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Abstract
in martian surface heat flow, similar to those observed in terrestrial continental tectonothermally stable areas, could
result in elevation differences of kilometric scale through differential thermal isostasy. This effect is enhanced with the increase of

heat sources located within the crust. Local differences in the thermal history of the Mars’ lithosphere could have appreciably

distorted the original long-wavelength topography of putative martian paleoshorelines. So, this work shows that a

paleoequipotential surface does not necessarily have to fit well a present-day equipotential surface when evaluating paleoshorelines

through assessment of high-resolution topography.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction this work, we argue that different thermal isostasy
ant relation exists between Earth’s surface
histories among regions may have contributed to the
deformation of the original paleotopographic signatures
elevation and the thermal state of the lithosphere: the
warmer the lithosphere, the lower its mean density and
the higher its buoyancy with respect to the underlying
asthenosphere materials. This principle (known as
thermal isostasy) has been broadly applied to the
thermal subsidence of the cooling oceanic lithosphere
(e.g., Turcotte and Schubert, 2002), but it can also be
applied in a general way to the continental lithosphere
(Lachenbruch and Morgan, 1990), including a tecto-
nothermally stable one. This allows the use of topo-
graphy and surface heat flow data to constrain Earth’s
continental lithospheric thermal structure (e.g., Tejero
and Ruiz, 2002; Lewis et al., 2003). This relation must
also be valid for Mars (Ruiz, 2003; Ruiz et al., 2003). In
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of possible martian paleoshorelines.
Several investigators have proposed the possible

existence of large bodies of water in the northern plains
of Mars that range from oceans (Parker et al., 1989,
1993; Clifford and Parker, 2001) to lakes (Scott et al.,
1995), and several paleoshorelines have been proposed.
While Malin and Edgett (1999, 2001) indicate that there
is not sufficient evidence to support the shoreline
hypothesis through analysis of high-resolution MOC
imagery targeted in specific putative shoreline localities,
other investigators present arguments that dispute these
findings (Parker et al., 2001; Clifford and Parker, 2001;
Fairén et al., 2003). Similarly, an origin for the putative
Deuteronilus shoreline related to coastal processes is
considered unclear (Carr and Head, 2003) or likely
(Webb and McGill, 2003), based on geologic and
elevation relations along this feature.
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The observed present-day martian topography has
been used to test the putative paleoshorelines hypothesis
(Head et al., 1998, 1999; Carr and Head, 2003).
The Late Hesperian Deuteronilus shoreline (Parker

2. Elevation differences related to heat flow variations

In this section, we use a simple model for the thermal
structure of the martian lithosphere to show that heat
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et al.,1989, 1993; Clifford and Parker, 2001), for
example, slightly deviates from an equipotential surface,
and thus has been considered to be an acceptable
paleoshoreline candidate (Head et al., 1998, 1999): the
elevation range along this proposed paleoshoreline is
�1.1 km (from �3.2 to �4.3 km), with a standard
deviation of 0.24 km from its mean altitude, which is
�3.79 km (Carr and Head, 2003; see their Fig. 10).
Otherwise, the putative older and higher-standing
Arabia shoreline (Parker et al., 1989, 1993; Clifford
and Parker, 2001) deviates substantially from an
equipotential surface (Head et al., 1998, 1999; Carr
and Head, 2003), indicating that it may not be
representative of a true shoreline. According to Carr
and Head (2003), the Arabia shoreline includes a total
elevation range of �5.6 km (from 1.6 to �4.0 km) and a
standard deviation from a mean altitude (�2.09 km) of
1.40 km.
The putative Noachian Meridiani shoreline (Edgett

and Parker, 1997; Clifford and Parker, 2001) has been
proposed to occur in northern Sinus Meridiani and
western Arabia Terra regions. Elevation in this possible
paleoshoreline is roughly similar to that of the Arabia
shoreline in northeast Arabia, Utopia (not taking into
account the Isidis basin), Elysium, and Amazonis
regions. Thus, a paleoshoreline through these regions
and the Meridiani shoreline (Ruiz et al., 2003; Fairén
et al., 2003) is a better candidate to represent a
paleoequipotential surface than the Arabia shoreline;
their elevation range, although not specifically exam-
ined, would be mostly about 2 km (from �1 to �3 km;
as a reference see the elevation profile along the Arabia
shoreline in Fig. 5 in Carr and Head, 2003).
Evaluation of possible paleoshorelines through as-

sessment of high-resolution topography must be made
cautiously. In this paper, we use the thermal isostasy
concept to show that it is not necessarily true that a
paleoequipotential surface must match a present-day
equipotential surface. A similar consideration takes into
account the lithosphere rebound due to water unloading
associated with the disappearance of an ocean with
irregularly shaped margins (Leverington and Ghent,
2004). Next, we perform a first-order calculation of the
relation between possible variations in the thermal state
of the martian lithosphere and elevation differences,
which could cause deviations in equipotentiality along
the proposed paleoshorelines; note that for the purposes
of this work, only long-wavelength topographic
differences are relevant, since the rigidity of the
martian lithosphere could prevent small-scale isostatic
adjustment. Finally, we discuss our results and their
implications.
flow variations may result in significant changes in
surface elevation, and to offer an estimation of its scale.
The component of the elevation of the surface relative to
the free (uncompressed) height of the asthenosphere due
to the thermal buoyancy of the lithosphere is given by

