Publication:
Comportamiento clínico de los implantes dentales con una superficie SLActive vs. SLA. Estudio clínico aleatorizado. Resultados preliminares.

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Objetivo: El objetivo principal de este estudio fue confirmar la seguridad y evaluar el comportamiento clínico de los implantes SLActive® mediante el seguimiento de los efectos adversos del dispositivo, estabilidad de los implantes y parámetros clínicos en comparación con los implantes SLA®.Materiales y Métodos: Se llevó a cabo un estudio clínico prospectivo, multicéntrico, aleatorizado, a simple ciego y con un diseño de boca partida. La muestra estudiada estuvo formada por 18 pacientes (34 implantes) quienes recibieron un implante SLA® (n=17) siendo estos los implantes del grupo control y uno SLActive® (n=17) pertenecientes al grupo test. Se evaluaron los efectos adversos, la estabilidad de los implantes mediante análisis de frecuencia de resonancia (ARF), la cicatrización de los tejidos blandos (índice de cicatrización de Landry), parámetros clínicos: mucosa queratinisada (MQ), profundidad al sondaje (PS), sangrado al sondaje (SaS), supervivencia del implante, éxito y supervivencia protésica, y satisfacción del paciente (OHIP-14) por un periodo de seguimiento de 12 meses.Resultados: 12 meses después de la colocación de los implantes no se encontraron diferencias estadísticamente significativas entre la estabilidad de los implantes de ambos grupos a las 8 semanas (cociente de estabilidad del implante [ISQ] Paralelo test: 77,5±9.3, paralelo control: 75,7± 12.1; p= 0,638; Perpendicular test: 74,7 ±10.4 , perpendicular control: 78,8±11.3; p= 0,290); los parámetros clínicos ([QM: test(T): 2,7±1,3; control(C):2,5±1,1; p: 0,666. SaS: (T): 13,6±20,5;(C):6,8±11,6 ; p:0,349. PS: (T): 2,2±0,7 ; (C):1,8±0,5; p:0,144] y la cicatrización de los tejidos blandos periimplantarios. La supervivencia de los implantes fue de un 100% en el grupo SLA®(grupo control) , y un 88.2% en el grupo SLActive®(grupo test). No se evidenciaron fracasos ni complicaciones protésicas.Conclusiones: Los implantes SLActive® muestran una seguridad, estabilidad y un rendimiento clínico similar a los SLA® según lo probado a partir del los eventos adversos reportados, el ARF y los parámetros clínicos (MQ, PS, SaS).
Description
Keywords
Citation
1. Gupta A, Felton DA, Jemt T, Koka S. Rehabilitation of Edentulism and Mortality: A Systematic Review. Journal of Prosthodontics. junio de 2019;28(5):526-35. 2. Al-Johany SS, Andres C. ICK Classification System for Partially Edentulous Arches. Journal of Prosthodontics. agosto de 2008;17(6):502-7. 3. Ali Z, Baker SR, Shahrbaf S, Martin N, Vettore MV. Oral health-related quality of life after prosthodontic treatment for patients with partial edentulism: A systematic review and metaanalysis. The Journal of Prosthetic Dentistry. enero de 2019;121(1):59-68.e3. 4. Bücher K, Neumann C, Thiering E, Hickel R, Kühnisch J. Complications and survival rates of teeth after dental trauma over a 5-year period. Clin Oral Invest. junio de 2013;17(5):1311-8. 5. Broadbent JM, Zeng J, Foster Page LA, Baker SR, Ramrakha S, Thomson WM. Oral Health–related Beliefs, Behaviors, and Outcomes through the Life Course. J Dent Res. julio de 2016;95(7):808-13. 6. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions: Classification and case definitions for periodontitis. J Periodontol. junio de 2018;89:S173-82. 7. Brånemark P-I, Breine U, Adell R, Hansson BO, Lindström J, Ohlsson Å. Intra-Osseous Anchorage of Dental Prostheses: I. Experimental Studies. Scandinavian Journal of Plastic and Reconstructive Surgery. enero de 1969;3(2):81-100. 8. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1-132. 9. Schroeder A, Pohler O, Sutter F. [Tissue reaction to an implant of a titanium hollow cylinder with a titanium surface spray layer]. SSO Schweiz Monatsschr Zahnheilkd. julio de 1976;86(7):713-27. 10. Listgarten MA, Lang NP, Schroeder HE, Schroeder A. Periodontal tissues and their counterparts around endosseous implants: Periodontal versus “peri-implant” tissues. Clinical Oral Implants Research. julio de 1991;2(3):1-19. 11. Davies JE. Understanding Peri-Implant Endosseous Healing. Journal of Dental Education. agosto de 2003;67(8):932-49. 12. Albrektsson T, Brånemark P-I, Hansson H-A, Lindström J. Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man. Acta Orthopaedica Scandinavica. enero de 1981;52(2):155-70. 13. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont.Octubre de 1998;11(5):491-501. 14. Friberg B, Sennerby L, Linden B, Gröndahl K, Lekholm U. Stability measurements of onestage Brånemark implants during healing in mandibles. A clinical resonance frequency analysis study. Int J Oral Maxillofac Surg. agosto de 1999;28(4):266-72. 15. Cochran DL, Buser D, Ten Bruggenkate CM, Weingart D, Taylor TM, Bernard J-P, et al. The use of reduced healing times on ITI ® implants with a sandblasted and acid-etched (SLA)surface:: Early results from clinical trials on ITI ® SLA implants. Clinical Oral Implants Research. abril de 2002;13(2):144-53. 16. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration.European Spine Journal. 1 de octubre de 2001;10(0):S96-101. 17. Guo CY, Matinlinna JP, Tang ATH. Effects of Surface Charges on Dental Implants: Past, Present, and Future. International Journal of Biomaterials. 2012;2012:1-5. 18. Huang H, Wu G, Hunziker E. The clinical significance of implant stability quotient (ISQ) measurements: A literature review. Journal of Oral Biology and Craniofacial Research. octubre de 2020;10(4):629-38. 19. Guerra Cobián O, Hernández Pedroso L, Morán López E. Evaluación de la estabilidad de implantes dentales mediante análisis de frecuencia de resonancia. Revista Habanera de Ciencias Médicas. agosto de 2015;14(4):460-9. 20. Scarano A, Carinci F, Quaranta A, Iezzi G, Piattelli M, Piattelli A. Correlation between implant stability quotient (ISQ) with clinical and histological aspects of dental implants removed for mobility. Int J Immunopathol Pharmacol. marzo de 2007;20(1 Suppl 1):33-6. 21. Gehrke SA, da Silva Neto UT, Rossetti PHO, Watinaga SE, Giro G, Shibli JA. Stability of implants placed in fresh sockets versus healed alveolar sites: Early findings. Clin Oral Impl Res. mayo de 2016;27(5):577-82. 22. Boronat-López A, Peñarrocha-Diago M, Martínez-Cortissoz O, Mínguez-Martínez I. Resonance frequency analysis after the placement of 133 dental implants. Med Oral Patol Oral Cir Bucal. 1 de mayo de 2006;11(3):E272-276. 23. Andreotti AM, Goiato MC, Nobrega AS, Freitas da Silva EV, Filho HG, Pellizzer EP, et al. Relationship Between Implant Stability Measurements Obtained by Two Different Devices: A Systematic Review. Journal of Periodontology. marzo de 2017;88(3):281-8. 24. Kokovic V, Jung R, Feloutzis A, Todorovic VS, Jurisic M, Hämmerle CHF. Immediate vs. early loading of SLA implants in the posterior mandible: 5-year results of randomized controlled clinical trial. Clin Oral Impl Res. febrero de 2014;25(2):e114-9. 25. Baltayan S, Pi-Anfruns J, Aghaloo T, Moy PK. The Predictive Value of Resonance Frequency Analysis Measurements in the Surgical Placement and Loading of Endosseous Implants. Journal of Oral and Maxillofacial Surgery. junio de 2016;74(6):1145-52. 26. Lekholm U, Zarb G. Patient selection and preparation. Tissue integrated prostheses: osseointegration in clinical dentistry. Branemark PI, Zarb GA, Albrektsson T, editor. Chicago: Quintessence Publishing Company. Branemark P, Zarb G, Albrektsson T, editores.Chicago: Quintessence Publishing Company; 1985. 199–209 p. 27. Turkyilmaz I, McGlumphy EA. Influence of bone density on implant stability parameters and implant success: a retrospective clinical study. BMC Oral Health. diciembre de 2008;8(1):32. 28. Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol 2000. febrero de 2017;73(1):7-21. 29. Abboud M, Rugova S, Orentlicher G. Immediate Loading: Are Implant Surface and Thread Design More Important Than Osteotomy Preparation? Compend Contin Educ Dent. Agosto de 2020;41(7):384-6. 30. Sanz-Sánchez I, Sanz-Martín I, Figuero E, Sanz M. Clinical efficacy of immediate implant loading protocols compared to conventional loading depending on the type of the restoration: a systematic review. Clin Oral Impl Res. agosto de 2015;26(8):964-82. 31. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. The Journal of Prosthetic Dentistry. julio de 1983;50(1):101-7. 32. Piattelli A, Piattelli M, Mangano C, Scarano A. A histologic evaluation of eight cases of failed dental implants: is bone overheating the most probable cause? Biomaterials. abril de 1998;19(7-9):683-90. 33. Pellicer-Chover H, Peñarrocha-Oltra D, Aloy-Prosper A, Sanchis-Gonzalez J, PeñarrochaDiago M, Peñarrocha-Diago M. Comparison of peri-implant bone loss between conventional drilling with irrigation versus low-speed drilling without irrigation. Med Oral.2017;0-0. 