major Research Instrumentation Programme and Research Unit FOR2544 "Blue Planets around Red Stars", the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, and by the Junta de AndalucĆ­a. We acknowledge financial support from the DFG through priority program SPP 1992 "Exploring the Diversity of Extrasolar Planets" (KH 472/3-1) and through grant CA 1795/3, NASA through ROSES-2016/Exoplanets Research Program (NNX17AC03G), the Klaus Tschira Stiftung, the European Research Council under the European Union's Horizon 2020 research and innovation program (694513), the Agencia Estatal de InvestigaciĆ³n of the Ministerio de Ciencia, InnovaciĆ³n y Universidades and the ERDF through projects PID2019-109522GB-C5[1:4] and the Centre of Excellence "Severo Ochoa" and "MarĆ­a de Maeztu" awards to the Instituto de AstrofĆ­sica de Canarias (SEV-2015-0548), Instituto de AstrofĆ­sica de AndalucĆ­a (SEV-2017-0709), and Centro de AstrobiologĆ­a (MDM-2017-0737), and the Generalitat de Catalunya/CERCA programme.
UCM subjects
Unesco subjects
Keywords
Citation
Collections