H ¼ aðT̄ � TaÞb;

where a is the volumetric thermal expansion
coefficient,T̄ is the mean temperature of the lithosphere,
Ta is the temperature of the asthenosphere, and b is the
thickness of the lithosphere. This equation is almost
equivalent to Eq. (14) in Lachenbruch and Morgan
(1990), but these authors only calculated the thermal
buoyancy of the lithospheric mantle. To account for the
lower crustal density, relative to that in the lithospheric
mantle, the crust contribution to H should be corrected
by the ratio between crust and lithospheric mantle
densities (here assumed as 2900 and 3500 kgm�3,
respectively; for further details about this methodology
see Ruiz, 2003).
Here we calculate T̄ and b in terms of the surface heat

flow, assuming that there are heat sources homoge-
neously distributed in the crust; on Earth, crustal heat
sources are strongly concentrated in the upper crust,
although it has been suggested that vertical differentia-
tion in the Mars’ crust is not as important as in the
Earth (e.g., McLennan, 2001). Therefore, the tempera-
ture in the crust is given by

T z ¼ T s þ
Fz

kc
1�

fz

2bc

� �
;

where Ts is the surface temperature, F is the surface heat
flow, kc is the crustal thermal conductivity, f is the
fraction of the surface heat flow originated by radio-
active heating within the crust, and bc is the crust
thickness; the factor f can be formally defined as Abc/F,
where in turn A is the radioactive volumetric heating
rate. We do not take into account the existence of
radioactive heat sources beneath the crust, and so,
below the base of the crust, the heat flow is F(1�f) and
the temperature profile is linear and proportional to km,
the thermal conductivity of the lithospheric mantle. The
mean temperature of the lithosphere is given by the
quotient of the integrated lithospheric temperature
profile and b, which in turn is the depth at which the
Ta isotherm is reached.
Calculations have been performed using the following

values: a ¼ 3� 10�5 1C�1; kc ¼ 2:5Wm�1
1C�1; km ¼

3:5Wm�1
1C�1; Ta ¼ 1300 1C; T s ¼ 0 1C; and bc ¼

40 km: The assumed average surface temperature of
0 1C may be appropriate for times in which oceans could
have existed, although our results are little sensitive to



the value of Ts. The crustal thickness is taken as
constant since this paper addresses the component of the
topography related to thermal isostasy. The assumed
crustal thickness is in accordance with a typical mean

deviating it from an equipotential surface. This would
be especially pronounced on the northern margin of the
Tharsis magmatic complex, since Tharsis largely evolved
during the Noachian and Hesperian (Anderson et al.,
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crustal thickness of the northern lowlands derived from
topography and gravity data (Zuber et al., 2000).
Fig. 1 shows H in terms of surface heat flow for f ¼ 0

and f ¼ 0:5: There are arguments based on available
geochemical data of the materials at the surface of Mars
that suggest that perhaps over 50% (or even 75%) of
radioactive heat sources in this planet are placed within
the crust (McLennan, 2001). Similarly in the Earth,
roughly half of the heat flow lost in continental areas
originates from crustal heat sources (e.g., Pollack and
Chapman, 1977; Turcotte and Schubert, 2002). Calcula-
tions have been made for a range of F values between 10
and 50mWm�2, which roughly correspond to the
surface heat flow range proposed for diverse regions
and at varied times using estimates of the elastic
thickness of the lithosphere (McGovern et al., 2004a,
2004b). For the purposes of this work, the relevant point
is the relative differences of H, and not the absolute
values obtained for this parameter (planetary topogra-
phies are referred to an arbitrary datum). Fig. 1
indicates that variations in the thermal state of the
lithosphere may result in differential thermal isostasy,
which in turn may result in important elevation
differences, even of kilometric scale as observed for
Earth (Lewis et al., 2003).
Assuming a martian paleoshoreline, the posterior

attenuation, disappearance (as is expected with the
waning of internal heat sources), or formation (if
reheating of the lithosphere postdating the shoreline
formation occurred) of heat flow variations must result
in the deformation of the paleoshoreline topography,
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Fig. 1. Elevation over the free height of the asthenosphere in terms of

