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Resumen

Hoy en día son muy frecuentes las máquinas con gran cantidad de cores. Es muy
probable que el grado de paralelismo se vea incrementado en un futuro próximo.
Hacer un uso completo de este hardware es una tarea difícil de conseguir. Los
entornos de virtualización ofrecen hoy en día una buena aproximación para poder
sacarle el máximo partido a este tipo de hardware. Una planificación adecuada, y
en consecuencia un balanceo adecuado, de las máquinas virtuales de estos entornos
es una tarea importante y difícil de lograr adecuadamente.

Aquí proponemos el uso del algoritmo de Load Balancing on Speed (Balanceo de
Carga basado en velocidad)[4] con el fin de acelerar las máquinas virtuales que ejecu-
tan aplicaciones paralelas. De esta manera el sistema obtendrá un mejor rendimiento
global. La técnica de Load Balancing on Speed está diseñada específicamente para
aplicaciones paralelas que corren en sistemas multicore. Los cores se clasifican en
rápidos y lentos de acuerdo con los parámetros de las VCPUs (cpus virtuales). Nue-
stro algoritmo balancea el tiempo que una VCPU se ha ejecutado en cores rápidos
y lentos.

Hemos implementado y probado nuestro algoritmo en el sistema Hipervisor Xen[5].
A continuación se presenta información básica sobre este Hipervisor y sus algoritmos
de planificación, así como nuestra propuesta y correspondientes resultados. Estos
resultados se han obtenido utilizando un cierto escenario de virtualización y dis-
cutiendo el comportamiento de una gran variedad de cargas de trabajo corriendo en
este entorno.

Los resultados han demostrado que nuestro algoritmo es rentable. Load Balanc-
ing on Speed parece mejorar el rendimiento con respecto al planificador por defecto
de Xen (el planificador de créditos, llamado Credit Scheduler). Varios valores de spin
se discuten junto con su rendimiento en nuestro entorno de virtualización. También
se comentan algunos pequeños cambios que podrían ser implementados con el fin
de obtener los mejores beneficios de planificación de este algoritmo de balanceo de
carga.

Palabras clave: Xen, Hipervisor, Virtualization, Programación Paralela, Bal-
anceo de Carga, Speed Balancing, Multicore
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Abstract

Heavily multicored machines are prevalent nowadays. The degree of parallelism is
likely to be highly increased in the near future. Making full use of this hardware is a
hard task to achieve. Virtualization environments offer nowadays a good approach
in order to make the most of this hardware. Properly scheduling, and therefore
properly balancing, the virtual machines within this environment is an important
and hard task to properly achieve.

Here we propose the use of Load Balancing on Speed algorithm [4] in order to speed
up the Virtual Machines executing parallel applications. This way the system will
achieve a good overall performance. The load balancing technique is designed specif-
ically for parallel applications running on multicore systems. Cores are classified as
fast and slow according to parameters from the running VCPUs Our algorithm bal-
ances the time a VCPU has executed on faster and slower cores.

We have implemented and tested our algorithm in the Xen Hypervisor system [5].
Some background information about this Hypervisor and its baseline scheduling al-
gorithm is presented along with our proposal and performance results. These results
have been obtained using a certain virtualization scenario and disscussing behavior
across a variety of workloads running on that environment.

Results have shown our algorithm to be profitable. Load Balancing on Speed seems
to improve performance over the Xen default’s scheduler (Credit Scheduler). Several
spin values are discused along with their performance in our virtualization environ-
ment. We also discuss are some tunings that could be performed in order to obtain
the best scheduling benefits from this load balancing algorithm.

Key words: Xen, Hypervisor, Virtualization, Parallel Programming, Load Bal-
ancing, Speed Balancing, Multicore
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Chapter 1

Xen Hypervisor

1.1 Introduction

Xen is an open-source para-virtualizing virtual machine monitor, also known as
hypervisor, for the x86 processor architecture. Xen isolates virtual machines in
domains executing several in a single physical system with close-to-native perfor-
mance, thanks to the para-virtualization technology. It is able to run any of the
x86/32, x86/32 with PAE and x86/64 platforms. Xen also supports Intel Virtual-
ization Technology (VT-x) for unmodified guest operating systems, like Microsoft
Windows. It supports almost all Linux device drivers, live migration of running vir-
tual machines between physical hosts and up to 32 virtual CPUs per guest virtual
machine [6].

1.2 History

Xen was originally developed by the Systems Research Group at the University of
Cambridge Computer Laboratory as part of the XenoServers project, funded by the
UK-ESRC.

Xenoservers aim to provide a “public infrastructure for global distributed comput-
ing”. That’s the reason for Xen to play a key part in allowing efficient partitioning of
a single machine to enable multiple independent clients running operating systems
and applications in an isolated environment. The project web page contains further
information along with other technical reports.

Xen was first described in a paper presented at the ACM Symposium on Oper-
ating Systems Principles (SOSP) in 2003 [5], and the first public release, the 1.0
version, was made October of that same year. Nowadays Xen has grown into a
fully-fledged project in its own right, enabling us to investigate interesting research
issues regarding the best techniques for virtualizing resources such as CPU, mem-
ory, disk and network. Some of the main project contributors are XenSource, IBM,
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Chapter 1. Xen Hypervisor

Intel, AMD, HP, RedHat, Novel... many improvements have taken place, such as
scalability, support and performance to come to the last release, Xen 4.0.1, the one
used in this project.

1.3 Xen Virtualization Solutions

Although x86 is difficult to virtualize, it is so widespread and popular for business
use that much effort has been put into getting around those limitations intrinsic
to the platform and several solutions have been proposed. Some approaches like
VMWare’s old binary rewriting have a nice benefit allowing the virtual environment
to run in userspace, but imposes a performance penalty. Xen offers two solutions
to achieve a good virtualization performance, the paravirtualization the Hardware-
Assisted Virtualziation.

1.3.1 Paravirtualization

Paravirtualization is an approach that tries to obtain the closest system to x86 that
we can virtualize. The environment that is presented to a Xen guest has its dif-
ferences with that of a real x86 system. However, it is similar enough in that it is
usually a simple task to port an operating system to the Xen platform.

The buggiest difference, from the operating system point of view is that, in the
Xen system, it runs in ring 1, instead of running in ring 0 (which is the case of a
non-virtualized OS), as shown in Figure 1.1. That means that it is not allowed to
perform any privileged instructions. Instead the Xen hypervisor provides the virtual
machine with a set of hypercalls that corresponds to the privileged instructions.

Figure 1.1: Ring Usage in native and paravirtualized systems

The hypercalls works in a very similar manner to system calls, but they are managed
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1.3. Xen Virtualization Solutions

by the hypervisor instead of the OS. The main difference is that they use a different
interrupt number.

In Figure 1.2 you can see the main differences are at the ring transitions when
a system call is issued from an application running in a virtualized OS. Here, the
hypervisor, not the kernel, has interrupt handlers installed. Thus, when interrupt
is raised, execution jumps to the hypervisor, which then passes control back to the
guest OS. This extra layer of indirection imposes a small speed penalty, but it does
allow unmodified applications to be run. Xen also provides a mechanism for direct
system calls, although these require a modified libc.

Figure 1.2: System calls in native and paravirtualized systems

As GNU/Linux, Xen uses the MS-DOS calling convention, rather than the UNIX
convention used by BSD systems. Note that Xen, like Linux, uses the MS-DOS
calling convention, rather than the UNIX convention used by Free BSD. This means
that parameters for hypercalls are stored in registers, starting at EBX, rather than
being passed on the stack.

In the new versions of Xen, as the one we used, the hypercalls are issued by an
extra layer of indirection. The guest kernel calls a function in a shared memory
page (mapped by the hypervisor) with the arguments passed in registers. This al-
lows more efficient mechanisms to be used for hypercalls on systems that support
them, without requiring the guest kernel to be recompiled for every minor variation
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Chapter 1. Xen Hypervisor

in architecture. Newer chips from AMD and Intel provide mechanisms for fast tran-
sitions to and from ring 0. This layer of indirection allows these to be used when
available.

1.3.2 Hardware assisted virtualization

Different processor manufacturers have extended the architecture in order to make
virtualization considerably easier for x86. AMD and Intel have introduced in the
chip several extensions that are now supported by the Xen virtualization environ-
ment.

AMD-V, also known as Pacifica [7] and Intel’s extensions, known as Intel Virtu-
alization Technology [8] are supported in the latest Xen Hypervisor release. The
basic idea behind these is to extend the x86 ISA to make up for the shortcomings
in the existing instruction set. Conceptually, they can be thought of as adding a
“ring -1” above ring 0, allowing the OS to stay where it expects to be and catching
attempts to access the hardware directly. In implementation, more than one ring
is added, but the important thing is that there is an extra privilege mode where
a hypervisor can trap and emulate operations that would previously have silently
failed.

When compared to paravirtualization, hardware assisted virtualization, often re-
ferred to as HVM (Hardware Virtual Machine) [9], others some trade-os. It allows
the running of unmodified operating systems. This can be particularly useful, be-
cause one use for virtualization is running legacy systems for which the source code
may not be available. The cost of this is speed and flexibility. An unmodified guest
does not know that it is running in a virtual environment, and so can’t take ad-
vantage of any of the features of virtualization easily. In addition, it is likely to be
slower for the same reason.