34. Möhlhenrich SC, Modabber A, Steiner T, Mitchell DA, Hölzle F. Corrigendum to “Heat generation and drill wear during dental implant site preparation: systematic review”. British Journal of Oral and Maxillofacial Surgery. enero de 2016;54(1):117. 35. Mishra SK, Chowdhary R. Heat Generated by Dental Implant Drills During Osteotomy—A Review: Heat Generated by Dental Implant Drills. J Indian Prosthodont Soc. junio de 2014;14(2):131-43. 36. Bernabeu-Mira JC, Pellicer-Chover H, Peñarrocha-Diago M, Peñarrocha-Oltra D. In Vitro Study on Bone Heating during Drilling of the Implant Site: Material, Design and Wear of the Surgical Drill. Materials. 19 de abril de 2020;13(8):1921. 37. Sannino G, Cappare P, Gherlone EF, Barlattani A. Influence of the Implant Drill Design and Sequence on Temperature Changes During Site Preparation. Int J Oral Maxillofac Implants. Marzo de 2015;30(2):351-8. 38. Gehrke SA, Neto HL, Mardegan FEC. Investigation of the effect of movement and irrigation systems on temperature in the conventional drilling of cortical bone. British Journal of Oral and Maxillofacial Surgery. Diciembre de 2013;51(8):953-7. 39. Gehrke SA, Bettach R, Cayron B, Boukhris G, Dedavid BA, Frutos JCP. Development of a New Drill Design to Improve the Temperature Control during the Osteotomy for Dental Implants: A Comparative In Vitro Analysis. Biology. 6 de agosto de 2020;9(8):208. 40. Dohan Ehrenfest DM, Coelho PG, Kang B-S, Sul Y-T, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends in Biotechnology. abril de 2010;28(4):198-206. 41. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clinical Oral Implants Research. Septiembre de 2009;20:185-206. 42. Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NRF, Cardaropoli G, et al. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res. febrero de 2009;88B(2):579-96. 43. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, et al. Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Research International. 2016;2016:1-16. 44. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials. julio de 2007;23(7):844-54. 45. Fischer K, Stenberg T. Prospective 10-Year Cohort Study Based on a Randomized Controlled Trial (RCT) on Implant-Supported Full-Arch Maxillary Prostheses. Part 1: Sandblasted and Acid-Etched Implants and Mucosal Tissue: 10-Year Results on SLA Implants: Part I. Clinical Implant Dentistry and Related Research. diciembre de 2012;14(6):808-15. 46. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont. Octubre de 2004;17(5):536-43. 47. Kim B-S, Kim JS, Park YM, Choi B-Y, Lee J. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell. Materials Science and Engineering: C. abril de 2013;33(3):1554-60. 48. Rosa MB, Albrektsson T, Francischone CE, Schwartz Filho HO, Wennerberg A. The influence of surface treatment on the implant roughness pattern. J Appl Oral Sci. octubre de 2012;20(5):550-5. 49. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: preliminary results of a pilot study in dogs. Clin Oral Implants Res. agosto de 2007;18(4):481-8. 50. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans: Early osseointegration on implant surfaces. Clinical Oral Implants Research. Abril de 2011;22(4):349-56. 51. Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res. febrero de 2006;76A(2):323-34. 52. Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. The role of nanostructures and hydrophilicity in osseointegration: In-vitro protein-adsorption and blood-interaction studies: role of nanostructures and hydrophilicity in osseointegration. J Biomed Mater Res. agosto de 2015;103(8):2661-72. 53. Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, et al. Effects of Surface Hydrophilicity and Microtopography on Early Stages of Soft and Hard Tissue Integration at Non-Submerged Titanium Implants: An Immunohistochemical Study in Dogs. Journal of Periodontology. noviembre de 2007;78(11):2171-84. 54. Müller E, Rottmar M, Guimond S, Tobler U, Stephan M, Berner S, et al. The interplay of surface chemistry and (nano-)topography defines the osseointegrative potential of Roxolid®dental implant surfaces. En 2017. p. 31. 55. Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000. febrero de 2017;73(1):22-40. 56. Landry RG. Effectiveness of benzydamine HC1 in the treatment of periodontal post-surgical patients [Doctoral dissertation]. [Faculty of Dentistry]: University of Toronto; 1988. 