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Abstract. We prove the existence and the regularity of a suitable
weak solution of a nonlocal 2D free-boundary problem involving the no-
tions of relative rearrangement and monotone rearrangement. The non
local elliptic-parabolic equation that we are concerned with arises in
the study of the transitory regime for a magnetically confined fusion
plasma in a Stellarator device. The model is obtained from ideal 3D
MHD system by applying some averaging arguments and by taking
into account some arguments on the characteristic times for the in-
volved phenomena, implying that the plasma region satisfies an equi-
librium equation.
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1 Introduction.

This paper deals with the mathematical treatment of a two-dimensional transient
model associated to a family of equilibrium states for a fusion plasma magnetically
confined in a Stellarator device. The model under consideration is obtained from
3-D MHD system through the averaging results by Hender & Carreras [18], by
applying some arguments on the characteristic times for the involved phenomena
(we shall work at the resistive diffusion timescale). Using a similar approach to
the already followed for the equilibrium regime (see Diaz & Rakotoson [12]), the
model can be formulated as a free-boundary problem in the following terms: Let



Q be a subset of RY (N = 2) and a positive time T" > 0, given A\ > 0, F, > 0, a,
be L>(Q) withaZ 0and b >0 a. e. in Q, ug € H'(Q) and v < 0, find

uw:[0,T] xQ — Rand F: R — R,

such that F'(s) = F, for any s < 0 and (u, F') satisfying the inverse problem

( %5(“) — Au=aF (u) + F (u) F" (u) + Abuy  in 10, T[xQ = O,
ut,z) =7 on 0, T[xd9,
(Pr) ¢ B (u(0,2)) = B (uo(x)) req
\ /{ w0 [F (u () F' (u(t)) + Mbuy]de =0 for any 6 € [infu,supu],

with r, := max(r,0), and 3 (r) := min(0,7) = —r_ for r € R and for the time
dependent functions, we have used the following notations: for a measurable
function u :]0, T[xQ — R and for a fixed ¢t €]0,T[, weset u(t) : @ = R, wu(t)(z) =
u(t, ).

In order to determine the unknown function F, we can reformulate the above
problem using the notion of relative rearrangement, as it was done in Diaz [7]
(see also [12]) for the stationary regime. In this way, if (u, F') is a solution of (Py)
such that u (t) e U C C°(Q) a. e. t €]0, T[, where

U={veW??(Q) for any 1 < p < co and meas {z € Q: Vv (z) =0} =0},

then u satisfies the following uncoupled nonlocal problem

25(u) — Au=aG(u) + J(u) in ]0,T[xQ,
AR

u(t,z) =y on X,
B (u(0,2)) = 5 (uo(x)) z €Q,
where G, J: L?(0,T; H" (Q)) — R are given by
1/2
lu(t)>u+(t,z)]
Gu)(t,x) = a | F2 = A / wy (O], ()bt 0)do | (1)
|u(t)>0] .
J(u)(t, ) = My (t,2) [b(2) = by (lu(t) > u(t, 7)])] (2)

and, thus, F (u) = G (u) and F (u) F' (u) + Abuy = J (u). As in [12], it is not
difficult to show that any solution u of (P) without any flat level set is also
a solution of (P;). Here, u, denotes the decreasing rearrangement of wu, b, is
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the relative rearrangement of b with respect to u (see Section 3 below for the
definitions) and |E| denotes the Lebesgue measure of a set E. We recall that the
notion of the relative rearrangement was introduced first by Mossino & Temam
[23] and that it is closely related to the concept of averaging over a magnetic
surface largely used in the plasma confinement literature (see, e.g., [15], [17]).

In the present paper we shall study existence and regularity of solutions of
(P). Let us point out that there exists a large number of mathematical works
concerning the study of existence for similar elliptic-parabolic problems, most of
them appearing in the context of partially saturated flows in porous media (see,
e.g., [3] or [31] and the references therein). We shall also mention the important
work of Alt & Luckhaus [2] where a general method for elliptic-parabolic systems
is developed. The main differences between the model we are interested in and
the references above lie on the fact of 5 not being strictly increasing, as well as on
the nonlocal character of our nonlinearities G' and .J. In particular, we shall see
that these functions ask for a high regularity hypothesis in order to be continuous.