Nevertheless, it is possible for a paravirtualization system to make some use of
HVM features to speed up certain operations. This hybrid virtualization approach
offers the best of both worlds. Some things are faster for HVM-assisted guests, such
as system calls. A guest in an HVM environment can use the accelerated transitions
to ring 0 for system calls, because it has not been moved from ring 0 to ring 1. It can
also take advantage of hardware support for nested page tables, reducing the num-
ber of hypercalls required for virtual memory operations. A paravirtualized guest
can often perform I/O more efficiently, because it can use lightweight interfaces to
devices, rather than relying on emulated hardware. A hybrid guest combines these
advantages.

Xen-HVM has device emulation based on the QEMU project to provide I/O vir-
tualization to the virtual machines. The system emulates hardware via a patched
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1.4. Architecture

QEMU "device manager" (qemu-dm) daemon running as a backend in dom0. This
means that the virtualized machines see as hardware: a PIIX3 IDE (with some rudi-
mentary PIIX4 capabilities), Cirrus Logic or vanilla VGA emulated video, RTL8139
or NE2000 network emulation, PAE, and somewhat limited ACPI and APIC support
and no SCSI emulation.

1.4 Architecture

Xen works between the OS and the hadware it provides a virtual environment in
which a kernel can run. There are three main components in a Xen system: the
hypervisor, kernel and userspace application.

Figure 1.3: Xen Architecture Overview. Illustration from Novell.com

The Xen system includes several layers. The Xen Hypervisor runs as the lowest and
most privileged one Xen may host multiple guest operating systems, each of which
is executed within a secure domain, which encapsulates a complete running virtual
environment. Domains are scheduled by Xen to make effective use of the available
physical CPUs. Applications are managed by each OS, scheduling each application
within the time allotted to the domain by Xen.

Figure 1.3 shows an overview of the Xen system and how layers are placed. The
layering is not absolute, as you can see not all guests are created equal, depending
in the virtualization solution and the OS. Xen differentiates two main groups of do-
mains, privileged and unprivileged. One special domain guest, domain 0 has several
privileges over the others in order to be able to perform management tasks.
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Chapter 1. Xen Hypervisor

1.4.1 Domain 0

At the Xen boot, on of the first things to happen is that the Domain 0’s guest ker-
nel gets load. This is typically specified in the boot loader as a module, and so can
be loaded without any filesystem drivers being available. Domain 0 (dom0) is the
first guest to run and it also has some privileges. Domain 0 has no device drivers
and no user interface on its own. All of it is provided by the operating system and
userspace tools running in the dom0 guest. Usually this domain is a GNU/Linux
system, although it could also be a BSD or Solaris system.

The rest of the domains are referenced to as domain U or domU (which stands
for domain-Unprivileged). However it is also possible in the latest releases of Xen
to let some privileges to other domains different from dom0.

Figure 1.4: A network package sent from an unprivileged domain

The main task performed by the dom0 guest is to handle the different devices. As
this guest runs at a higher level of privilege than the rest it is capable to get direct
access to hardware. Part of the responsability of handling devices is multiplexing
them for the virtual machines, mainly because up to know most of the hardware
does not natively support being accessed by multiple operating systems.

An example of dom0 management behavior is shown in Figure 1.4. It shows the
path of a packet when it is sent by an application in domU guest. The bottom of
the TCP/IP stack is not a regular network interface driver, instead it is a piece of
code that leaves the packet in some shared memory [10]. The rest of the driver,
running on the dom0 guest, will read the packet and insert it to the firewalling rules
of the operating system where it will make it down to the physical network device.
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1.4. Architecture

1.4.2 Unprivileged Domains (domU)

Domain Us are the unprivileged and therefore restricted domains of Xen. Usually
domUs are not allowed to perform any hypercalls directly accessing hardware, al-
though in some special cases access to one or more devices is granted.

DomU implements the front end of split device drivers. At a minimum, it is likely to
need the XenStore and console device drivers. Most also implement the block and
network interfaces. Because these are generic, abstract, devices, a domain U guest
only needs to implement one driver for each device category. For this reason, there
have been a number of operating systems ported to run as domain U Xen guests,
which have relatively poor hardware support when running directly on real hardware.
Xen allows these guests to take advantage of the Domain 0 guest’s hardware support.

You are only allowed to have one dom0 guest but you can have an arbitrary number
of domU guests on a single machine, and they may be able to be migrated (largely
depending on the configuration).

The differences betwen dom0 and domU are sometimes not so much. It is pos-
sible to let a domU guest access directly the hardware, and even to host split device
drivers.
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Chapter 2

Scheduling on Xen

Xen System is fully multitasking. The hypervisor is the one in charche of ensuring
that every guest running gets its shared of CPU time. In the same way that a mul-
titasking operating system works, scheduling in Xen is a tradeoff betwen achieving
fairness for running domains and achieving good overall throughput.

Due to the nature of some of the uses of the Xen hypervisor some other constrains
are applied. One common use of an hypervisor environment is to provide virtual
dedicated server for a wide variety of customers. They might have some form of
service level agreement associated with them, and therefore it might be required to
assure that no customer receives less than his previously allocated amount of CPU,
and in the the case that he receives more, keep track of it [11].

There are many concepts and ideas that scheduling for an operating systems that
provides an N:M threading library shares with scheduling for systems like Xen. In
an operating systems the kernel schedules N threads, usually one per physical con-
text), which a userspace library multiplexes into M userspace threads. Virtual CPUS
(VCPUS) from Xen could be analogous to kernel threads and the userpace threads
reperesent the processes within the domain.

There might be another layer within a Xen system, because the guest domains
might have an userpace itself and the corresponding threads running on top of it.
This comes down to the fact that there might be up to three different schedulers
between an userspace thread in the virtual machine and the physical CPU:

1. The userspace threading library mapping userspace threads to kernel threads

2. The guest kernel mapping threads to VCPUs

3. And the hypervisor mapping VCPUs to physical CPUs (the one we have de-
veloped in this project)
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Chapter 2. Scheduling on Xen

The bottom of the stack, the Xen hypervisor scheduler, needs a predictable behav-
ior. The schedulers above it will make certain assumptions on the behavior of the
underlying scheduling, and if these assumptions are not properly predicted they will
come up with highly suboptimal decisions. This will lead to bad, or unpredictable
behavior for processes in the running domains. The design and tuning of a good
scheduler is one of the most important factors in keeping a Xen system running well.

There can only be a scheduler running for the Xen hypervisor at a time, and the
desired one must be selected at boot time by specifying an argument to the hyper-
visor. The hypervisor reads the parameter "sched" from the boot parameters and
looks for its match in the opt name field of the interface (see Figure 2.1 ).

Through our research we have been trying to improve the current Xen scheduler
in order to make it more workload aware, and able to adapt to the future multicore
environments. We have developed a better way for balancing the load in the credit
scheduler

2.1 Scheduler development

Hypervisor’s schedulers in Xen are developed following a strict interface, where you
can map your scheduling functions. You can find it in the scheduler.c file within
the Xen’s source code. Listing 2.1 shows this interface. It is defined by a structure
containing pointers to functions that are used to implement the functionality of
the scheduler. This interface provides the developer with an abstraction layer to
implement different scheduling policies.

1 struct s chedu le r {
2 char ∗name ; /∗ f u l l name f o r t h i s s ch edu l e r ∗/
3 char ∗opt_name ; /∗ op t i on name f o r t h i s s ch edu l e r ∗/
4 unsigned int sched_id ; /∗ ID f o r t h i s s ch edu l e r ∗/
5
6 void (∗ i n i t ) (void ) ;
7
8 int (∗ init_domain ) ( struct domain ∗) ;
9 void (∗ destroy_domain ) ( struct domain ∗) ;

10
11 int (∗ in it_vcpu ) ( struct vcpu ∗) ;
12 void (∗ destroy_vcpu) ( struct vcpu ∗) ;
13
14 void (∗ s l e ep ) ( struct vcpu ∗) ;
15 void (∗wake ) ( struct vcpu ∗) ;
16 void (∗ context_saved ) ( struct vcpu ∗) ;
17
18 struct t a sk_s l i c e (∗ do_schedule ) ( s_time_t ) ;
19
20 int (∗ pick_cpu) ( struct vcpu ∗) ;
21 int (∗ ad ju s t ) ( struct domain ∗ ,
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2.1. Scheduler development

22 struct xen_domctl_scheduler_op ∗) ;
23 void (∗ dump_settings ) (void ) ;
24 void (∗dump_cpu_state ) ( int ) ;
25
26 void (∗ t ick_suspend ) (void ) ;
27 void (∗ tick_resume ) (void ) ;
28 } ;

Listing 2.1: Xen Hypervisor interface for schedulers

When coming up with a new scheduler, with its own policy, it is necessary to imple-
ment one of these structures pointing to the new implemented scheduling functions,
and to add it to a static array of available schedulers so Xen itself can get aware of it.

It is not necessary that all the functions defined in the structure get defined for
any give scheduler. If the function it’s not implemented, it should be initialized
with a NULL pointer and it will be simply ignored. An implementation of a simple
scheduler could set almost all the functions to NULL and the system will still work,
not with a good performance so it might not be very useful. Functions are called via
a macrom. This macrom tests for a non-NULL value and it will return 0 if one is
found. However, not all the functions can be set to null, for instance do_schedule()
must be a valid function that picks a next VCPU to run. So basically a scheduler
that does not implement this function will crash the hypervisor.

