Publication:
Solving the Schrödinger Equation with Genetic Algorithms: A Practical Approach

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2022-11-27
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The Schrödinger equation is one of the most important equations in physics and chemistry and can be solved in the simplest cases by computer numerical methods. Since the beginning of the 1970s, the computer began to be used to solve this equation in elementary quantum systems, and, in the most complex case, a ‘hydrogen-like’ system. Obtaining the solution means finding the wave function, which allows predicting the physical and chemical properties of the quantum system. However, when a quantum system is more complex than a ‘hydrogen-like’ system, we must be satisfied with an approximate solution of the equation. During the last decade, application of algorithms and principles of quantum computation in disciplines other than physics and chemistry, such as biology and artificial intelligence, has led to the search for alternative techniques with which to obtain approximate solutions of the Schrödinger equation. In this work, we review and illustrate the application of genetic algorithms, i.e., stochastic optimization procedures inspired by Darwinian evolution, in elementary quantum systems and in quantum models of artificial intelligence. In this last field, we illustrate with two ‘toy models’ how to solve the Schrödinger equation in an elementary model of a quantum neuron and in the synthesis of quantum circuits controlling the behavior of a Braitenberg vehicle.
Description
Keywords
Citation
Collections