57. Brägger U, Heitz-Mayfield LJA. ITI treatment guide. Vol. 8, Vol. 8,. 2015. 58. Şener-Yamaner ID, Yamaner G, Sertgöz A, Çanakçi CF, Özcan M. Marginal Bone Loss Around Early-Loaded SLA and SLActive Implants: Radiological Follow-Up Evaluation Up to 6.5 Years. Implant Dentistry. agosto de 2017;26(4):592-9. 59. Landry RG. Effectiveness of benzydamine HC1 in the treatment of periodontal post-surgical patients. 1985. 60. Lang NP, Joss A, Orsanic T, Gusberti FA, Siegrist BE. Bleeding on probing. A predictor for the progression of periodontal disease? J Clin Periodontol. julio de 1986;13(6):590-6. 61. Slade GD, Spencer AJ. Development and evaluation of the Oral Health Impact Profile. Community Dent Health. marzo de 1994;11(1):3-11. 62. Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. BMC Med Res Methodol. diciembre de 2001;1(1):2. 63. Hebballi NB, Ramoni R, Kalenderian E, Delattre VF, Stewart DCL, Kent K, et al. The dangers of dental devices as reported in the Food and Drug Administration Manufacturer and User Facility Device Experience Database. The Journal of the American Dental Association.Febrero de 2015;146(2):102-10. 64. Guler AU, Sumer M, Duran I, Sandikci EO, Telcioglu NT. Resonance Frequency Analysis of 208 Straumann Dental Implants During the Healing Period. Journal of Oral Implantology. 1 de abril de 2013;39(2):161-7. 65. Oates TW, Valderrama P, Bischof M, Nedir R, Jones A, Simpson J, et al. Enhanced implant stability with a chemically modified SLA surface: a randomized pilot study. Int J Oral Maxillofac Implants. octubre de 2007;22(5):755-60. 66. Han J, Lulic M, Lang NP. Factors influencing resonance frequency analysis assessed by OsstellTMmentor during implant tissue integration: II. Implant surface modifications and implant diameter: RFA during tissue integration: II. Clinical Oral Implants Research. 19 de marzo de 2010;21(6):605-11. 67. Lindhe J, Berglundh T. The interface between the mucosa and the implant. Periodontol 2000. Junio de 1998;17(1):47-54. 68. Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thornsen P. The soft tissue barrier at implants and teeth: Soft tissue at implants and teeth. Clinical Oral Implants Research. abril de 1991;2(2):81-90. 69. Salvi GE, Bosshardt DD, Lang NP, Abrahamsson I, Berglundh T, Lindhe J, et al. Temporal sequence of hard and soft tissue healing around titanium dental implants. Periodontol 2000. junio de 2015;68(1):135-52. 70. Bornstein MM, Wittneben J-G, Brägger U, Buser D. Early Loading at 21 Days of NonSubmerged Titanium Implants With a Chemically Modified Sandblasted and AcidEtched Surface: 3-Year Results of a Prospective Study in the Posterior Mandible. Journal of Periodontology. junio de 2010;81(6):809-18. 71. Roccuzzo M, Wilson TG. A prospective study of 3 weeks’ loading of chemically modified titanium implants in the maxillary molar region: 1-year results. Int J Oral Maxillofac Implants. Febrero de 2009;24(1):65-72. 72. Chambrone L, Shibli JA, Mercúrio CE, Cardoso B, Preshaw PM. Efficacy of standard (SLA) and modified sandblasted and acid-etched (SLActive) dental implants in promoting immediate and/or early occlusal loading protocols: a systematic review of prospective studies. Clin Oral Impl Res. abril de 2015;26(4):359-70. 73. Morton D, Bornstein MM, Wittneben J-G, Martin WC, Ruskin JD, Hart CN, et al. Early Loading after 21 Days of Healing of Nonsubmerged Titanium Implants with a Chemically Modified Sandblasted and Acid-Etched Surface: Two-Year Results of a Prospective Two�Center Study. Clinical Implant Dentistry and Related Research. marzo de 2010;12(1):9-17. 74. Karabuda ZC, Abdel-Haq J, Arιsan V. Stability, marginal bone loss and survival of standard and modified sand-blasted, acid-etched implants in bilateral edentulous spaces: a prospective 15-month evaluation: 15-month prospective evaluation of SLA and modSLA implants. Clinical Oral Implants Research. agosto de 2011;22(8):840-9. 75. Bornstein MM, Schmid B, Belser UC, Lussi A, Buser D. Early loading of non-submerged titanium implants with a sandblasted and acid-etched surface. 5-year results of a prospective study in partially edentulous patients. Clin Oral Implants Res. diciembre de 2005;16(6):631-8. 76. Nicolau P. Data presented. 25th Annual Scientific Meeting of the European Association of Osseointegration; 2016 oct 29; Paris, France.