Publication:
The heat flow during the formation of ribbon terrains on Venus

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science B.V.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Ribbons are regularly spaced, between 2 and 6 km, troughs that exist on venusian tesserae, which are mainly located in, and characterize to, venusian crustal plateaus. Independent of the geological or temporal relations with other features, regularly and similarly spaced ribbons on several tesserae strongly suggest a thermal control on the thickness of the deformed layer. This can be used to constraint the heat flow at the time of ribbon formation, which holds important implications for the viability of the hypotheses that address the origin and evolution of crustal plateaus. For a brittle–ductile transition 1–3km deep (as proposed from ribbon spacing), realistic strain rates, and a present-day surface temperature of 740 K, the implied heat flow is very high, 130–780mWm2. If Venus has experienced higher surface temperatures due to climate forcing by massive volcanism, then the heat flow could be greatly reduced. For surface temperatures of 850–900K the heat flow is 190–560, 60–230 and 20–130mWm2 for brittle–ductile transition depths of 1, 2 and 3 km, respectively. Heat flow values around 80–100mWm2 are reasonable for venusian hotspots, based on terrestrial analogs, but hardly consistent with coldspot settings. High surface temperatures are also required to maintain the crustal solidus deeper than a few kilometers during the formation of ribbon terrains. For the obtained heat flows, a solidus deeper than 30km (the likely mean value for the crustal thickness) is difficult to achieve. This suggests that a substantial proportion of the crust beneath crustal plateaus was emplaced subsequently to the time when ribbon terrains were formed. Alternatively, at that time a magma reservoir inside the crust could have existed.
Description
UCM subjects
Unesco subjects
Keywords
Citation
Collections