The do_schedule pointer will need to point to a real function. This function will re-
ceive the time and return a struct containing the next VCPU to run and the amount
of time for which it should run before being preempted in a task slice structure.

In order to be able to return the VCPU in this function, the scheduler should keep
a record of which VCPUs are available at that time. When a VCPU is started, first
goes through the VCPU initialization function. The scheduler should use this call
in order to keep track of the created VCPUs in the system and their availability at
a given time.

Along with the list of available schedulers, scheduler.c contains all of the scheduling-
independent code. This file contains analog functions to all of those defined within
the scheduler interface. This allows the system to perform several general operations
before calling the functions implemented in the scheduler, if they exist. If we look
at the function schedule(), is the fined in schedule.c where it first deschedules the
running domain and then calls the linked schedule function from the scheduler. The
function from the scheduler will return a new task to schedule and the time which
it should run. Then the code from schedule.c sets up a timer to trigger at the end
of the quantum and begins running a new task.

The scheduler API, showed in Listing 2.1, contains four non optional fields. The
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Chapter 2. Scheduling on Xen

name field should contain a human-readable name for the new scheduler proper iden-
tification, however the opt_name will hold an abridged version in order to select the
scheduler when specifying so to the hypervisor by the "sched" option at boot time.

The definition of the VCPU structure contains a sched_priv pointer. This pointer
should be used to store the private information from the scheduler regarding that
VCPU. At the init_vcpu the required space memory for this purpose should be
allocated and initialized, so after that it can be used through this pointer It is also a
task of the scheduler to destroy it when is not needed anymore, typically when the
destroy_vcpu function is called.

There are also a physical CPU and a domain structure. Some schedulers may need
to differentiate the VCPUs by their owner domains so they can be treated differ-
ently. The domain structure contains a VCPU field with an array of the virtual
CPUs owned by that domain. The scheduler can use this to ensure fairness between
domains, instead of just between VCPUs. It is also important to know that not all
VCPUs for a certain domain might need to be run at the same speed or even at the
same moment. The administrator might want to delegate all scheduling to Xen, so
he will create one VCPU per process in a guest domain. The guest’s scheduler is
then only responsible for assigning tasks to VCPUs.

The dump functions are only there for debugging purposes. Administrators can
request the current status of the hypervisor and this two functions will be called in
order to dump the state of the scheduler.

The latest version of Xen only comes with two schedulers, the EDF old and simple
version, called SEDF, and the newer Credit Scheduler which achieves better perfor-
mance. That and because of the limitations of the SEDF scheduler new versions of
Xen use the Credit Scheduler as the default option.

Modification to the hypervisor sources and recompilation is needed in order to add
a new Scheduler. Generally, each scheduler can be separated out into its own source
file, and the only modification required to the rest of the Xen sources is to add it
to the list of available schedulers at the top of scheduler.c. This makes it relatively
easy to maintain a scheduler outside the main Xen tree.

Regular users can tune the provied scheduler’s parameters to achieve a better sys-
tem performance [12]. Credit Scheduler, for instance is highly configurable. This
should be enough for any regular user of Xen. Figure 2.1 shows two virtual machines
with same CPU allocation and web servers running on them. As you can see the
throughput achieved is different depending on the scheduler selected and the weight
values singed to the virtual machines.
However anyone, in a situation like us, could require scheduling beyond that pro-
vided by existing schedulers. That’s why we have implemented and chosen the load
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Figure 2.1: Schedulers behavior according to their weight

balancing on speed algorithm, which we think is a good choice and matches our
necessities in order to obtain the results we want to achieve.

2.2 Xen Schedulers

Realtime scheduling is a difficult problem for Xen, due to the nature of virtualiza-
tion. It is somewhat difficult to design a realtime scheduler on a single machine
without compromising throughput too much. The two (or sometimes three) tier
nature of Xen makes it even harder. A solution would likely require some close
cooperation between the hypervisor and kernel schedulers, with the kernel scheduler
registering wake-up deadlines with the hypervisor. Even this, however, would only
allow best-effort realtime scheduling. Soft realtime scheduling is important for a lot
of tasks, particularly those on the desktop that involve media recording or playback.

Along the development of Xen several Schedulers have been includes [12], version
4.0.1, the last release and the one used here only includes SEDF and Credit Sched-
uler, being the last one the one used by default.

2.2.1 Roundrobin

The round robin scheduler was included in releases of Xen as a simple demonstration
of Xen’s internal scheduler API. It is not intended for production use. It had a fixed-
length quantum that, in the absence of a guest voluntarily yielding its CPU time,
each domain would be run for a fixed quantum in order.

2.2.2 Borrowed Virtual Time

The Borrowed Virtual Time (BVT) [13] scheduler was included in Xen 2. This
scheduler uses the concept of virtual time. It only elapses while the domain is
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scheduled. Wighting of VCPUs is done by increasing the virtual time at a config-
urable rate per-domain basis. domains with high weight would have bigger virtual
time than one with a small weight after both spending the same amount of wall time
running. The do_schedule function of this scheduler will pick the runnable VCPU
with the earliest effective virtual time. This alone gives a fairly close approximation
of a round robin scheduler. The feature that accounts for the word “borrowed” in
the name is the capability of domains to “warp.” The administrator will have the
responsability of setting a range of time within each domain will be able to set its
virtual time to some point in the past.

There are two limits placed on warping: the maximum amount of time a VCPU
can run warped for, and the maximum amount of time it can warp. The effective
virtual time is calculated by subtracting the warp time from the actual time. This
effective time and the virtual one are associated to a VCPU. A domain can enter
the warping state, in case it needs a low processing latency, so the BVT scheduler
will more likely select it to be scheduled, but this will only occur until its warp time
has been elapsed. After that it will have to wait one of the configurable intervals to
be allowed to warp once again.

2.2.3 Atropos

This scheduler comes also from Xen 2. It provides scheduling with soft realtime.
Atropos guaranteed that every domain would run for n milliseconds every m mil-
liseconds of wall clock time. This was a good approach for virtual machines with a
high sensibility for latency, but it was not ideal for CPU throughput. A fixed portion
of CPU time was guaranteed for each CPU, and the reminder was shared out evenly.

Workloads where a domain spends come of its time using almost no CPU and then
some sing as much as it has available did not work well with the Atropos scheduler.
Mainly because domain could not obtain CPU "bursts". This is due to the fact
that each CPU was guaranteed a fixed allotment of CPU time, and the reminder
was shared out evenly. Also, this scheduler was not able to allow overcommitting of
CPU resources.

Atropos maintained a record of the end of each VCPU’s deadline and the amount
of time it would be allowed to run before this, basically the amount of time it had
to run every interval, minus the amount of time it had run this interval. A queue
will maintain runnable domains ordered by deadline. Whenever the scheduler was
invoked, it would go through all this steps:

1. Get the domain’s remaining runtime and substract the amount of time of which
it has just run. If the resultant runtime is zero, the domain will be moved from
the run queue to the waiting queue.

2. Domains in the waiting queue that are due to run again are moved back to
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the run queue.

2.2.4 SEDF

The Simple Earliest Deadline First (EDF) [14] scheduler is one of the two schedulers
present in the latest release of Xen. It is the oldest of the two, and probably the
main candidate to be phased out some time in the future.

The EDF scheduler sets each domain to run for an n milliseconds slice every m
milliseconds. The values of n and m are configurable by the administrator on a
per-domain basis. When the do_schedule() function is called it will choose to run
the VCPU which has the closest deadline.

Let’s consider these there domains running over a Xen Hypervisor with a SEDF
scheduler:

1. 90ms slice every 500ms

2. 20ms slice every 50ms

3. 30ms slice every 50ms

SEDF scheduler works on VCPU’s but for making it easier we will consider that each
domain has only one VCPU. Initially, domains 2 and 3 have the earliest deadlines
for starting their quanta, because they both need to be scheduled within 50 millisec-
onds. Domain 3 has the earliest deadline for starting its quantum, because it must
be run in the next 20 milliseconds, whereas domain 2 can wait for 30 milliseconds.

After domain 3 has run it moves into the future its next deadline, beyond domain 2.
These two scheduled periodically for around 410 milliseconds, until domain 1 has to
be run. It will then take control of the CPU for 90 ms. The other two domains will
not be able to run until the first one has ended, and taking into account that this is
longer than the period of the other two domains to be runned, it is undeniable that
they will miss their allotments.

In this case, the scheduler will detect it and treat it specially. Allowing domain
1 to run for the whole slice would lead to the other two VCPUs missing theirs, so
the SEDF scheduler will reduce the allocation so that it terminates in time for the
next deadline.

2.2.5 Credit Scheduler

On the latest, and our version of Xen, the Credit scheduler is default scheduler.
If using the "sched" variable in the code is not matching any scheduler in the list
of available schedulers in the file scheduler.c then it will use the Credit Scheduler.
It is widely configurable for the administrator and it seems that will be used for
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some time since the Xen developers are right now working on a new version of it,
improving some aspects of its behavior.

