Publication:
Tharsis dome, Mars: New evidence for Noachian-Hesperian tbick-skin and Amazonian thin-skin tectonics

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-04-25
Authors
Anguita, Francisco
Farelo, Agustín-Felipe
López, Valle
Mas, Cristina
Muñoz Espadas, María Jesús
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A photogeoIogical reconnaissance of Viking mosaics and images ofthe Tharsis dome has been carried out. Fifteen new areas of transcurrent faulting have been located which, together with other structures previously detected, support a model in which the Thaumasia Plateau, the southeastem part of the Tharsis dome, is proposed to be an independent lithospheric block that experienced buckling and thrust faulting in Late N oachian or Early Hesperian times as a result of an E-W directed compression. Evidence is presented that this stress field, rather than the Tharsis uplift, was decisive in the inception of Valles Marineris, which we consider a transtensive, dextral accident. The buckling spacing permits us, moreover, to tentatively reconstruct a Martian Hesperian lithosphere similar in elastic thickness to the mean present terrestrial oceanic lithosphere, thus supporting the possibility of a restricted lithospheric mobility in that periodo Tharsis lithosphere was again subjected to shear stresses in Amazonian times, a period in which important accidents, such as strike-slip faults, wrinkle ridges, and straight and sigmoidal graben, were formed under a thin-skin tectonic regime, while the lithosphere as a: mechanical unit had become too thick and sttong to buckle. The possible causes of those stresses, and especially their relationships to a putative period of pIate tectonics, are discussed.
Description
UCM subjects
Unesco subjects
Keywords
Citation
Collections