In Section 2 we shall give some indications on the modeling. Section 3 will
be devoted to recall the notions of relative and monotone rearrangements as
well as some useful properties. Due to the nonlocal term by, in (P) we shall
also introduce two different notions of weak solutions of (P), which it will be
also done in this section. Some general results of these classes of solutions are
collected in Section 4. Finally, in Section 5 we present the main results of the
paper. As we have stated before, we shall prove the existence and regularity
of a global weak (in the sense above) solution of (P). As a matter of fact, we
consider a more general family of problems (P,), where we have replaced § by
B (r) :== —r_ 4+ ary, for countably many « satisfying 0 < o < 1. We shall first
study the case a > 0. For the proof we use a Galerkin argument for a uniformly
parabolic approached problem obtained by replacing 3, by 3. with 8. a C* such
that 5.(0) =0, a <e < p. <2and . — B, as ¢ — 0. We use some properties
of the relative rearrangement ([12], [21], [23], [25], [27] and [28]), as well as some
a priori estimates, in order to pass to the limit as € — 0, thanks to . Finally
we pass to the limit o — 0, under some additional assumptions, thanks to a
recent compactness result due to Rakotoson & Temam [26], finding, in this way,
a solution of (P).

2 Modeling

We assume the plasma as an ideal fluid and so we use the ideal incompressible
MHD model which provides a single—fluid description of the macroscopic plasma



behavior. The equations of MHD are given by

D
F;’ =JxB—Vp, (conservation of momentum), (3)
1
E+vxB=-]J, (Ohm’s Law), (4)
0
0B
VxE= 5 (Faraday’s Law), (5)
V-B=0, (Conservation of B), (6)
VxB=1], (Ampere’s Law), (7)

In these equations the electromagnetic variables are the electric field E, the mag-

netic field B and the current density J. We denote by v the fluid velocity, p
0

the fluid pressure and Dl B + v - V the convective derivative. The parame-

ter p represents the electric conductivity. In the plasma region we shall assume
p =0, i.e., the plasma is a perfect conductor and so equations (3)—(7) becomes
the system of ideal MHD. In the vacuum region we shall take y = 1.

We are interested in studying quasi—stationary processes, that is, the processes
occurring on a slow time-scale, the resistive diffusion time-scale. In this time—
scale, plasma would evolve through a series of states each of which would be very
nearly in equilibrium, i.e., at each instant ¢, plasma can be regarded as being in
MHD equilibrium ([16]). Following [4, Chapter IV] (see also [16]) we define some
characteristic time constants of the plasma and introduce some plasma physics
phenomena in order to neglect some quantities in the above system. To analyze
slow phenomena we need to retain only the principal terms in the relation (3).

Dv
So, we can neglect Dr in plasma region at time ¢, 2, (¢). The time dependence

0B
comes from the fact that we shall not neglect the term —. Thus,

ot
Vp=JxB (8)

is satisfied at each instant ¢ in €, (#). From (8) it follows that, for any instant ¢,

B(t)-Vp(t) =0 (9)
J(t)-Vp(t)=0. (10)

Then the pressure is constant on each magnetic surface; these surface are nested
toroids (see [16], [14]). Thus, it is useful to introduce a set of new toroidal
coordinates (p, 5, %), such that: p = p(z,y, 2) is an arbitrary function which is
constant on each nested toroid and § = 5(35, y, z) is the poloidal angle which is
constant on any toroidal circuit but changes by 27 over a poloidal circuit (here by
a toroidal circuit we mean any closed loop that encircles the axis of the torus once,

and by a poloidal circuit a closed loop that encircles the minor axis once). The
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toroidal angle 35 is defined analogously but interchanging the words poloidal by
toroidal. Among the special choices of (p, 8, ¢), we shall take the Boozer vacuum
coordinates system ([5]) which are very useful for Stellarators since magnetic
field lines becomes “straights” in the (5, g)fplane. In what follows, for the sake
of simplicity in the notation, we shall denote this set of coordinates by (p, 8, ¢).

For a vacuum configuration (i.e. without any plasma) the magnetic field B,
may be written in contravariant form as

B, = BopVp x V(0 — t,(p)o)

where t,(p) is the so called vacuum rotational transform and By is a positive
constant. The covariant form of B, is

B, = F,V¢ (11)

where F), is a constant (which customary is taken as positive). In practice, it is
used the quasi—cylindrical-like Boozer set of coordinates (p, pf, ¢) which have the
usual near—axis behavior of the field components commonly used.

The Stellarators-type configurations are very complicated due to the fully
three—dimensional nature of the device. To simplify the model to a two—dimensional
problem different averaging methods were used for the study of stationary mod-
els: see Greene and Johnson [16], and Hender and Carreras [18]. Following the
last reference we may decompose the magnetic field in terms of its toroidally
averaged and rapidly varying parts. For a general function f this decomposition

takes the form
2T

f= )+ Fowith (=5 [ fds.

0
In our case, motivated by the set of coordinates (p, pf#, ¢), the natural way of

doing that is
B B B! N B
D \D D

where B? are the contravariant components of the vacuum magnetic field, i =
p, 8, ¢, and D is the Jacobian D = (Vp x pV#) - V.