In this scheduler each domain has two main properties associated with it, a weight
and a cap. The weight determines the share of physical CPU time that the domain
will get. The cap is mainly the maximum of CPU time the domain can get. As
you can see in Figure 2.1 weights are relative to each other. It would have the same
performance impact giving two domains weights of 2 and 3 respectively than giving
them 200 and 300 because the relation between them is the same. However the cap
is an absolute value which represent the portion of total CPU that can be used by
a domain.

By default, Credit Scheduler is work-conserving, but the cap parameter is provided
so the administrator can set it in order to force non-work-conserving mode. For
instance, two virtual machines with priorities of 128 and 64, the second one will get
half as much CPU time as the first if both of them are busy. In the case that the
first goes is idle the second one will get the whole CPU. In the case that all domains
in a system have a cap and the value of the sum of all together is below the total
CPU capacity, the scheduler will not be running any domains for some of the time.

The Credit Scheduler uses a fixed-size 30ms quantum. At the end of each quantum,
it selects a new VCPU to run from a list of those that have not already exceeded
their fair allotment. If a physical CPU has no underscheduled VCPUs, it tries to
pull some from other physical CPUs.

Whether a CPU is over or underscheduled depends on how it has spent its credits.
Credits are awarded periodically, based on the priority. Consider the following ex-
ample domains:

Priority cap

Domain 1 64 No

Domain 2 64 35%

Domain 3 128 No

Table 2.1: Example of System Configuration for Credit Scheduler

Again as in the previous scheduler’s example each domain will have one VCPU for
making it simpler. At the beginning of the scheduling interval the first two do-
mains will have 64 credits and the last one will have 128. All the VCPUs have
work to do, however they will be scheduled in a round robin manner. At some
point the first two domains will run out of credits. At this point the VCPU from
the last domain will get all of the CPU for itself until the scheduling interval is done.
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Because first and second domains have the same number of credits if the last do-
main is idle, both of them will get the same amount of CPU. Eventually the second
one will reach its cap of 35%. Then the first VCPU will continue running. This
way, it will ends its allowance of credits, and in the next accounting process it will
be moved to the overscheduled queue. At the same accounting process the other
two VCPUs will be marked as underscheduled and therefore continue to gain credits.

In the time that domain 2 is capped, all new credit allocation that take place will
take this into account, dividing the credits that where supposed to be for domain
2 between the rest of the domains in the system (domain 1 and domain 3). So
administrators should be careful not to set the priority of a domain larger than the
percentage of the CPU allocated to its cap, otherwise bad-performance results will
take place.

A timer will tick every 10 ms a function in order to burn the corresponding credits
of the running VCPUs, it will also cap the minimum number or credits as the num-
ber that would be achieved by a process running for one complete time slice having
started with no credits.

This minimum value has a small effect on the scheduling algorithm. If a VCPU
is getting enough runtime to be exceeding the minimum threshold, the rest of the
VCPUs must be either capped or idle. This way the running VCPU will get all
the credits when determining allocation of the credits, way more than it otherwise
could, balancing out the drop. This is because the other VCPUs will be ignored
in the credit allocation due to their capped or idle state. When the other VCPUs
get back to work they will take part then in the credit allocation and the currently
running VCPU will be throttled back to its fair share.

23



Chapter 2. Scheduling on Xen

Figure 2.2: Example of a system running with a Credit Scheduler

In Figure 2.2 you can see the state of a system running with the credit scheduler.
there are four physical CPUS, with their associate runqs. This runqs contain the
VCPUs with their associated credit value. So this VCPUs will get scheduled fol-
lowing this information and the credits policy of the Credit Scheduler. There are,
also, five active domains that own the VCPUs, with their credit and cap scheduler
information associated.

2.2.6 Credit Scheduler 2

A new credit scheduler is currently being developed[15] with new features and fixes
to the credit/priority management of the previous one. It tries to improve fairness,
mainly the ability of a VM to get its "fair share" of CPU, defined in terms of weight,
cap and reservation.

Another main target they are trying to achieve work well for latency-sensitive work-
loads. Ideally, if a latency-sensitive workload uses less than its fair share of CPU,
it should run as well when the system is loaded as it does when the system is idle.
If it would use more than its fair share, then the performance should degrade as
gracefully as possible.

Another aspect it will improve are hyperthreads. A VCPU running on a core by
itself will get a higher throughput than a VCPU sharing a core with another thread.
Ideally, the scheduler should take this into account when determining the “fair share”.
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Powering down cores or sockets into deeper sleep states can save power for rela-
tively idle systems, while still allowing a system to perform at full capacity when
needed. This new scheduler will eather implement this power-vs-performance trade-
off, or provide support for another system to do so.

Patches for its usage as well as some further information about its current develop-
ment is available at the Xensource wiki web page [16].

25





Chapter 3

Load Balancing on Speed

Multicore processors and even several processor chips hardware computers are preva-
lent nowadays in many different systems. All hardware resources available within
a physical system continues to rise at a very significant rate. It is very likely that
the degree of the parallelism on-chip will significantly increase in the near future
and processors will contain tens and even hundreds of cores. Making full use of this
hardware and achieving a correspondent performance is nowadays a hard task. Vir-
tualizing several different machines into a one-physical host is a common approach
to make full use of this hardware. This virtualized machines may contain its own
operating system with different types of applications running on them. Making a
good scheduling and properly matching of the virtual machine needs to the physical
resources is a key task to achieve performance and fairness. New parallel applica-
tions arise with different and wide targets. Very often these applications are focused
in Scientific Computing. Allowing them to be executed in virtual machines without
punishing performance is an important and challenging task.

It is proposed a generic technique to load balance parallel scientific applications
written in SPMD style and executed within virtual machines. This technique is de-
signed to perform well on multicore processors when any of the following conditions
is met:

1. The number of tasks in an application might not be evenly divisible by the
number of available cores;

2. Asymmetric systems where cores might run at different speeds

3. Non-dedicated environments where a parallel application’s tasks are competing
for cores with other tasks.

Virtual Environments, such as Xen, are written and optimized mainly for running
Operating Systems with multiprogrammed commercial and end-user workloads. The
Load Balancing on Speed[4] is a balancing technique designed to perform well on
multicore processors in several and different situations:
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1. The number of VCPUs assigned to an operating system might not be evenly
divisible by the number of available physical cores

2. Asymmetric systems [17] where physical cores might run at different speeds

3. Non-dedicated environments where a parallel application running in a domain’s
virtual CPUs are competing for cores with other virtual CPUs for the same
physical CPU

The developed scheduler manages all the VCPUs within the operating systems that
are supposed to run parallel applications and uses migration to ensure that each
VCPU is given a fair chance to run at the fastest speed available system wide.

3.1 Load Balancing

Load balancing is known to be extremely important in parallel systems and appli-
cations in order to achieve good performance. Balancing VCPUs in a virtualization
environment like Xen could be similar to those applied to process withing an op-
erating system. Scheduling methods from operating systems could be adapted and
tuned in order to achieve a good performance in these virtualization environments.

The current design of load balancing mechanism present in Xen, mainly on credit
scheduler makes some assumptions about the operating system’s workload behavior.
Interactive workloads are characterized by independent tasks that are quiescent for
long periods of time (this is relative to CPU-intensive applications). Server Virtual
machine workloads contain a large number of threads that are mostly independent
and use synchronization for mutual exclusion on small shared data items and not
for enforcing data or control dependence. To properly manage these workloads, load
balancing algorithms in use do not start threads on new cores based on global system
information.

Another implicit assumption is that applications are either single threaded or, when
multi-threaded run in a dedicated environment, with properly selection and match-
ing of VCPUs and physical CPUs. This is not always true, since we might want to
use our virtual machine for different and heterogeneous environments. It is widely
common to have different services and therefore different workloads running on the
virtual machines withing a virtualization environment like Xen. Scheduler’s load
balancer must take this into account and balance properly VCPUs regarding their
domain’s contained workloads.

The main characteristics of actual existing load balancing implementations can be
described as follow:

1. They are designed to perform best in the cases where in the cases where cores
are frequently idle
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2. Balancing uses a coarse-grained global optimality criterion (equal queue length
using integer arithmetic).

These heuristics work relatively well for current commercial and end-user multi-
programmed environments but are likely to fail for parallelism application charac-
teristics is an essential step towards achieving efficiently utilization when virtual
machines are running parallelism based workloads. This is also prone to fail in the
task of achieving a good performance if the virtual environment is running over
an asymmetric system. Developing scheduler support for proper virtual machine
characteristics running parallel applications is an essential step towards achieving
efficient utilization of highly heterogeneous virtualization environment where a wide
variety of virtual machines with different services can be runned.

3.2 Load Balancing HPC applications

Most of the existing implementations of High Performance Computing on scientific
applications use the SPMD programming model. The SPMD programming model
which involves several phases of parallel computation followed by barrier synchro-
nization. The OpenMP paradigm fully explored in this project provides SPMD
parallel computation. This sort of computation model contravenes the assumptions
made in the design of virtual system level load balancing mechanism: threads run-
ning within systems and therefore running in VCPUs are logically related, have
inter-thread data and control dependence and have equally long life-spans.

