Publication:
Nanoscale anglesite growth on the celestite (001) face.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-09-01
Authors
Rico García, Aida
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In situ atomic force microscopy (AFM) was used to study the growth behaviour of anglesite (PbSO4) monolayers on the celestite (001) face. Growth was promoted by exposing the celestite cleavage surfaces to aqueous solutions that were supersaturated with respect to anglesite. The solution supersaturation, βang, was varied from 1.05 to 3.09 (where βang = a(Pb2+)•a(SO42-)/Ksp,ang). In this range of supersaturation, two single anglesite monolayers (~3.5 Å in height each) from pre-existent celestite steps were grown. However, for solution supersaturation of the values of βang < 1.89 +- 0.06, subsequent multilayer growth is strongly inhibited. AFM observations indicate that the inhibition of a continuous layer-by-layer growth of anglesite on the celestite (001) face is due to the in-plane strain generated by the slight difference between the anglesite and celestite lattice parameters (i.e. the linear misfits are lower than 1.1%). The minimum supersaturation required to overcome the energy barrier for multilayer growth gave an estimate of the in-plane strain energy: 11.4 +/- 0.6 mJ/m2. Once this energy barrier is overcome, a multilayer Frank–van der Merwe epitaxial growth was observed.
Description
Unesco subjects
Keywords
Citation
[1] A.A. Chernov, Modern Crystallography III (Crystal Growth), Springer-Verlag, 1984. [2] A. Pimpinelli, J. Villain, Physics of Crystal Growth, Cambridge University Press, Cambridge, 1998. [3] M. Prieto, P. Cubillas, A. Fernández-González, Geochim. Cosmochim. Acta 67 (2003) 3859. [4] C. Pérez-Garrido, L. Fernández-Díaz, C.M. Pina, M. Prieto, Surf. Sci. 601 (2007) L 5499. [5] F.C. Frank, J. Van Der Merwe, Proc. Roy. Soc. A 198 (1949) 216. [6] M. Volmer, A. Weber, Z. Phys. Chem. 119 (1926) 277. [7] I.N. Stranski, V.L. Krastanov, Akad. Wiss. Lit. Mainz Math.- Natur. Kl. IIb 146 (1939) 797. [8] P.E. Hillner, A.J. Gratz, S. Manne, P.K. Hansma, Geology 20 (1992) 359. [9] C.M. Pina, U. Becker, P. Risthaus, D. Bosbach, A. Putnis, Nature 395 (1998) 483. [10] H.H. Teng, P.M. Dove, J.J. DeYoreo, Geochim. Cosmochim. Acta 64 (2000) 2255. [11] N. Sanchez-Pastor, C.M. Pina, J.M. Astilleros, L. Fernández-Díaz, A. Putnis, Surf. Sci. 581 (2005) L225. [12] A.G. Shtukenberg, J.M. Astilleros, A. Putnis, Surf. Sci. 590 (2005) L212. [13] K. Takahashi, M. Suzuki, M. Yoshimoto, H. Funakubo, Jpn. J. Appl. Phys. Part 2 – Lett. Express Lett. 45 (2006) L138. [14] S.R. Higgins, X. Hu, Geochim. Cosmochim. Acta 69 (2005) 2085. [15] J.M. Astilleros, C.M. Pina, L. Fernández-Díaz, A. Putnis, Surf. Sci. 545 (2003) L773. [16] J.M. Astilleros, C.M. Pina, L. Fernández-Díaz, A. Putnis, Geochim. Cosmochim. Acta 66 (2002) 3177. [17] J.M. Astilleros, C.M. Pina, L. Fernández-Díaz, A. Putnis, Chem. Geol. 193 (2003) 93. [18] D.L. Parkhurst, C.A.J. Appelo, User’s guide to PHREEQC (version 2). A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations (US Geological Survey. Water-Resources Investigations Report 99-4259, 2000). p. 312. [19] P. Risthaus, D. Bosbach, U. Becker, A. Putnis, Physicochem. Eng. Aspects 191 (2001) 201. [20] A.E. Murdaugh, M. Liddelow, A.M. Schmidt, S. Manne, Langmuir 23 (2007) 5852. [21] J. Majzlan, A. Navrotsky, J.M. Neil, Geochim. Cosmochim. Acta 66 (2002) 1839. [22] M.A. Simonov, S.I. Troyanov, Vestn. Mosk. Uni. 4 (1987) 77. [23] C.M. Pina, A. Rico-García, Macla 9 (2008) 191 (in Spanish).
Collections