Using a suitable assumption (the Stellarator expansion hypothesis) Hender
and Carreras [18] show that (6) leads to the equation

O (%)

and thus to the existence of the averaged poloidal flux function ¢ = (t,p, 6)
defined at each instant t by
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They also show that, when MHD equilibrium (8) exists, then (By) is a function
1 alone and the same for (p) (recall (9)). Thus, in our case, as equation (8) is
satisfied in the plasma region, by introducing the usual notation

F(y):=(By) and  p(y):=(p), (13)

and following Hender and Carreras [18], we obtain a Grad—Shafranov type equa-
tion for ¢ in the plasma region €, (¢) at each t > 0 :

—Lyp = alp, O)F (¥) + F()F'(4) + b(p, 0)p'(¥). (14)
That is, v satisfies, at each instant, an equilibrium equation, where

1{8 o ) o G, o 0 81/))}

Ly = a_p(“"”a_p) + a—p(aw@) + —(aepa—p) + 25

ey 0 599 59

with

and where (¢*/), i, j = p, 0 are the averaged components of the Riemannian
metric associated to the vacuum coordinates system (all those coefficients are
2m—periodic functions of #). The rest of the coefficients in (14) are given by

()= 20| L () () + 3 (00) )

and

10,0 = 1 ( 35 ) 0.0).

We remark that b > 0 and that usually function a does not have any singularity.

As we have already pointed out, equation (14) only holds on the (averaged)
region occupied by the plasma. Following [4, Chapter IV] we analyze the vacuum
region at time ¢ and we obtain, by using (4), (5), (7), and relation (11), that the
equation satisfied by v in €2, is

%
ot’

where Q, := [UT] {t} x Q, (t) . In order to obtain a global formulation as a free
t€[0

—LY =aF, —

boundary problem we remark that in the vacuum region Vp = 0. Besides, it
is clear that the free boundary (separating the plasma and vacuum regions at
time ¢) is a (toroidal) magnetic surface and, as p = p(¢)), by normalizing, we
can identify the free boundary as the level line {¢ (t) = 0}, the plasma region
as {¢ (t) > 0} (and thus {p > 0}) and the vacuum region by {¢ (t) < 0} (and
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{p = 0}). It is also well-known that the pressure cannot be obtained from the
(MHD) system and some constitutive law must be assumed. Here, for simplicity,
we shall assume a quadratic law (see, e.g., Temam [33])

p=3WF v = max (,0) (15)

which is compatible with the above normalization. In order to give an unified
formulation for the present model, we extend the unknown function F(1)) for
negative values of ¢). We use again (11) and so we must find ¢ (¢, p,6) and F :
R — R, such that F(s) = F, for any s < 0, satisfying

L = alp, OF (W) + FWF W)+ Mo, 0)ps . (16)
The above equation is satisfied on any bidimensional open set (in the variables
(p,0)) associated to a physical three-dimensional domain Q3 (i.e. in the original
cartesian variables (X,Y, Z)) containing in its interior the plasma region. If we
take as ©® the interior of a vacuum magnetic surface, the construction of the
Boozer coordinates implies that the associated open set in the (p, ) variables
becomes Q = {(p,0) : p € (0,R),0 € (0,27)}. The boundary of Q3 is assumed
to be a perfectly conducting wall and thus the boundary conditions become (see
Diaz [7])

Y (t) =~ on |0,T[x 09.

To complete the formulation of the problem under consideration we must add
the Stellarator condition imposing a zero net current within each flux magnetic
surface. According the averaging method by Hender and Carreras [18] this con-
dition can be expressed (Diaz [7]) for a. e. t € 0,7 as

/[F () F' (¢) + Abpy] pdpdf = 0 for any 7 € [ inf ¢, sup ¢].
{v(t)>7}

(17)

Notice that in the case of Stellarator devices this condition comes from the de-
sign of the external conductors. This contrast with the usual condition of positive
total current due to the inner toroidal current in the plasma for Tokamaks config-
urations (see, e.g., Temam [33] and Blum [4]). Any way, (17) is an ideal situation,
and in practice some known current arises at the interior of each magnetic sur-
face. An approach to the dynamic problem associated to this situation has been
initiated in [9] (see [11] for the stationary regime).

Summarizing we arrive to the formulation given in (Py) of Section 1, where
for the sake of simplicity we have replaced the £ operator by the Laplacian one,

A.