SPMD applications commonly make static assumptions about the number of cores
available and assume dedicated environments. This might be true in some scenarios
with no virtualization and dedicated hardware, but it is certainly not true to the
most cases of virtualization environment where no dedication is performed and a
wide variety of different applications is executed within the virtual machines. When
applications executed in virtual machines are SPMD programing model based, they
are run with static parallelism or plainly restrictions on the degree of task paral-
lelism due to the non existent parallel domain decomposition. For instance, many
parallel jobs often request an even or perfect square number of processors, this is
not properly balanced by the current operating systems, and therefore making the
virtual machine have the required number VCPUs (even not matching the number
of physical CPUs) should be properly balanced by the hypervisor’s scheduler.

It is also important to take into account physical asymmetries or uneven VCPUs
distributions across cores are likely to be founded in future systems. For instance,
The Intel Nehalem processor provides the Turbo Boost technology [18] that, if the
required situation is achieved, certain over-clocks cores until a temperature thresh-
old is achieved. This result in cores running at different clock speeds. Some recently
proposed OS designs such as Corey [19] or those under development at Cray and
IBM provide for reserving cores to run only OS level services.
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In order to achieve good performance for domains running SPMD applications re-
quires that:

1. All tasks within the application make equal progress

2. The maximum level of hardware parallelism is exploited

Considering a two physical CPU system, with a total of three VCPUs within two
running domains. One of the domains will have two VCPUs and the other just
one. The Xen Scheduler will most likely assign two VCPUs to one of the physical
cores and the other VCPU to the other physical core. This will lead to the domains
running in the overloaded core perceiving the system as running at 50% speed. The
impact on performance will be considerably. Administrators might be able to cor-
rect this behavior properly selecting the desired parameters of the scheduler in order
to give priority to one of the domains, but full fairness and equality uses of physi-
cal CPU would be hard to achieve. The implemented approach also addresses this
scenario by explicitly detecting and migrating VCPUs across physical CPUs run
queues, even when the imbalance is caused by only one VCPU.

In dedicated environments where applications provide orders of magnitude perfor-
mance improvements [20]. Most of the time virtualization environments are non-
dedicates or oversubscribed. In this kind of systems, some form of yielding the
processor is required for an overall progress. A thread that yields remains on the
active run queue and hence the OS level load balancer counts it towards the queue
length (or load). On the other hand, a VCPU that sleeps is removed from the ac-
tive run queue, which enables the hypervisor’s scheduler level load balancer to pull
VCPUs onto the CPUS where VCPUs are sleeping.

3.3 Motivation For Speed Balancing

In SPMD applications threads have to synchronize on each barrier. When executed
the parallel performance is that of the slowest thread and variation in the "exe-
cution speed" of any thread negatively affects the overall system utilization and
performance. A particular VCPUs containing the parallel threads will run slower
than the others due to running on the physical core with the longest queue length,
sharing a core with other VCPUs with higher priority or running on a core with
lower computational power (slower clock speed, like in an asymmetric system). In
our implementation of load balancing on speed cores are classified in slow or fast
cores depending on the "progress" perceived by the hypervisor. Figure 3.1 shows how
the speed balancing algorithm would classify the cores in the previously mentioned
example.
Consider N virtual CPUS from a domain running a parallel application with N

threads. The operating system will see N CPUs and match each one of the appli-
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Figure 3.1: Classification of cores following Speed Balancing

cation threads to the CPUs. Let’s considerer these N VCPUs are running in M

physical homogeneous cores, N > M . Let V be the number of be the number of
VCPUs per physical CPU V =

⌊ N
M

⌋

Let FC denote the number of fast cores, each
running V VCPUs and SC the number of slow cores with V + 1 VCPUs. Assume
that VCPUs will execute for the same amount of time T secondsand balancing ex-
ecutes every B seconds. Intuitively, T captures the duration between two program
barrier or sync points. With the Xen regular load balancing the total program run-
ning time under these assumptions is at most (V 1) ∗ T , the execution time on the
slow cores.

We assume that migration cost is negligible, therefore the statements about perfor-
mance improvements and average speed provide upper bounds. Assuming a small
impact of VCPU migration is reasonable: The cost of manipulating VCPUs struc-
tures is small compared to a time slice, cache content is likely lost across context
switches when threads (or in our case VCPUs) share cores. Li et al [21] use mi-
crobenchmarks to quantify the impact of cache locality loss when migrating tasks
and indicate overheads ranging from µ seconds (in cache footprint) to 2 milliseconds
(larger than cache footprint) on contemporary UMA Intel processors. For reference,
a typical scheduling time quantum in Xen Hypervisor is 10ms.

Under this circumstances, using a fair per core scheduler the average VCPU speed
is ϕ ∗ 1

V + (1 − ϕ) ∗ 1
V −1 being ϕ the fraction of time the VCPU has spent on a

fast core. The Xen credit based balancing will not migrate VCPUs unless they go to
sleep or block. This way the overall domain speed would be the one from the slowest
VCPU (V 1)∗T . Instead, ideally, each VCPU should spend an equal fraction of time
on the fast cores and on the slow cores (looking at the ideal for speed balancing
to perform better than Xen, not the ideal for optimal load balance on every case).
The asymptotic average VCPU speed becomes 1

2∗V + 1
2∗(V +1) which amounts to a

possible speedup of 1
2∗V .

Perfect fairness could be achieved but instead an argument is followed based on
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necessary but not sufficient requirements: In order for speed balancing to perform
better than Xen provided balancing each thread has to execute at least once on a fast
core.

There are some constraints on the number of balancing operations required to satisfy
this condition, indicating the threshold at which the speed balancer will be expected
to provide a better performance. Below the mentioned threshold the two algorithms
will be likely to perform in a similar manner. So when negative qualifiers are men-
tioned it is relating to achieving a similar performance than the Xen’s actual default
scheduler.

Lemma: In order to satisfy the necessity constraint the number of balancing steps
is:

2 ∗
⌈

SC

FC

⌉

(3.1)

In the case FC < SC, in each step of the algorithm one VCPU will be pulled
from a slow queue into a fast queue. This simple action, migrating a VCPU will flip
the core from slow to fast and the receiver from fast to slow, meaning that at each
step it is given FC ∗ V VCPUs the opportunity of running in a fast core. This is
done continuously for SC

F C steps and at the end N − SC VCPUs have run once on
a fast queue. There are SC VCPUs left that had no chance at running fast. From
all the queues containing these VCPUs we need to pull a different thread onto the
available fast queue and run one interval without any migrations. This process will
take SC

F C steps. Then the total number of steps is 2 ∗ SC
F C .A similar reasoning shows

that for FC ≥ SC two steps are needed.

This describes an actual algorithm for speed balancing which expected behavior
can be discussed. Running queues run at most one thread per step and the rate of
change is slow. Because of the fact that threads should not be migrated unless they
have had a chance to run on a queue, balancing could start after V + 1 time slice:
increasing load postpones the need for balancing. In the lemma it is provided the
heuristics to dynamically adjust the balancing interval if an application behavior
knowledge is available.

The whole domain running time is Total_time = (V + 1) ∗ T and according to
the lemma the prerequisite for speed balancing to be profitable is the one shown in
Equation 3.2

Total_time > 2 ∗
⌈

SC

FC

⌉

or (V + 1) ∗ T > 2 ∗
NmodM

M − NmodM
(3.2)
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Assuming that the balancing algorithm implemented is performed synchronously by
all cores. Note that the implementation performed in this project uses a distributed
algorithm so VCPU migrations might happen with a higher frequency, proportional
to the number of cores.

With this argument homogeneous systems can be easily extended to heterogeneous
systems where cores have different performance by weighting the number of threads
per core with the relative core speed.

3.4 Algorithm

It has been provided a balancer that manages the domain VCPUs on user requested
domain. Domains can be marked as highly parallel and those are the one that will be
balance in order to achieve the performance benefits. The implementation does not
require any application modifications, it is completely transparent to the domains
users and the Xen system administrator. Also, it does not make any assumptions
about implementation details, specially no assumptions about thread idleness are
made (this is an application-specific notion, or about synchronization mechanism).
Also no assumptions on synchronization mechanisms are made: busy-wait, spin
locks, or mutexes. Blocking or sleep operations are captured by the algorithm since
they will be reflected by increases in the speed of their core co-runners.

For the implementation of the algorithm the speed of a VCPU would be defined
as speed =

trunning

trunnable
, Where trunning is the time the VCPU has been running on the

core and the trunnable is the time the VCPU has been runnable This is an improve-
ment over previously proposed Load Balancing on Speed algorithms [4], since we
believe this is a much more better way of capturing the share of CPU time received
by a VCPU. This would also be easily adapted to capture behavior in asymmetric
systems. It is also simpler than using the inverse of the queue length as a speed
indicator mainly because that would require weighting VCPUs by their priorities,
which can have different effects on running time depending on the task mix and
the associated scheduling classes. This is consider to be a more elegant approach
than the one proposed by Hofmeyr et al. [4]. This balancer measured speed like
speed = texec

treal
which is not like to achieve the same amount of performance as ours in

the sequential parts of SPMD applications. Taking into account the runnable AMD
running time of the VCPU would make our algorithm aware of the sequential parts
of the executing application leading to a better overall performance. Some other
way of measuring speed will be discussed further in the conclusions section, Section
5.

