Publication:
Estimación bayesiana de la prevalencia de mamitis subclínica en una población de vacuno de leche española

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2022-07-18
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
El objetivo de este trabajo fue la estimación de la prevalencia de mamitis subclínica en una población de vacuno de leche en España a partir de la información de 321 ganaderías con un total de 33.182 vacas. Para ello se utilizaron dos pruebas diagnósticas, el diagnóstico en granja confirmado mediante test de California y el recuento de células somáticas (RCS). Se estimaron, además de la prevalencia de mamitis subclínica, la sensibilidad y especificidad de ambas pruebas diagnósticas mediante la implementación de metodología bayesiana. Para ello se dividió a la población en tres periodos de tiempo (2013-2015,2016-2018 y 2019-2020) y se utilizó un proceso iterativo para la elicitación de los hiperparámetros de las distribuciones a priori utilizando las distribuciones posteriores del periodo inmediatamente anterior, excepto para la elicitación de los hiperparámetros de las distribuciones a priori del primer periodo donde se utilizó la información recogida en la bibliografía. Así, se asumieron distribuciones Beta para la prevalencia, sensibilidad y especificidad y una distribución multinomial para las verosimilitudes. Se realizaron análisis de sensibilidad para estimar el impacto de las distribuciones a priori en los resultados obtenidos. La prevalencia media estimada en la población fue de entre el 5% (4,2%-7,5%) y el 15,7% (6,4%-38,7%). El diagnóstico en granja obtuvo altos valores medios de sensibilidad (87%-89%) y una baja o moderada especificidad media (54,3%-64,5%), mientras que el recuento de células somáticas se mostró como una prueba de alta especificidad, con valores medios entre un 96,4% y un 97,7%, pero con una sensibilidad baja o moderada, con resultados medios de entre el 47,3 y el 79,1%. Por tanto, las dos pruebas se muestran como complementarias para un correcto diagnóstico de mamitis subclínica, una de alta especificidad (RCS) y otra de alta sensibilidad (diagnóstico en granja), pudiendo ser utilizada RCS para un primer cribado y el diagnóstico en granja mediante conformación con test de California como confirmación de los casos.
This work applied the Bayesian approach to estimate the prevalence of subclinical mastitis in a Spanish population which included data from 321 herds and 33.182 cows. For this estimation two tests were used: diagnosis by farmers or vets with California test confirmation and somatic cell count (SCC). In addition, sensitivity and specificity of those tests were estimated. Data was divided in 3 periods (2013-2015,2016-2018, and 2019-2020) and an iterative process was implemented for the elicitation of the hyperparameters of the prior distributions of prevalence, and sensitivity and specificity of the two tests. Beta distributions were used for the distributions of prevalence, and sensitivity and specificity of the tests, and multinomial distribution as likelihood’s functions. Prevalence of subclinical mastitis was from 5% (4.2%-7.5%) to 15.7% (6.4%-38.7%). Farmers or vets’ diagnosis with California test conformation showed high average sensitivity (84%-89%) and low or moderate average specificity (54.3%-64.5%). On other hand, somatic cell count showed high average specificity (96.4-97.7%) and low or moderate sensitivity (47.3-79.1%). For instance, the use of the two tests should be complementary for the diagnosis of subclinical mastitis, firstly with the use of somatic cells count and secondly using California test for the positives´ confirmations.