3 Preliminary results and definitions.

In this section we recall briefly the notion of relative rearrangement and some
useful properties of it. Let € be a bounded measurable set of RN, N > 1. For
any measurable subset E of Q2 we denote by |F| its Lebesgue measure /dx. The

decreasing rearrangement of a measurable function u defined on 2 is given by
u (s) =inf{# € R: |u> 0] < s},

where s € (0, |Q2]). We will say that u has a flat region at the level 0 if |u = 0|
is strictly positive. We recall that given a measurable function u, there exists

at most a countable family D of flat regions P,(6;) := {u = 6;}. We denote by

P(u) = |J P,(6;) the union of all the flat regions of u. Given v € L'(Q), we
i€D
define a function w on [0, |2|] by:

s—|u>ux(s)|

w(s) = /v (z)dx + /(v|p(s))*(0)da,

{u>us(s)} 0

where P(s) = {z € Q:u(x) = u.(s)} and v|p() is the restriction of v to P(s).
The following lemma was proved in [22] (see also [23]).
Lemma 3.1 Let u € L'(Q) and v € LP(Q) for some 1 < p < +oc. Then

d
w € WH(Q,) and ‘_w < [ollpo(qy » where Q. := (0, [2]).
ds LP(Q)

d
Definition 3.1 The function d_w s called the relative rearrangement of v with

S
respect to the u and it is denoted by

dw
Vgu = — -
ds

For more details of the notion of the relative rearrangement, one can consult [21],
[23], [25], [27]. We will need some lemmas already proved in previous papers.

Lemma 3.2 ([12]) Let (u, ¢) € L'(Q)%. Then,

l) Pr(utc) = Pru,

ii) (¢ + €)uuw = Quu + € for any constant c.



Lemma 3.3 ([12]) Let u,, u € WHP(Q), 1 < p < 400, such that either meas{z €
Q: |Vul () =0} =0 orue WY (Q) for some r > 1. Then, if u, converges to

loc

u in WP (Q) for some p > N, we get that ul,, converges strongly to u’, in LI(S),

1
foranyl<q<gq.:i=——7.
1— L +1

Lemma 3.4 ([12]) Let uy,, u be in L* () and assume that u, converges to u in
L' (Q). Then, for allv € L? (Q) (for a given p, 1 < p < +00) we have

(vxe\Pw) o, = (WX\PW)

weakly in LP (Q.) if p < +00, and weakly—start in L™ (Q) if p = +oo (where
X denotes the characteristic function of the set E).

Lemma 3.5 ([13], [28]) Let v € LP(Q) with 1 < p < +o0 and u, u, € WH(Q),
1 < r < 400, such that meas{z € Q:|Vu(z)| =0} = 0 and meas{z € Q :
|Vu,(z)] =0} = 0. If u, converges to u in W' (Q) for some 1 < r < +oo, then
Vs, — Vs, When n — 0o strongly in LP(S2). Furthermore, vy, (|tn > uy(+)|)
converges strongly to v.,(|u > u(-)]) in LP(2).

As a direct consequence of this lemma, we have the following result

Lemma 3.6 ([28]) Let v € LP(Q) with 1 < p < 400 and let (\g, @r)r>1 be the
sequence of eigenvalues and eigenfunctions of —A on Q with Dirichlet conditions;
ie. —App = \er, @r € Hi(Q). Consider the finite dimensional vector space
Vin =A{®1, -, om}. Then, the maps

i) ue V,\{0} — by, € LP(),
i) u € Vi, \{0} — buu(lu > u(+)]) € LP(Q),
are strongly continuous.

Given 0 € R, let |u(t) > 0| be the measure of the set {y € Q : u(t)(y) > 0} and
analogously let |u(t) = 6| be the measure of the set {y € Q : u(t)(y) = 0}. For
a fixed o € Q, =]0, |Q|[, the monotone rearrangement of u(t) at o is u(t).(o) =
uy(t,0) = inf {0 € R, |u(t) > 0| < o}. Given a function b € L' (Q) (Q :=]0, T[xQ),
we set for o €]0,|Q|[, t €]0,T]

o—lu(t)>u. (t,0)]

w(t,o) = /b (t,x) dx + / (b (¢) |{u(t):m(t,o—)}),k (s)ds

{z:u(t)(z)>ux(t,0)} 0

where (%) {u(t)=u. (t,0)} 1S the restriction of b(t) to the set {z : u(t)(x) = u.(t,0)}.
The relative rearrangement of b(t) with respect to u(t) is the weak derivative
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0 9,
—w(t, o), we set b(t).uw)(0) = b (t,0) = —w(t, o). Properties on monotone re-

do

arrangement given above are valid for u(¢).. On the other hand, from Lemma 3.1,
we know that w(t) € WH?(Q,), provided that b(t) € L?(Q) and ‘g_z—)(t)‘m(g ) <
b(t) |10y, 1 < p < 400

We recall a general result on functions v € H'(0,7; L' (Q)) which can be
proved by using rearrangement techniques.

