Publication:
Some properties of differentiable p-adic functions

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper, using the tools from the lineability theory, we distinguish certain subsets of p-adic differentiable functions. Specifically, we show that the following sets of functions are large enough to contain an infinite dimensional algebraic structure: (i) continuously differentiable but not strictly differentiable functions, (ii) strictly differentiable functions of order r but not strictly differentiable of order r + 1, (iii) strictly differentiable functions with zero derivative that are not Lipschitzian of any order α > 1, (iv) differentiable functions with unbounded derivative, and (v) continuous functions that are differentiable on a full set with respect to the Haar measure but not differentiable on its complement having cardinality the continuum.
Description
Keywords
Citation
1] G. Ara´ujo, L. Bernal-Gonz´alez, G. A. Mu˜noz-Fern´andez, and J. B. Seoane-Sep´ulveda, Line�ability in sequence and function spaces, Studia Math. 237 (2017), no. 2, 119–136. [2] R. M. Aron, L. Bernal Gonz´alez, D. M. Pellegrino, and J. B. Seoane Sep´ulveda, Lineability: the search for linearity in mathematics, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016. [3] R. M. Aron, V. I. Gurariy, and J. B. Seoane-Sep´ulveda, Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795–803. [4] R. M. Aron, D. P´erez-Garc´ıa, and J. B. Seoane-Sep´ulveda, Algebrability of the set of non�convergent Fourier series, Studia Math. 175 (2006), no. 1, 83–90. [5] M. Balcerzak, A. Bartoszewicz, and M. Filipczak, Nonseparable spaceability and strong al�gebrability of sets of continuous singular functions, J. Math. Anal. Appl. 407 (2013), no. 2, 263–269 [6] A. Bartoszewicz, M. Bienias, M. Filipczak, and S. G l¸ab, Strong c-algebrability of strong Sierpi´nski-Zygmund, smooth nowhere analytic and other sets of functions, J. Math. Anal.Appl. 412 (2014), no. 2, 620–630. [7] A. Bartoszewicz, M. Bienias, and S. G l¸ab, Independent Bernstein sets and algebraic con�structions, J. Math. Anal. Appl. 393 (2012), no. 1, 138–143. [8] A. Bartoszewicz, M. Filipczak, and M. Terepeta, Lineability of Linearly Sensitive Functions, Results Math. 75 (2020), no. 2, Paper No. 64. [9] A. Bartoszewicz and S. G l¸ab, Strong algebrability of sets of sequences and functions, Proc. Amer. Math. Soc. 141 (2013), no. 3, 827–835. [10] F. Bayart, Linearity of sets of strange functions, Michigan Math. J. 53 (2005), no. 2, 291–303. [11] F. Bayart and L. Quarta, Algebras in sets of queer functions, Israel J. Math. 158 (2007),285–296. [12] L. Bernal-Gonz´alez, A. Bonilla, J. L´opez-Salazar, and J. B. Seoane-Sep´ulveda, Nowhere h¨olderian functions and Pringsheim singular functions in the disc algebra, Monatsh. Math. 188 (2019), no. 4, 591–609. [13] L. Bernal-Gonz´alez, H. J. Cabana-M´endez, G. A. Mu˜noz-Fern´andez, and J. B. Seoane�Sep´ulveda, On the dimension of subspaces of continuous functions attaining their maximum finitely many times, Trans. Amer. Math. Soc. 373 (2020), no. 5, 3063–3083. [14] L. Bernal-González, G. A. Muñóz-Fernández, D. L. Rodrí guez-Vidanes, and J. B. Seoane�Sep´ulveda, Algebraic genericity within the class of sup-measurable functions, J. Math. Anal. Appl. 483 (2020), no. 1, 123–576. [15] L. Bernal-Gonz´alez and M. Ordóñez Cabrera, Lineability criteria, with applications, J. Funct. Anal. 266 (2014), no. 6, 3997–4025. [16] L. Bernal-González, D. Pellegrino, and J. B. Seoane-Sepúlveda, Linear subsets of nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 1, 71–130. [17] N. Biehler, V. Nestoridis, and A. Stavrianidi, Algebraic genericity of frequently universal harmonic functions on trees, J. Math. Anal. Appl. 489 (2020), no. 1, 124132, 11. [18] P. Billingsley, Probability and measure, 3rd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. [19] M. C. Calder´on-Moreno, P. J. Gerlach-Mena, and J. A. Prado-Bassas, Lineability