Our implementation of the speed balancing uses a timer on each physical CPU
structure in the Xen’s scheduler. Our approach is made scalable and distributed
along the CPUs. The timer of each CPU will tick our balancing function peri-
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odically, making our function start running. The balance function will check for
imbalances, correct them pulling VCPUs from a slower core to the local core (if
possible) and then sleep again. The frequency which the balancer is ticked (balance
interval) determines the frequency of migrations. This is a parameter that should
be tunned properly because it is likely possible that can impact the performance of
the balancer. From previous research we have taken the optimum interval to be 100
ms, although further values will be discussed in section 5.

Note that in the following description the notion of a core’s speed is an entirely
function specific notion. When several applications run concurrently each might
perceive the same core differently based on the task mix. When our balancer is
ticked, it performs the following steps:

1. For every VCPU Vi in the current physical CPU Cj it obtains the speed V Sij

over the elapsed balance interval, using the trunning and the trunnable met-
rics associated to each VCPU.

2. It computes the local core speed CSj over the balance interval as the average

of the speeds of all the threads on the local core: CSj = average
(

V Si
j

)

3. It computes the global core speed Sglobal as the average speed over all cores:
Sglobal = average (CSj).

4. It attempts to balance if the local core speed is greater than the global core
speed: Sj > Sglobal

The step 4 says the balancer attempts to balance, this means that it will search for
a suitable remote core Ck to pull threads from. A remote core Ck will be suitable
if its speed is less than the global speed (Sk < Sglobal) and it has not been involved
in migration in the last two balance intervals. This block post-migration is two bal-
ance intervals because we need to ensure that the balanced threads on both cores
have run for a full balance interval and the core speed values are not stale. This
heuristic has the side effect that it allows cache hot threads to run repeatedly on the
same core. Once it finds a suitable core Ck , the balancer pulls a thread from the
remote core Ck to the local core Cj . The balancer chooses to pull the thread that
has migrated the least in order to avoid creating tasks that migrate repeatedly.

After balance have been performed the timer will get set up to wake up in the
next 100 milliseconds, in order to perform a new balance. This occurs for each
thread and each 100 ms.

3.5 Speed Balancing Implementation on Xen

To implement the Load Balancing on Speed a new Xen Scheduler have been de-
veloped. In our code a file sched_speed.c contains the code of our scheduler. The
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scheduling of the core queues has been implemented following the Credit Scheduler
algorithms which seemed to perform well and are highly configurable from an ad-
ministrator point of view, but any other matching approaches may be used to test
our balancing algorithm [22].

Several additions have been made to the structures usually managed by a scheduler.
Using the structures reserved pointer (as showed in Section 2.1) we have stored the
needed info, of special mention are: the speed values, the number of balance intervals
since last migration, timers for calling the balance function and lockers to prevent
from problems of atomicity.

During the initialization of the physical CPU structure along with all needed vari-
ables of the timer is set up to call the balancer. Later when the Xen’s SMP subsystem
is alive the CPU timers are kicked to call the balance function in the next 100 mil-
liseconds.

When the balance function is called it will perform the steps explained in Sec-
tion 3.4. If those steps required so, the migration function will be called to perform
a balance action between the physical CPUs selected, also variables will be updated
properly.

Finally, it will tell the timer to wake the function up again in the next 100 mil-
liseconds. The balance interval can be easily changed by a parameter within the
system, in order to be able to perform different tests.

3.5.1 Algorithm and Structures

These are some of the main structures implemented in order to make our scheduler
work. They are similar to those on the credit scheduler since our version of the
algorithm maintains the same behavior per queue as the Credit Scheduler. As com-
mented the big difference comes with the load balancer.

Listing 3.1 shows the constant that defines the size of the time slice within the
balancers from the cores wake up and start collecting the information in an attempt
to balance cores. It is a constant because is an important parameter that we might
want to tune in order to look for the best performance of the algorithm.:

1 #define LBS_MSECS_PER_BALANCE 100

Listing 3.1: Balancing interval constant

For the purpose of information collecting some macros have been coded. Macros in
listing 3.2 access the proper Xen’s structures in order to obtain the current running
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and runnable time that are used in for VCPU’s speed calculation in our approach
of the algorithm, as deeply explained on Section 3.4.

1 #define t_running ( _lbs_sched_vcpu) _lbs_sched_vcpu−>vcpu−>runstat e .
time [ 0 ]

2 #define t_runnable (_lbs_sched_vcpu) _lbs_sched_vcpu−>vcpu−>runstat e .
time [ 1 ]

Listing 3.2: Running and runnable time macros

As fully explained in Section 2.1, making use of the special pointers implemented in
Xen, reserved for the schedulers, we have defined some structures for our schedulers.
This structures helps us to keep track of the system in order to make the proper
scheduling and balancing decisions.

Listing 3.3 shows our scheduler’s physical CPU structure. This represents a core
from the systems and holds its related information. For balancing purposes the most
important variables are: cpu_speed, last_suc_balance, numpulled and numpulled.
The last two were added for debug and statistics collection, specially those statistics
shown in graphs on Section 4.2.4. The cpu_speed as it might been guessed holds
the speed of the CPU. And finally last_suc_balance helps us to keep track of the
last successful balance in order to implement the rule of "it has not been involved in
migration in the last two balance intervals", fully explained on Section 3.4

1
2 struct lbs_sched_pcpu
3 {
4 struct l i s t_head runq ;
5 uint32_t runq_sort_last ;
6 struct t imer t i c k e r ;
7 struct t imer t t i c k e r ;
8 struct t imer ticker_LBS ;
9 unsigned int t i c k ;

10 unsigned int i d l e_b ias ;
11 uint64_t cpu_speed ;
12 uint16_t last_suc_balance ;
13 int numpulled ;
14 int numpushed ;
15 } ;

Listing 3.3: LBS Scheduler physical CPU structure

Code within Listing 3.4 the implementation of the VCPU structure for our scheduler.
It holds the relevant information for VCPUs in order to be properly balanced and
scheduled. Of special mention is the speed variable which holds the speed value
associated with the VCPU. This is calculated making use of the macros previously
explained in this Section and the algorithm on Section 3.4,
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1
2 struct lbs_sched_vcpu
3 {
4 struct l i s t_head runq_elem ;
5 struct l i s t_head active_vcpu_elem ;
6 struct lbs_sched_dom ∗sdom ;
7 struct vcpu ∗vcpu ;
8 atomic_t c r e d i t ;
9 s_time_t start_time ;

10 uint16_t f l a g s ;
11 int16_t p r i ;
12 uint64_t speed ;
13 } ;

Listing 3.4: LBS Scheduler VCPU structure

There is also a domain structure that holds information regarding domains, see
Listing 3.5. There are some variables important for scheduling. The only balancing
used variable is the last one, hpcdomain, which indicates to our algorithm if a domain
is intended for parallel computing and should be balanced on speed.

1 struct lbs_sched_dom
2 {
3 struct l i s t_head active_vcpu ;
4 struct l i s t_head active_sdom_elem ;
5 struct domain ∗dom;
6 uint16_t active_vcpu_count ;
7 uint16_t weight ;
8 uint16_t cap ;
9 u int16 hpcdomain ;

10 } ;

Listing 3.5: LBS scheduler domain structure

The scheduler private variables are implemented as shown in Listing 3.6. The two
more relevant for our balancing algorithm are the global_speed and the numbalances.
The first one helps us to keep track of the global speed, average of all the CPUs
within the system, as explained on Section 3.4. The second one is mostly for statistics
purposes and tracking of the algorithm.

1 struct lbs_sched_private
2 {
3 sp in lock_t lock ;
4 struct l i s t_head active_sdom ;
5 uint32_t ncpus ;
6 struct t imer master_t icker ;
7 unsigned int master ;
8 cpumask_t i d l e r s ;
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9 uint32_t weight ;
10 uint32_t c r e d i t ;
11 int cred it_balance ;
12 uint32_t runq_sort ;
13 uint64_t global_speed ;
14 int numbalances ;
15 } ;

Listing 3.6: Scheduler private variables structure

Appendix A includes the main function of our scheduler. For clarity and easy reuse of
the code it is strictly implemented following the defined rules shown in Section 3.4.
The four balancing steps mentioned above are clearly defined and implemented.
Comments are also added to make it easy to understand and to identify them.
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Experiments and results

In order to prove our assumptions about Load Balancing on Speed, the algorithm
has been implemented on the last available version of the Xen hypervisor, 4.0.1.
Then tested using several experimental environments involving virtual machines
and applications running at the same time. In this section we present the most
representative of the obtained results in order to be able to achieve some interesting
conclusions.

4.1 Experimental Setup

The load balancing on Speed algorithm has been implemented as a new Scheduler
to Xen. We have used the latest resleased Xen hypervisor package from the Debian
project [23], from the unstable (squeeze) distribution. The kernel used is also the
latest in this GNU/Linux distribution, the Linux 2.6.32-5, compiled for use with the
Xen hypervisor. Making use of the debian package management tools, sources have
been modified, compiled, repacked and installed on the target testing host.