Lemma 3.7 ([22]) Assume v € H' (0,T; L' (Q)). Then, for almost every t €

t.-
0,T|, we have that vt ) 18 constant on any set where v (t,-) is constant.
ot

Due to the presence of nonlocal terms in (P), two different notions of weak
solutions can be introduced.

Definition 3.2 We will say that a function u is a first category weak solution
of (P) if the function v = u — vy satisfies:

9,
Lve POTIHYQ) ., Sow+9) € 12 (0.T:H ().
2. For a. e. t €]0,T[, the function u (t) has not flat regions.

3. %B(Uqu) —Av=aG(v+7v)+ J(v+7) in D'(Q) for a. e. t €]0,T[ and
B(v+7)|i=0 = B(uo).

Definition 3.3 We will say that a function u is a second category weak solution
of (P) if the function v = u — v satisfies:

1. v e L?(0,T; Hy(Q)), %5(1%7) € L (0, T; HH(Q)).

2. (Relative rearrangement condition) There ezxists a bounded function b’ €
L>(Q), satisfying for a. e. t €10, T], for all 0 € R and for all p € C(R),
with (v (t)) € L'(Q)

bo(v(t,z))dr = /bgo(v(t, x))dx

{zw(t,z)>0} {zw(t,z)>0}

and

essinfb < b’ < esssupb .
Q Q

g %5(” +7) —Av=aG(v+7) +p'(v+7)[b—0] in D'(Q) for a. e. t, and
Bv+7)|=0 = B(uo).
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Remark 3.1 Notice that §(v+7) = —u_ = T*_ (v) — v were T*_ is the trun-
cation at level (—v) function

. B rooaf r<—vy
T_7(T)_{ —y aif r> .

On the other hand, since T, () is a Lipschitz function, we have that 7™, (v) €
L*(0,T; Hy (2)) . Then, using that condition 1 (in both cases) implies that 2 (T (v))
€ L*(0,T; H ' (Q)), by well-known interpolation results (Simon [35]) we con-
clude that T*_ (v) and § (v + ) € C ([0, T]; L* (Q)) and so the restriction 5 (v + ) |i=o
is well defined.

Lemma 3.8 Let v be an L'(QY) without any flat zones, i.e. meas(P(v)) = 0, and
be LY(Q). For all ¢ € C(R), we have

/Q by (J1 > 0()]) $(0) (2)dr = / b(v)da

Proof From the equimeasurable property and the mean value operator property
(see for example [23], [21]), we have:

/Qb*“ (Jv > v(=)]) p(v(x))dr = /

Qx

boo(0)6(vs(0))dor = /Q bo(v)da

Lemma 3.9 Assume that N = 2 and let v° be a sequence in W12(Q), for
some § > 0 and v € H?(Q)) such that v¢ converges to v in WH*(Q) as e — 0.
Then, li\r{%G (v° +7) (x) = G(v +7v)(x) for a. e. x € Q.

Proof Let 6 be the characteristic function of the set P(v,). From the above

dv; dv, . . . .
convergence we get dv* o % L9(),) as € \, 0 with ¢ given in Lemma 3.3 .
o o
d €
Thus li{% 7 dv* =0 in L7(2,). Arguing as in Rakotoson-Seoane [30], we conclude
e o

that
(1= )bspe — (1 — 0)bsy (18)

weakly—star in L>(€2,).
Now, if we set I(v°(x)) the interval given by [[v® > v ()], [v® > 0], then for all
o€ Q. o#|v>uvy(r)], o#]|v>0|,one has

lim (1 = 0)X1(r (@) (@) = (1 = O)X1(u(a)) (9) - (19)
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From relation (18) and (19) and the fact lim|9%|q = 0, one finds (for almost
every x € € using the fact that v7 (o) — vy, in L7(€), 7 < 00) that

oot ) g
lim, o / = (0) boye (0) ) (v° (0)) dor =
|v

£>0] dO'

004 )] gy ,
N /| (0) (1 =0) by (0) P (vs (0)) do

v>0| do

[v>vq ()] d
N /| do (p (v4 (0))) by (0) do.

v>0|

The above limit implies the result. [ |

4 General results on first and second category
weak solutions.

Proposition 4.1 Any first category solution u is a second category solution.