surface heat flow for f ¼ 0 and 0.5. Surface heat flow is represented in

reverse order (describing the topographic evolution of a cooling region

isostatically compensated).
2001; Dohm et al., 2001; Phillips et al., 2001). Fig. 2
shows the relative amplitude of surface heat flow
variations that can produce elevation ranges of 1 and
0.5 km centered on the H value corresponding to a
reference heat flow in the range from 10 to 50mWm�2.
The relative amplitude of heat flow variations is
obtained as the quotient between the maximum and
minimum heat flow that can produce positive and
negative elevations, respectively, of 0.5 and 0.25 km with
respect to the reference H value. In Fig. 2 it can be seen
that ancient surface heat flow variations less than a
factor of �2 may account for differences of elevation of
1 km. An elevation range of 0.5 km could be produced
by surface heat flow variations less than a factor of
�1.5. These values are further lowered if a substantial
amount of the martian heat sources are located within
the crust.
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Fig. 2. Relative amplitude of surface heat flow variations that can

produce elevation ranges of (a) 1 and (b) 0.5 km centered on the H

value corresponding to a reference heat flow in the range from 10 to

50mWm�2. As in Fig. 1, surface heat flow is represented in reverse

order.



It is important to note that the value of f can change
along a possible paleoshoreline (due to, for example,
local variations in crustal heat sources, mantle heat flow,
or both) and/or with time (due to waning of radiogenic

Finally, it is important to reiterate that thermal
isostasy is only one of many influences on topography.
Though it is not our intention to discuss in detail the
many factors that may have contributed to the
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dissipation intensity or to changes in the efficiency of
convective heat transfer). In any case, these possibilities
are not important for the purpose of our first-order
calculation, which is to show the feasibility of differ-
ential thermal isostasy histories affecting the long-
wavelength topography of possible martian paleoshor-
elines.

3. Discussion and conclusions

On Earth, present-day surface heat flow variations

exceed an order of magnitude (e.g., Pollack et al., 1993).

Álvarez-Gómez for their comments, and Victor Baker

Franklin, B.J., Tanaka, K.L., Lias, J., Peer, B., 2001. Primary

centers and secondary concentrations of tectonic activity through
The majority of these variations are due to plate
tectonics, with the higher heat flow associated with sea
floor spreading centers. On Mars, an early phase of plate
tectonism is controversial. Variations in surface heat
flow in Earth’s continental regions observed from
contoured maps (Cermak, 1993; Pollack et al., 1993)
can be higher than a factor of 2 or 3, sufficient for
significant paleoshoreline deformation (see Fig. 1). The
continental heat flow depends on a wide array of factors,
including radioactive heat production in the crust, local
mantle heat flow, and tectonic or erosive redistribution
of crustal heat producing elements (for reviews, see
Beardsmore and Cull, 2001; Sandiford and McLaren,
2002). In addition, it is widely accepted that an inverse
relation exists between surface heat flow and age of the
last tectonothermal stabilization (e.g., Hamza, 1979;
Vitorello and Pollack, 1980; Cermak, 1993), which in
turn is ultimately related to plate tectonics.
In any case, heat flow variations on old and

tectonothermally stable terrestrial continental regions
can be as high as a factor of �1.5–2 (e.g., Cermak, 1993;
Roy and Rao, 2000; Rolandone et al., 2002). If local
variations of surface heat flow of at least similar
amplitude existed in Mars during any moment of its
history, then our results indicate that differential
thermal isostasy should result in deformation of and
deviation from an equipotential surface along putative
paleoshorelines. Moreover it is significant that if, as is
the case for Earth, half of the surface heat flow
originated from crustal heat sources at the time of the
putative shoreline formation, then heat flow variations
lower than a modest factor of �1.2–1.4 may account for
present-day elevation ranges of 0.5–1 km (if, as it seems
reasonable, these heat flow variations are currently
greatly attenuated). These elevation ranges are respec-
tively similar to the71 standard deviation and the total
estimated elevation range of the putative Deuteronilus
shoreline, but they represent an important amount of
deformation along any possible paleoshoreline.
modification of an equipotential surface here, we do
highlight some of the possibilities, which may include
modification by wind, water, cratering, tectonic, and
volcanic processes (e.g., Clifford and Parker, 2001;
Fairén et al., 2003), rebound of the lithosphere due to
dissipation of a water body (Leverington and Ghent,
2004; for a review of isostatic and flexural effects related
to changes in sea level, see Watts, 2001), flexure and/or
(non-thermal) isostasy due to surface loading or erosion,
or subsurface magmatic intrusions. In fact, both
endogenic-driven geologic activity (probably implying
vertical movements) and exogenic activity clearly post-
date the possible paleoshorelines in Arabia Terra and in
Tharsis and Elysium magmatic complexes (e.g., Scott
and Tanaka, 1986; Greeley and Guest, 1987; Head et al.,
1999; Anderson et al., 2001). Together, all these
possibilities make more pressing the main argument of
this paper: any paleoequipotential surface dating from
an earlier Mars may very well have been since
significantly modified, even in a range of elevations of
a kilometric scale.
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