Description
Keywords
Citation
Ashraf, A., & Imran, M. (2018). Diagnosis of bovine mastitis: from laboratory to farm. https://doi.org/10.1007/s11250-018-1629-0 Ayano, A. A., Hiriko, F., Simyalew, A. M., & Yohannes, A. (2013). Prevalence of subclinical mastitis in lactating cows in selected commercial dairy farms of Holeta district. Journal of Veterinary Medicine and Animal Health, 5(3), 67–72. https://doi.org/10.5897/JVMAH12.056 Badiuzzaman, M., Samad, M., Siddiki, S., Islam, M., & Saha, S. (2016). Subclinical Mastitis in Lactating Cows: Comparison of Four Screening Tests and Effect of Animal Factors on Its Occurrence. Bangladesh Journal of Veterinary Medicine, 13(2), 41–50. https://doi.org/10.3329/bjvm.v13i2.26627 Blasco, A., & Blasco, P. D. A. (2017). Bayesian data analysis for animal scientists ( 265). New York, NY, USA. Springer. Retrieved from https://link.springer.com/content/pdf/10.1007/978-3-319-54274-4.pdf Bortolami, A., Fiore, E., Gianesella, M., Corrò, M., Catania, S., & Morgante, M. (2015). Evaluation of the udder health status in subclinical mastitis affected dairy cows through bacteriological culture, Somatic Cell Count and thermographic imaging. Polish Journal of Veterinary Sciences, 18(4), 799–805. https://doi.org/10.1515/pjvs-2015-0104 Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations)? Journal of Computational and Graphical Statistics, 7(4), 434–455. https://doi.org/10.1080/10618600.1998.10474787 Bulletin of the IDF No. 321/1997 - Recommendations for Presentation of Mastitis-Related Data - Guidelines for Evaluation of the Milking Process - IDF Publications Catalogue. (1997). Retrieved March 10, 2022, from http://idfstore.testandgo.io/product/recommendations-for-presentation-of-mastitis-related-data-guidelines-for-evaluation-of-the-milking-process/ Ceballos-Marquez, A. (2016). Sensitivity and Specificity of SCC in Quarter Milk Samples to Diagnose Intramammary Infections. World Buiatric Congress. Dublin, Ireland, July, 2016. Córdova-Izquierdo, A Eulogio, J., Ruiz-Lang, C., & Villa-Mancera, A. (2019). Producción de leche y mastitis bovina. Revista Veterinaria Argentina. 36(378). Retrieved from: https://www.researchgate.net/publication/343808493_Produccion_de_leche_y_mastitis_bovina Cox, D. R. (2006). Frequentist and Bayesian statistics: A critique (keynote address). In Statistical problems in particle physics, astrophysics and cosmology (pp. 3-6). Dempster, A. P. (1997). The direct use of likelihood for significance testing. Statistics and Computing, 7(4), 247–252. Retrieved from http://link.springer.com/article/10.1023/A:1018598421607 Dendukuri, N., Bélisle, P., & Joseph, L. (2010). Bayesian sample size for diagnostic test studies in the absence of a gold standard: Comparing identifiable with non-identifiable models. Statistics in Medicine, 29(26), 2688–2697. https://doi.org/10.1002/sim.4037 Depaoli, S., & Van de Schoot, R. (2017). Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychological methods, 22(2), 240. Dingwell, R. T., Leslie, K. E., Schukken, Y. H., Sargeant, J. M., & Timms, L. L. (2003). Evaluation of the California mastitis test to detect an intramammary infection with a major pathogen in early lactation dairy cows. COMMUNICATIONS BRÈVES (Traduit par Docteur André Blouin) Canadian Veterinary Journal, 44. Dohoo, I. R., & Leslie, K. E. (1991). Evaluation of changes in somatic cell counts as indicators of new intramammary infections. Preventive Veterinary Medicine, 10(3), 225–237. https://doi.org/10.1016/0167-5877(91)90006-N Fosgate, G. T., Petzer, I. M., & Karzis, J. (2013). Sensitivity and specificity of a hand-held milk electrical conductivity meter compared to the California mastitis test for mastitis in dairy cattle. Veterinary Journal, 196(1), 98–102. https://doi.org/10.1016/j.tvjl.2012.07.026 Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398–409. https://doi.org/10.1080/01621459.1990.10476213 Gelman, A., Carlin, B. J., Stern, S. H., Dunson, B. D., Vehtari, A., & Rubin, B. D. (2013). Bayesian Data Analysis CHAPMAN & HALL/CRC Texts in Statistical Science Series Series Editors Analysis of Failure and Survival Data. Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science, 7(4), 457–472. Retrieved from http://www.jstor.org/about/terms.html. Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596 Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In J. M. Bernado, J. O. Berger, A. P. David, and A. F. M. Smith (Eds.), Bayesian Statistics (Vol. 4). Bayesian Statistics. Retrieved from http://www.mpls.frb.org/research/SR/SR148.pdf Harmon, R. J. (1994). Physiology of Mastitis and Factors Affecting Somatic Cell Counts. Journal of Dairy Science, 77(7), 2103–2112. https://doi.org/10.3168/jds.S0022-0302(94)77153-8 International Dairy Federation (1987). Bovine Mastitis: Definition and Guidelines for Diagnosis. Bulletin of the International Dairy Federation 211, 24. Kendall, M. G. &W. R. Buckland. (1971). A Dictionary of Statistical Terms. Hafner, New York. Maintainer, A., & Albert, J. (2018). Package “LearnBayes” Type Package Title Functions for Learning Bayesian Inference. Mastitis in cattle: SCC tests or CMT? (2022). Retrieved March 10, 2022, from https://mastitisvaccination.com/scc-vs-california-tests-to-prevent-mastitis-in-cattle/ Morales, A., & Zárate, L. (2004). Epidemiología clínica: investigación clínica aplicada. Retrieved from https://books.google.es/books?hl=es&lr=&id=2UN-khOULAkC&oi=fnd&pg=PA163&dq=Ruiz+Morales+A,+Morrillo+Zarate+L.+Epidemiología+Clínica+Investigación+Aplicada.+Bogotá+DC+Colombia:&ots=KuNuL6gxXK&sig=R_GaZf3cAJ_8XoidZinfMh8nfhY Nickerson, S. C., Owens, W. E., & Boddie, R. L. (1995). Mastitis in Dairy Heifers: Initial Studies on Prevalence and Control. Journal of Dairy Science, 78(7), 1607–1618. https://doi.org/10.3168/jds.S0022-0302(95)76785-6 Nielsen, C. (2009). Economic Impact of Mastitis in Dairy Cows. Acta Universitatis agriculturae Sueciae. 29. Gelman, A., Sturtz, S., Ligges, U., Gorjanc, G., Kerman, J., & Date, R. C. (2020). Package ‘R2OpenBUGS.’ Peek, S., & Divers, T. (2018). Rebhun’s Diseases of Dairy Cattle-E-Book. Retrieved from https://books.google.es/books?hl=es&lr=&id=ByjRDwAAQBAJ&oi=fnd&pg=PP1&dq=Kendall,+M.+G.+and+W.+R.+Buckland.+1971.+A+Dictionary+of+Statistical+Terms.+Hafner,+New+York.+Peek,+S.,+%26+Divers,+T.+J.+(2018).+Rebhun’s+Diseases+of+Dairy+Cattle-E-Book.+Elsevier+Health+Sciences.&ots=0dWsBewA7H&sig=bM1AsjWa715txlUd3S0hW_tDaIc Pérez-Cabal, M.A., & Charfeddine, N. (2013). Genetic relationship between clinical mastitis and several traits of interest in Spanish Holstein dairy cattle. Interbull Bulletin, 0(47), 77–81. Pérez-Cabal, M. A., Yaici, S., & Alenda, R. (2008). Clinical mastitis in Spanish dairy cows: Incidence and costs. Spanish Journal of Agricultural Research, 6(4), 615–622. https://doi.org/10.5424/sjar/2008064-354 Polat, B., Colak, A., Cengiz, M., Yanmaz, L. E., Oral, H., Bastan, A., & Hayirli, A. (2010). Sensitivity and specificity of infrared thermography in detection of subclinical mastitis in dairy cows. Journal of Dairy Science, 93(8), 3525–3532. https://doi.org/10.3168/jds.2009-2807 Rahman, M., Bhuiyan, M., Kamal, M., & Shamsuddin, M. (1970). Prevalence and risk factors of mastitis in dairy cows. Bangladesh Veterinarian, 26(2), 54–60. https://doi.org/10.3329/bvet.v26i2.4951 Reddy, L., Choudhuri, P. C., & Hamza, P. A. (1998). Sensitivity, specificity