Proof Let u be a first category solution, and let v = u — 7. We set b"(¢,x) =
buw (|u(t) > u(t, z)|), for (t,z) € Q. By invariance of such quantity with respect
to a translation by a constant one has:

b (t, ) = buy(Jv(t) > v(t, x)]|)

(recall |v(t) > v(t,z)| = measure {y € Q, v(t,y) > v(t,x)}). It remains to check
the relative rearrangement condition. Indeed, using property 2 of the definition,

the equimeasurability and the mean value theorem, on has for a. e. t, for all
g eR

Wov(t,z))de = | bue(vi(t,o))do = /bgo(v(t, x))dz .

{z:v(t,x)>0} {o:04 (t,0)>0} {z:v(t,x)>0}
[

Proposition 4.2 If u is a second category solution satisfying that u (t,-) has not
flat regions for a. e. t €]0,T| and that there exists a Borel map g* : R — R such
that

glou="0b", v=u—r.

Then u s a first category solution.
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Proof It suffices to show that for a. e. (¢,x) € Q, b"(t,x) = by, (|u(t) > u(t, z)]).
First, let us observe that as u is a second category solution, we deduce by an
approximating argument that for any Borel function ¢ on R with p(v(t)) € L' (Q2)

/vacp(u(t,x))dx:/ngo(u(t,x))dx (20)

and from the first hypothesis, by the mean value theorem and equimeasurability,
we have:

/Q bo(u(t, z))di = / bou(Ju(t) > u(t, 2) ) p(ut, 2))dz (21)

Q

By the second assumption of Proposition 4.2, the function
p(0) = bau(lu(t) > o|) — g"(0), 0 €R (22)

is a Borel function in R for almost every ¢. Thus from (20), (21) and (22) we
deduce

/Q (beu(lu(t) > u(t, 2)]) — g" o ult,2))* dz = 0.

Let us now prove some properties of a second category solutions: .
Theorem 4.1 Any second category weak solution u satisfies
1B(ul®) — (1)l < lalsoFut + [B(u0) = B() ey Ve € [0,7].
Proof For an integer m > 2, we set gn(0) = |o|™ 2?0 and T} the truncation

operator given by
o if |o| <k,
ksigno if |o| > k,

Tk (O') = {
so we get
Wi 1= gm © Tk (B(u) — B(v)) € L=(Q) N L*(0, T3 Hy (2)).

By the relative rearrangement condition, one has:
0
< E/B(U_ny),wm’k(t) > +/ Vo(t,z) Vwyk(t, r)de = / aG(v+y)wprdx (23)
Q Q

where < -, - > denotes the duality between H~'(Q) and H{ (). By the integration
by parts formula (see, e.g., Alt and Luckhaus [2]), we have

d

nsl) =< S B(0(0) + 7). wni(1) > (24)
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where we set

Bv(t)+v)+v
Yon() = / d / gm0 T () dor
Q
0

Since /Vv(t, z) - Vwpi(t,z)dr > 0 and 0 < G(v+7) < F,, one gets from (23)
Q
and (24) (via Holder inequality)

L
m

d 1 m 1=
d—ymk(t) < |a|ooFu/ Wk (t, )| dr < |afoo Fy [ (/ |wm,k(taff)|m1>
4 Q Q

(25)
We use the equality:

/Q|wm,k(t,x)|rrﬁld:v=mym,k(t)—mkm‘l/(Iﬁ(v+v)—6(7)|—k)+dfv, (26)

Q

which, together with (25), gives
1oL _1
Yni(t) < 7w QL [aloo Fyym e (1) 77 (27)
Thus, we can derive
1 IR 1
Y1) < m=m Q] ]aloo Fut 4y 1. (0).
Finally, using (26) and letting m — 400 and k — 400 we get the result. [

Remark 4.1 Note that the above proof holds for any non decreasing Lipschitz
function 8 and any G such that 0 < G < F,.

In the special case of f(¢) = min(o, 0) + ao, for countably many « € [0, 1],
we have

Theorem 4.2 Assume that f(0) = —o_, N = 2. Then, for any second category
weak solution u, one has for all t € [0,T]

1
oo < —la|oFy|92| .
() < 7-laloc 212
In particular v € L>(Q).

If (o) = —o_4aoy, 0< a <1, the above result hold provided that % e LY(Q).

Similar conclusions holds for any dimension N > 3.

14



ou_
Proof Consider the case a = 0. Since % € L*(0,T; H'(Q)), one gets by
approximation that for all # > 0, for a. e. ¢ €]0,T]

ou_
¢ (0 (us(t) = 0)+ >=0 (28)
(< -, - > denotes the duality between H~'(Q2) and H}(2)). By the relative

rearrangement condition, the equation gives:

/ Vu, 1) de = /Q aG () (s () — 0) 1 d (29)

{ut(t)>0}

Deriving this last relation with respect to 6 and using the fact that 0 < G(u) < F,,
we get

d
~ g [ IV @F de < lol B > 6.
{u4+(t)>0}

Following Talenti’s method (see, e.g., the exposition made in Mossino [21]), one
derives for all ¢t € [0, T]

1
[+ (D)oo < —lalwFo|2] (30)
s
Combining Proposition 4.1 and this result, we get that u € L>°(Q).

