Publication:
Ultrastrong coupling between electron tunneling and mechanical motion

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2022-12-07
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The ultrastrong coupling of single-electron tunneling and nanomechanical motion opens exciting opportunities to explore fundamental questions and develop new platforms for quantum technologies. We have measured and modeled this electromechanical coupling in a fully suspended carbon nanotube device and report a ratio of gm/omega m = 2.72 +/- 0.14, where gm/2 pi = 0.80 +/- 0.04 GHz is the coupling strength and omega m/2 pi = 294.5 MHz is the mechanical resonance frequency. This is well within the ultrastrong coupling regime and the highest among all other electromechanical platforms. We show that, although this regime was present in similar fully suspended carbon nanotube devices, it went unnoticed. Even higher ratios could be achieved with improvement on device design.
Description
Artículo firmado por 12 autores. We acknowledge useful discussions with M. Woolleyand F. Pistolesi and thank Serkan Kaya for his helpin the fabrication of the device. This research was supported by Grant No. FQXi-IAF19-01 from the Foundational Questions Institute Fund, a donor advised fund of Silicon Valley Community Foundation. N.A. acknowledges the support from the Royal Society, EPSRC Platform Grant (Grant No. EP/R029229/1), from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 948932), and from Templeton World Charity Foundation. A.A. acknowledges the support of the Foundational Questions Institute Fund (Grant No. FQXi-IAF19-05), the Templeton World Charity Foundation, Inc (Grant No.TWCF0338) and the ANR Research Collaborative Project "Qu-DICE" (Grant No. ANR-PRC-CES47). J.T. and J.M.R.P.acknowledge financial support from the Spanish Government (Grant Contract, FIS-2017-83706-R). J.A. acknowledges support from EPSRC (Grant No. EP/R045577/1) and the Royal Society. J.M. acknowledges funding from the Vetenskapsradet, Swedish VR (Project No. 2018-05061).
UCM subjects
Keywords
Citation
Collections