and predictive values of various indirect tests in the diagnosis of sub-clinical mastitis. Indian veterinary journal, 75(11), 1004-1005. Roy, J. P., Tremblay, D. Du, DesCôteaux, L., Messier, S., Scholl, D., & Bouchard, É. (2009). Evaluation of the California Mastitis Test as a precalving treatment selection tool for Holstein heifers. Veterinary Microbiology, 134(1–2), 136–142. https://doi.org/10.1016/J.VETMIC.2008.09.020 Sadeghi, H., Yáñez, U., De Prado, A. I., Gharagozlou, F., Becerra, J. J., Herradon, P. G., & Quintela, L. A. (2021). Effect of subclinical mastitis on reproductive performance of holsteidairy cows in the northwest of spain. Spanish Journal of Agricultural Research, 19(4), 1–8. https://doi.org/10.5424/sjar/2021194-18058 Sargeant, J. M., Leslie, K. E., Shirley, J. E., Pulkrabek, B. J., & Lim, G. H. (2001). Sensitivity and specificity of somatic cell count and California Mastitis Test for identifying intramammary infection in early lactation. Journal of Dairy Science, 84(9), 2018–2024. https://doi.org/10.3168/jds.S0022-0302(01)74645-0 Schepers, A. J., Lam, T. J. G. M., Schukken, Y. H., Wilmink, J. B. M., & Hanekamp, W. J. A. (1997). Estimation of Variance Components for Somatic Cell Counts to Determine Thresholds for Uninfected Quarters. Journal of Dairy Science, 80(8), 1833–1840. https://doi.org/10.3168/jds.S0022-0302(97)76118-6 Sears, P. M., & Heider, L. E. (1981). Detection of mastitis. Vet Clin Large Anim, 3, 327–345. Sears, P. M., Wilson, D. J., Gonzalez, R. N., & Hancock, D. D. (1991). Microbiological results from milk samples obtained premilking and postmilking for the diagnosis of bovine lntramammary infections. Journal of dairy science, 74(12), 4183-4188. Seegers, H., Fourichon, C., & Beaudeau, F. (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary Research, 34(5), 475–491. https://doi.org/10.1051/VETRES:2003027 Sharma, N., Pandey, V., & Sudhan, N. A. (2010). Comparison of some indirect screening tests for detection of subclinical mastitis in dairy cows. Bulg J Vet Med, 13(2), 98–103. Retrieved from https://pdfs.semanticscholar.org/fcbe/f6811b09f586107811b3d01ad42ec25f481c.pdf Sharma, N., Singh, N. K., & Bhadwal, M. S. (2011). Relationship of somatic cell count and mastitis: An overview. Asian-Australasian Journal of Animal Sciences, 24(3), 429–438. https://doi.org/10.5713/ajas.2011.10233 Silva, L. C., & Benavides, A. (2001). El enfoque bayesiano: otra manera de inferir. Gaceta Sanitaria, 15(4), 341–346. https://doi.org/10.1016/s0213-9111(01)71578-6 Sinharay, S. (2010). Discrete probability distributions. International Encyclopedia of Education, 132–134. https://doi.org/10.1016/B978-0-08-044894-7.01721-8 Statistics, M. (1959). A Property of the Multinomial Distribution Author(s): Harry Kesten and Norman Morse Source: The Annals of Mathematical Statistics, 30(1), 120–127. Published by: Institute of Mathematical Statistics. De Vliegher, S., Laevens, H., Opsomer, G., De Mûelenaere, E., & de Kruif, A. (2000). Somatic cell counts in dairy heifers during early lactation. In Proceedings of the 8th annual meeting of the Flemish Society of Veterinary Epidemiology and Economics, Ukkel, Belgium, 26 October 2000 (84-87). Wolfová, M., Štípková, M., & Wolf, J. (2006). Incidence and economics of clinical mastitis in five Holstein herds in the Czech Republic. Preventive Veterinary Medicine, 77(1–2), 48–64. https://doi.org/10.1016/j.prevetmed.2006.06.002 Zwald, N. R., Weigel, K. A., Chang, Y. M., Welper, R. D., & Clay, J. S. (2006). Genetic Analysis of Clinical Mastitis Data from On-Farm Management Software Using Threshold Models. J. Dairy Sci (Vol. 89). https://doi.org/10.3168/jds.S0022-0302(06)72098-7