Now, let 0 < o < 1. We argue as in Mossino Rakotoson [22]. Using the
relative rearrangement condition as in the relation (29), we derive for a. e. § > 0

o [Guct dx——/|Vu+ e = [aGar. @)

{ut(t)>0} {ut(t)>0} {ut(t)>0}

From which we derive (see [10], for an analogous argument)

0s

for all s € (0, Q). If we introduce K (t,s) = [ ui.(t,0)do, then (32) gives the
following partial differential inequality:

—47rsﬁu+*(t, s) < |a|Fys — a/ %UJF*(t, o)do (32)
0

9 o
aaK(t, s) — 477'8? (t,5) < |a|ewFys
K(t,0) = 0, I 100 =

15



Introducing the function I?(s) satisfying:

’K - dK
ahoFrs = —amsTH. RO =0, T(ap=0
that is K (s) = —ME#SQ + |a|Z° |©2]. We deduce from comparison principle
m m

(see Diaz, Nagai and Rakotoson [10]) that K (t,s) < K(s) for all s € [0, |Q|]. In
particular we deduce

dK la| s Fy ||
~2(0)] = Do vl
ds( )

[ |
47

[t ()] (@) <

Theorem 4.3 Any second category weak solution u satisfies the following esti-

mate
//|Vuax|dxda+/dx/ p(o+7v)do <
g/uoﬁ(u0+’y)+|a|ooFu/ da/|u—’y|(a,x)dx
Q 0 0

for all te [0,T].

Proof By the relative rearrangement condition and the integration by parts for-
mula one has (multiplying by v(t) the equation)

/@/} t)+ ) dx+/ |Vu(t,z)| dm-/ﬁaG(v(t)+7)v(t)dx (33)

where

o(t,z)
/Qw (B(v(t)+7))d:1::/Qv(t)ﬁ(v(t)va)dx—/de /5(a+7)da

Integrating (33) with respect to ¢, dropping some nonnegative term, and using
the relations 0 < G(v + ) < F,, we derive the result. |

Making use of the Sobolev Poincaré inequality and Schwartz inequality, we
easily have the

Corollary 4.1 For allt € [0,T]

uo(z)

t F?|Q
/ /|Vu(a,x)|2dxda+2/ /5 (0 +7)do §2/u05(u0+7)d:5+“ a3, F2| | ‘)
0 JQ [e) Q A
0

1

where Ay is the first eigenvalue of the homogeneous Dirichlet problem associated
to the Laplace operator.
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5 Existence theorems.

In this section, we prove the existence of at least one second category solution
u for 0 < a < 1. Our first result concerns the existence of a global solution for
a>0:

Theorem 5.1 Assume that N = 2, ug € H'(Q), 8(c) = min(0,0) + ac, with
0 < a <1 and B(ug) € L>®(Q). Then there exists at least a solution u, €
L?(0,T; H*(Q)) of the second category of (P). Moreover, if ug € H' ()N L>®(Q)
then u, € L*(0,T; H*(Q)) N L>®(Q).

The proof of Theorem 5.1 will consist in three steps and is available for more
general § and for N > 3. Let 0 < ¢ < 1, and . € C*(R), satisfying

Da<B <l+a, B(0)=0, B.— B € HL.(R), and

ii) for any 0 € R, |B.(0) — B(0)| < 2e.
We shall solve first the following approximate problem:

Theorem 5.2 Assume ug € H'(Q)NL>(Y). Then there ezist (w®,5F) € L®(Q)?
satisfying the following problem (P.)

ow®
ot

i) w® e L*0,T; HY(Q) N H*(Q)), € L*(Q)

0 , ~
i) aﬁg(wE +7) — Aw® = aG(w® +7v) + p'(w* + v)[b — 0]
Be(w®)|i=0 = B:(ug — 7y) (or equivalently w®|,—og = ug — )

iii) Y¢ : R — R continuous, V0 € R

[Fotwyds= [b5(w)aa

{z:w®(t)(z)>0} {z:ws(t)(xz)>0}

for a. e. t €]0,T[ and es%infb < bF < esssup b.
Q

17



5.1 The Galerkin method: Existence of solution for a fam-
ily of finite dimensional problems (P.,,).

Let (A, ¢k )k>1 be the eigenvalues and eigenfunctions associated to —A on (2 with
boundary conditions, i.e.

