Publication:
Introducción a la geometría simpléctica y los sistemas integrables

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2018-06
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
El objetivo principal de este trabajo es demostrar el teorema de Arnold-Liouville, que da una condición suficiente para saber si un sistema mecánico hamiltoniano es integrable por cuadraturas. Con este propósito, definimos y desarrollamos los conceptos necesarios para el teorema, dando unas nociones elementales sobre geometría simpléctica y su aplicación a la Mecánica Clásica.
The main goal of this work is to prove the Arnold-Liouville theorem, which gives a sufficient condition for a Hamiltonian mechanical system to be integrable by quadratures. To that end we define and develop the concepts involved in the theorem, giving some elementary notions of symplectic geometry and its application to Classical Mechanics.
Description
Keywords
Citation
[1] R. Abraham and J. E. Marsden. Foundations of Mechanics. Benjamin/Cummings, 1978. [2] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, 1989. 10, 46 [3] Mich`ele Audin. Torus actions on Symplectic Manifolds. Birkhäuser, 2012. [4] A. V. Bolsinov and A.T. Fomenko. Integrable Hamiltonian systems: geometry, topology, classifi cation. CRC Press, 2004. [5] J.F. Fernando, J.M. Gamboa, and J.M. Ruiz. Algebra lineal (vol. 2). Sanz y Torres, 2010. 23 [6] J.M. Gamboa and J.M. Ruiz. Introducción al estudio de las Variedades Diferenciables. Sanz y Torres, 2016. 15 [7] H. Goldstein, C.P. Poole, and J.L. Safko. Classical Mechanics. Pearson Education India, 2011. 10 [8] L.D. Landau and E.M. Lifshitz. Curso de física teórica (vol. 1): Mecánica. Reverté, 1985. 10, 56 [9] John M. Lee. Introduction to Smooth Manifolds. Springer, 2003. 19 [10] Mircea Puta. The completeness of some Hamiltonian vector fields on a Poisson manifold. An. Univ. Timisoara Ser. Mat.-Inform, 32:93–98, 1994. 42 [11] Florian Scheck. Mechanics: from Newton’s laws to deterministic chaos. Springer Science & Business Media, 2010. [12] Michael Spivak. Physics for Mathematicians: Mechanics I. Publish or Perish, 2010.