A debian testing (squeeze) distribution along with unstable version of the modi-
fied Xen-hypervisor and the Xen-tools packages (for proper VM management) have
been installed on the test system. Table 4.1 shows the physical configuration of the
system used for testing.
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Processor

Xeon X5670 2 chips x 6 cores (2,93 GHz)
L1 Cache (per Core) 32KB

L2 Unified Cache 256KB
L3 Unified Cache 12MB

Memory 48 GB 3xDDR3-1333

Operative System GNU/Linux 2.6.32-5-amd64

G++ Compiler 4.4.5 -O3 -fopenmp

Table 4.1: Intel Westmere architecture used in the experiments

The Intel Westmere constitutes the new 32nm processing technology from Intel but
it maintains all the aspects of the Nehalem microarchitecture, like the previously
mentioned Turbo Boost.

For debugging purposes and initial development, the IPMI tool and its Feature
Serial Over Lan (SOL) have been used. With the proper set up and the required
tools this technology allows us to dump the serial port output through the LAN
port. This way we can see the serial output from almost any computer with an in-
ternet connection. So it has been possible to debug the scheduler and the Xen boot
up process from a different machine through the SOL technology, compiling the hy-
pervisor with the proper debug flags. This is really useful to debug the hypervisor
system during the boot up process and when hangs occur. From the serial console
the Xen debug keys can be used in order to perform several intersting debugging
actions such as dumps of different structures, reboots or memory info. When Xen
is properly booted xentrace also becomes an intersting debugging tool to see what
is really going on in the system, although the use of the xenalyze tool is needed to
make of the output of this tool human readable.

4.1.1 Virtualization environment setup

As discussed before, a virtual environment holds a wide variety of virtual machines
with different applications. In order to test the algorithm we have come up with our
own virtualization environment. We have assume a scenario where many different
applications are executed every day, the typical workload from many HPC research
groups [24], with almost all the research and services machines being multicore.

It is common for the users to have the need of a web pages or a web services that
needs to be allocated somewhere. The system administrators would have multicore
machines with a virtualization environment set up [25]. This way they can make
full use of the multicore machine and at the same time serve several different needs
with just one physical host. After setting up the machine, another request for a
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computer to execute parallel application comes. It is allocated according to the best
the administrators can do to fit the user’s needs.

To address these needs we are assuming the virtual environment described in Ta-
ble 4.2.

Virtual Parallel Application Java Web Server
Machine Virtual Machine Virtual Machine

Domain 1 Domain 2

VCPUs 0 1 2 3 4 5 6 7 8 9 0 1 2 3

Mapped CPUs 0 1 2 3 4 5 6 7 8 9 8 9 10 11

Table 4.2: Virtualization Environment used for the tests

As you can see, the cores numbered 8 and 9 are shared between the two virtual
machines. The reason for doing such a thing is because the Java server is not likely
to use the 4 VCPUs but it might use them during a peak of intensive workload.
Then, if a parallel application is running and the Java server in Domain 2 is making
full use of the 4 VCPUs it is desired for the parallel application to be able to still
achieve a good performance.

For the Java server we have chosen the SPECjbb2005 [26] suite which is a set of
SPEC’s benchmarks in order to evaluate the environment with the performance of
the Java side of a server. It emulates a there-tier client/server system (emphasizing
the middle tier), considered the most common type of server-side Java application
today. The benchmark exercises the implementations of the JVM (Java Virtual Ma-
chine), JIT (Just-In-Time) compiler, garbage collection, threads and some aspects
of the operating system. On the side for Domain 1 the SPEC omp2001 [27] have
been used in order to test a parallel application. This is a SPEC benchmark suite
for evaluating performance based on OpenMP applications. Table 4.3 shows the
benchmarks from the whole suite selected for the tests.

Categories Benchmarks

Highly parallel - CPU Intensive fma3d, ammp, wupwise

Highly parallel - Memory Intensive art, equake, applu, swim

Table 4.3: SPEC omp2001 selected benchmarks

Our Load Balancing on Speed scheduler will just balance VCPUs from Domain 1,
the virtual machine with running the parallel application (previously selected by the
administrator). This will make the balancer migrate only the VCPUs from Domain
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1 and just within the CPUs assigned to that Domain. As expected, and discussed
in the next section, not only Domain 1 will be affected by the balancing but also
the performance of other virtual machines, those sharing cores with Domain 1, will
change.

4.2 Performance results

When threads reach a barrier they often start spinning until the defined threshold
is obtained. The idea is that waiting on the spin lock, the thread will be repeatedly
polling a value, while is queued to enter a critical section. The purpose of spinning
is that the desired synchronization barrier may be released soon enough that it is
worth the wait instead of incurring the overhead of yielding the processor o blocking
until the lock is released

Here we present and discuss the results obtained from the different runs conducted
within the virtualization environment. We have performed some basic runs an then
we have obtained the results for different given values of the spin parameter, indi-
cated to the gcc compiler by an environment variable. The initial idea is to avoid
running spinning threads on fast cores and save these "power hungry" cores for other
threads.

4.2.1 Baseline comparision

Un this setup, the two virtual machines are up and running. The Java server is exe-
cuting its Java instances as usual and we measure the values of the SPEC omp2001
applications with the default scheduler of Xen and our implementation of the Load
Balancing on Speed.
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Figure 4.1: Speedup of a basic run of the set up

The speed up for our load balancer is shown in the Figure 4.1 As you can see our
LBS scheduler seems to perform better than Xen’s default one. This measures are
just for the Parallel application’s Virtual Machine which actually is the one we are
trying to balance. The performance is better because the Credit Scheduler from
Xen will assign VCPUs to the shared cores. These cores are shared with the other
virtual machine, they will probably be slow. Having the same VCPUs running on
the slow cores would hit performance of the parallel application.

Our balancer will detect these slow cores and pull VCPUs from them in order to
make all the Domain’s VCPUs run the same amount in slow than in fast cores.
This then translates to a better overall performance and the correspondent speedup
shown in Figure4.1

Our original idea was that speedup would be much higher for the CPU intensive
benchmarks since migrations deteriorate the performance of memory intensive ap-
plications. However, some benchmarks such as ammp, we do not observer this
behavior. Up to know we are not able to propose a convincing theory about this.
A future deeply debug of the execution of these benchmarks could determine which
factors decrease our speedup.

4.2.2 Performance impact due to sharing CPUs

We have tried to measure the impact of sharing the CPUs within the two studied
schedulers. First we have measured the SPEC omp2001 selected benchmarks when
their Domain is the only one in the system. Then the same applications have been
tested with the full scenario up (see Table 4.2), and running the SPEjbb205 on
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Domain 2.

Figure 4.2: Peformance impact in the schedulers due to cpu sharing

Figure 4.2 shows the results of the measured scenario. There is an understandable
performance punishment due to the sharing of the 8th and 9th CPUs with the other
virtual machine. The results show, again how our LBS Scheduler is able to better
manage CPU shared environemts than the Credit Scheduler. Because of the im-
plemented algorithm, LBS Scheduler will balance the VCPUs assigned to the slow
CPUs making the threads progress "toghether" in an effort to make then achieve
the synchronization barriers all at the same time. On the other hand the Credit
Scheduler will not be aware of this shared slow cores leading to a bigger impact on
performance.

4.2.3 Adjusting the spin threshold

As explained earlier in this Section, the spin threshold is the number of instructions
that the thread will be wating in the spin lock. Spining means the thread will be
repeatedly pollin a value. This is a threshold that is likely to impact in the perfor-
mance of our balancer, since keeping the threads "running" after reaching the lock
will make them still use CPU power.

Several values have been choosen so we can have an overview of the real impact
of this threshold in the studied schedulers, specially on our proposed algorithm.
Four representative values have been selected for the test: 0, 100, 1000 (1K) and
20M.
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Figure 4.3: LBS speedup for a spin threshold of 0

Figure 4.3 shows the case with no spin at all (spin=0). There is not much speedup
achieved for the Parallel Application domain using LBS Scheduler. That is because
when no spin is used, the threads go to sleep when they are done and have reached the
synchronization barrier, leaving the VCPU with no workload that, in consecuence,
might also go to sleep. Credit Scheduler will detect this situation and take advantage
of the free cores, not getting his performance highly impacted by the fast slowest
threads.

Figure 4.4: LBS speedup for a spin threshold of 100
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In Figure 4.4 results for the spin value of 100 are shown. The speedup is slightly
better than in Figure 4.3 (with no spin). This is because the threads will spin for
a little before going to sleep an that seems to benefit the Load Balancing on Speed
Scheduler.

Figure 4.5: Speed up of a basic run of the set up

The values of speedup when there is a spin threshold of 1k instructions are shown
in Figure 4.5. This threads will be spining for 1k instructions and this, although is
not uniform, seems to perform better. Speedup is achieved in almost all threads so
1k spin value is starting to be a profitable value in order for our LBS Scheduler to
achieve a good performance against the default Credit Scheduler.
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Figure 4.6: Speedup of a basic run of the set up

The top speedup values achieved tunning the spin threshold is the one for the 20M.
Figure 4.6 shows these results. The credit scheduler will not ve able to get noticed
of the threads that achived the synchronization barrier at least for 20M instructions,
since they will be spining until then. On the other hand, our Scheduler will take
this VCPUs and balance them properly according to the CPU speeds.