and modes of convergence, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM 114 (2020), no. 1, Paper No. 18, 12. [20] K. C. Ciesielski and J. B. Seoane-Sepúlveda, Differentiability versus continuity: restriction and extension theorems and monstrous examples, Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 2, 211–260. [21] P. H. Enflo, V. I. Gurariy, and J. B. Seoane-Sep´ulveda, Some results and open questions on spaceability in function spaces, Trans. Amer. Math. Soc. 366 (2014), no. 2, 611–625. [22] J. Fernández-Sánchez, S. Maghsoudi, D. L. Rodríguez-Vidanes, and J. B. Seoane-Sepúlveda, Classical vs. non-Archimedean analysis. An approach via algebraic genericity, Preprint (2021). [23] J. Fernández-Sánchez, M. E. Martínez-Gómez, and J. B. Seoane-Sepúlveda, Algebraic gener�icity and special properties within sequence spaces and series, Preprint (2019). [24] G. Fichtenholz and L. Kantorovich, Sur les op´erations dans l’espace des functions bornées, Studia Math. 5 (1934), 69-98. [25] G. B. Folland, A course in abstract harmonic analysis, 2nd ed., Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2016. [26] F. J. García-Pacheco, N. Palmberg, and J. B. Seoane-Sep´ulveda, Lineability and algebrability of pathological phenomena in analysis, J. Math. Anal. Appl. 326 (2007), no. 2, 929–939. [27] F. Q. Gouvˆea, p-adic numbers, An introduction, 2nd ed., Universitext, Springer-Verlag, Berlin, 1997. [28] V. I. Gurariı, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk SSSR 167 (1966), 971–973 (Russian). [29] F. Hausdorff, Uber zwei Satze von G. Fichtenholz und L. Kantorovich, Studia Math. 6 (1936), 18–19 (German). [30] P. Jim´enez-Rodr´ıguez, G. A. Muñóz-Fernández, and J. B. Seoane-Sepúlveda, Non-Lipschitz functions with bounded gradient and related problems, Linear Algebra Appl. 437 (2012), no. 4, 1174–1181. [31] S. Katok, p-adic analysis compared with real, Student Mathematical Library, vol. 37, Ameri�can Mathematical Society, Providence, RI; Mathematics Advanced Study Semesters, Univer�sity Park, PA, 2007. [32] J. Khodabendehlou, S. Maghsoudi, and J. B. Seoane-Sepúlveda, Algebraic genericity and summability within the non-Archimedean setting, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 115 (2021), no. 21. [33] , Lineability and algebrability within p-adic function spaces, Bull. Belg. Math. Soc. Simon Stevin 27 (2020), 711–729. [34] , Lineability, continuity, and antiderivatives in the non-Archimedean setting, Canad.Math. Bull. 64 (2021), no. 3, 638–650. [35] B. Levine and D. Milman, On linear sets in space C consisting of functions of bounded variation, Comm. Inst. Sci. Math. M´ec. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4) 16 (1940), 102–105 (Russian, with English summary). [36] K. Mahler, p-adic numbers and their functions, Second, Cambridge Tracts in Mathematics, vol. 76, Cambridge University Press, Cambridge-New York, 1981. [37] , An interpolation series for continuous functions of a p-adic variable, J. Reine Angew. Math. 199 (1958), 23–34. [38] T. K. S. Moothathu, Lineability in the sets of Baire and continuous real functions, Topology Appl. 235 (2018), 83–91. [39] T. Natkaniec, On lineability of families of non-measurable functions of two variable, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM 115 (2021), no. 1, Paper No. 33, 10. [40] A. M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics, vol. 198, Springer�Verlag, New York, 2000. [41] W. H. Schikhof, Ultrametric calculus, An introduction to p-adic analysis, Cambridge Studies in Advanced Mathematics, vol. 4, Cambridge University Press, Cambridge, 1984. [42] J. B. Seoane-Sepúlveda, Chaos and lineability of pathological phenomena in analysis, Pro�Quest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–Kent State University. [43] A. C. M. van Rooij, Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math., vol. 51, Marcel Dekker, Inc., New York, 1978.
Collections