From the obtained results we can tell that, there is a tendency for our scheduler
to perform better the greater the spin value is. At least this is true for specs like
wupwise, swim, equake... but what is undeniable is that almost all the specs get a
good speed up with our scheduler with the spin value of 20.000. A better overview
of all these results is provied in Figure 4.7, which includes all speedups obtained
for all the benchmarks and the different spin threshold values. From there you can
tell that speedup is likely to increase along with the spin threshold, probably until
is equal or higher than the biggest wating a thread will have on a synchronization
barrier in the benchmark executed. Point after what increasing the spin value will
make no performance difference since threads will spin the same amount of time
(which is all the time they are waiting on the lock).
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Figure 4.7: Java server benchmark perform in a regular run for setup

4.2.4 SPEC jbb 2005

It is also important not to impact the performance of the other virtual machines
so we have taken track of the behavior of the Virtual Machine containing the Java
Server. Not only the performance is not impacted by our scheduler but improved.
Figure 4.8 shows the performance improvement obtained with our scheduler of the
execution of the SPEC jbb 2005 when executing parallel applications (the SPEC
omp2001) on the other virtual machine.
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Figure 4.8: Java server benchmark perform in a regular run for setup

This unexpected results are reasonable taking into account that the percentage of
shared VCPUs by this virtual machine is very high (50%). We are balancing the
other virtual machine but at the same time speeding up this one. The Balancer
is selecting the threads from the slowest cores, and the candidates for that are the
shared cores, which will probably be the slowest in the system. Then VCPUs from
the HPC virtual machine are pulled to another faster cores available for this virtual
machine, leaving VCPUS of the Java Server alone in the core. This leads to the
VCPUs from the Java Server spending more time alone in the shared cores than
with the Credit Scheduler Finally that results in a considerably speed up of the
non-balanced virtual machine.

In order to prove our hypothesis we have collect some statistic, debugging the Xen
Hypervisor, of one of the benchmark’s execution. Figure 4.9 shows that, with a big
difference, the main two cores where cores are pulled out are the two shared ones:
8 and 9. They also are the ones where never receive cores from other CPUs.
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Figure 4.9: Number of VCPUs being pulled and pushed per core

This is translated to most of the time our Balancing algorithm leaving cores 8 and 9
free for the VCPUs of the second Domain. Therefore, increasing the 2nd Domain’s
performance. Figure 4.10 show the relation between pulled and pushed VCPUs and
almost all cores are been pushed more cores than pulled but the two shared ones.

Figure 4.10: Ratio of Pulled/pushed VCPUS per core

Since this difference between the default scheduler and LBS is attributed to the high
percentage of sharing CPUs of this machine we have finally perform some runs in
order to see the evolution of speedups changing the number of shared CPUs.

4.2.5 Increasing number of shared cores

In order to prove the assumptions made on previous section we have increased and
compared the number of shared cores.
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Figure 4.11: Speedup for 2 and 4 shared cores

We have given 6 cores to Domain 2 and mapped these two new cores to other two
shared CPUs with Domain 1. This way we are increasing the competition for CPU
time up to 4 cores instead of 2, which is the previous case. The results are shown in
Figure 4.11. The speedup against the Credit Scheduler for 4 shared cores is bigger
than it is for 2. That is because the balancing of our algorithm performs great in
the task of mitigating the effects of this slow shared cores, or, at least, better than
Xen default’s scheduler. In consequence we can conclude that when scenarios have
a high number of shared cores, our algorithm is likely to perform better than the
Xen’s default option.
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Conclusions and Future Work

Actual and future machines are likely to be heavily multicored. These systems are
able to achieve such a high performance that a single user or a single operating
system will probably not be able to get the most out of it. An approach to make full
use of this potential is virtualization. Scheduling and therefore properly balancing
is a key step in achieving this full use of the hardware’s potential.

Here he have proposed the Load Balancing on Speed algorithm for use within the
Xen virtualization system in order to accelerate the virtual machines dedicated to
intensive execution of parallel applications.

In an effort to reproduce the most common virtualization scenarios we presented
an heterogeneous one where parallel execution applications coexist with web server
services. Results have shown that the number of instructions a thread spins is rel-
evant in order to achieve the best performance. Also, that not only our balancing
algorithm will be beneficial to our parallel application’s virtual machine but to all
the other virtual machines that share CPUs with it. Finally, we have seen that our
algorithm achieves higher improvements as we increase the number of shared cores
betwen the virtual machines. So the more crowded our virtualization environment
is, the higher speedup is our algorithm likely to achieve.

Some improvements and tunes can still be applied to our algorithm in order to
improve it and guess when is better to make use of it. Next section will further
discuss this along with some related work.

5.1 Future Work

Without global synchronization, our algorithm cannot guarantee that each migration
will be the best possible one. Each balancer makes its own decision, independent of
the other balancers, which can result in a migration from the slowest core to a core
that is faster than average, but not actually the fastest core. To help break cycles

53



Chapter 5. Conclusions and Future Work

where tasks move repeatedly between two queues and to distribute migrations across
queues more uniformly, it might be interesting to try to introduce randomness in
the balancing interval on each core. Consequently the elapsed time since the last
migration event will vary randomly from one thread to the next, from one core to the
next, and from one check to the next. If knowledge about application characteristics
is available, the balancing interval might be further tuned.

Our formula for measuring the speed is an approximation to the "real" speed of
a VCPU. To obtain this real speed a track of the progress of the program is needed.
Only knowing the progress made by a program in a certain amount of time will give
us the "real" speed of the thread. In order to do that in the Xen hypervisor system
some hypercalls might be need to be inserted into the guest domains’ operating sys-
tem but a more accurate measure and therefore performance is expected.

Several other tunes and improvements to our algorithm might be done. Balancing
the whole system could achieve overall performance increase for certain scenarios, or
looking for the best scenario to perform the algorithm are some of the still available
works to do.

Properly scheduling VCPUs is not an easy task to do, it has to achieve some goals,
like fairness, performance, flexibility... As discussed in Section 2 the VCPU schedul-
ing present in Xen is pretty similar to the way an operating system likely GNU/Linux
will schedule the process. This leaves a wide open door for trying to port ideas from
different operating systems schedulers to virtualization environments like Xen.
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The Load Balancing on Speed

Pseudocode

1
2 static void

3 balancing_on_speed (void ∗_cpu)
4 {
5 int cpu = (unsigned long )_cpu ;
6 struct lbs_sched_pcpu ∗ spc = LBS_SCHED_PCPU( cpu ) ;
7 struct l i s t_head ∗ i t e r ;
8 uint64_t total_speed_pcpu = 0U;
9 uint16_t num_vcpus = 0U;

10 uint16_t num_cpus = 0U;
11 uint64_t global_sum_speed = 0U;
12 int i ;
13 int cpus_vis i ted = 0 ;
14
15 //Reset speeds
16 spc−>cpu_speed=0;
17 lbs_sched_priv . global_speed = 0 ;
18
19 // Inc the l a s t ba lance counter
20 spc−>last_suc_balance += 1 ;
21
22
23 //1.− For every VCPU on the l o c a l pcpu compute the speed
24 // ( shou l d be over the e l apsed i n t e r v a l )
25 l i s t_ for_each ( i t e r , RUNQ( cpu ) )
26 {
27 struct lbs_sched_vcpu ∗ i t e r_svc = __runq_elem( i t e r ) ;
28
29 i f ( t_running ( i t e r_svc ) !=0 && t_runnable ( i t e r_svc ) !=0)
30 iter_svc−>speed=muldiv64 ( t_running ( i t e r_svc ) ,
31 ( uint32_t ) 1000 ,
32 ( uint32_t ) t_runnable ( i t e r_svc ) ) ;
33
34 total_speed_pcpu += iter_svc−>speed ;
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35 num_vcpus += 1 ;
36
37 }
38
39 //2.− Compute the l o c a l core speed
40 i f ( total_speed_pcpu!=0 && num_vcpus!=0)
41 {
42 spc−>cpu_speed = muldiv64 ( total_speed_pcpu , 1 ,
43 ( uint32_t )num_vcpus) ;
44 }
45
46
47 //3.− Compute the g l o b a l speed
48 for_each_online_cpu ( i )
49 {
50 spin_lock ( per_cpu( schedule_data , i ) . schedu le_lock ) ;
51 spc = LBS_SCHED_PCPU( i ) ;
52 i f ( spc−>cpu_speed !=0)
53 {
54 global_sum_speed += spc−>cpu_speed ;
55 num_cpus += 1 ;
56 }
57 cpus_vis i ted += 1 ;
58 spin_unlock ( per_cpu( schedule_data , i ) . schedu le_lock ) ;
59 }
60
61 i f ( global_sum_speed!=0 && num_cpus!= 0)
62 lbs_sched_priv . global_speed = muldiv64 ( global_sum_speed ,
63 1 , ( uint32_t )num_cpus) ;
64
65 //4.− I t at tempts to ba lance i f the l o c a l core speed
66 // i s g r ea t e r than the g l o b a l core speed
67 spc=LBS_SCHED_PCPU( cpu ) ;
68 i f ( spc−>cpu_speed > lbs_sched_priv . global_speed )
69 balance ( cpu ) ;
70
71 // Se t t i n g the t imer to wake in the next 100 ms
72 set_timer (&spc−>ticker_LBS , NOW()
73 + MILLISECS(LBS_MSECS_PER_BALANCE) ) ;
74 }
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