—Ag = Aok, o € Hy(Q).
We denote by V,, the vector space spanned by {¢1, ---, ¢om}. Forallv € V,,, v =

Zvicpi. We consider the following approximate problem: To find
i=1

Wi € L'(0,T: Vi), wa(t) =Y wh,(t)er,
=1
satisfying
B,
[ (G5m042) ) udo+ [ (o) Vit =
Q

= /a(x)G(wm+7)g0kdx+/J(wm+*y)cpkdx, k=1,...,m,
Q Q

(P, m))

and the initial condition
Wi (0) = P (o — 7).
where P, is the orthogonal projection operator from L?(2) onto V.

Theorem 5.3 There exists w,, solution of problem (P ). Furthermore, if a % 0
then there exists ko such that w,, Z 0 for m>ky.

Proof The above problem can be written as a nonlinear differential system for
m

m

the functions w! (), ..., w™(t), wp,(t) = Zwﬁn(t)gpi. Indeed, w! (t) with i =

1, ...., m verify

Zaik(wm —|— szkw Ik wm(t)) k= 1, s (34)

=1
w? (0) = the 4* component of P, (ug — ),

m

where, for ¢, k =1, ...,m,

Qi wm(t /B, W +7)(pz§0kdx

bi, == Vo, - Vopdz,
0

T (wm() / 0(2)G (wn() + ) orde + fy, T (wim(t) + ) pidz,

To prove the existence of a solution of the above initial value problem we shall
need the following lemma:
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Lemma 5.1 The function fk : Vin — R is continuous, k =1, ..., m.

Proof Let v € V,,,. Then

Filw) = / a(@)G (v + 7)puda + / T(0 + 1) puds,

Q
with G and J given by (1) and (2). Indeed, since from lemma (3.6) the map
v € Vi \{0} — bu(Jv > (1)) € LP(R2) is strongly continuous for any finite p
and |b.y| ;0 < |b],, (see [12]) we deduce that the map v € V,,, — J(v+7) € LP(Q)
is strongly continuous.

Analogously, by lemmas (3.3) and (3.6) v € V;,\{0} — b., € LP(,) and
v € Vi,\{0} — [p(v, +7)] € LI(S,) are strongly continuous for any finite
p and ¢ € [1,2), and since p'(y) = 0 (y < 0), we obtain that v € V,, —
[p(v. +7)] be € LU(R,) is also continuous. We denote by I(v,z) the interval:
I(v,z) = Hv+*y>(v+*y) (2)],Jv+~>0]], = €Q.Let (v;),5, be asequence
of V},, converging to v, if v # 0, the characteristic function x;, :1:) converges to
XI(wg) in L7 (§2,) for every r finite and every = € €. So, using again that p'(y) = 0
we deduce that for every z € Q :

lim [ Xr(0,(0) [0 + )] (0)bay, (0)dor =

— [ @) 0+ 2] (000

NOting that (U + 7)* = Vs +7, b*(v-i—’)’) = b*u, we find:
Gv; +7)(2) 752G (v +7)(x), ae. z€Q.

Now, as 0 < G(v; + v) < F,, from the Lebesgue dominate convergence we get
that:

veV, — / (v + 7v)prdzx is continuous. W

Proof of Theorem 5.3. Since {¢, ..., ¢, } is free and 3 verifies . € C'(R), 0 <
a < fI< 2, the matrix of coefficients a;x(w,,(t)) is invertible. So, by Cauchy—
Peano theorem, the nonlinear differential system (34) has a maximal solution de-
fined on some interval [0, T;,] . The a priori estimates on wy,, we shall prove later,

show that in fact 7,, = T, ¥m > 1. Finally, if a # 0, then /a(x)goko (x)dx #0

Q
for some kg, so, if we assume that w,,, = 0 for some m > kg, then we would arrive

to /Qa(:zr)goko(x)dx =0. H

Lemma 5.2 If wy, is a solution of (P.m) then
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i) V¢ : R — R Borelian with ¢(wn,(t)) € L*(Q) we have
| T+ ) 1))z = 0

i) Wy, remains in a bounded set of L?(0,T; H} () as m — +o0 and satisfies
the following estimates, for all t € [0,T]

wm (0)

f(f fQ \Vwp, (0, 2)|*dzdo + 2 fQ dx /55 (0 +7)do <

2
lals Fr 92t

< 2 Jo wn(0)Be(wn (0) +7)dw + =53

Proof Since w,, # 0, then for all ¢, meas{z : |Vw,,(¢t,z)| = 0} = 0. Thus, using
Lemma 3.8

/Q by, ([0 (£) > Wt 2)]) & (w(t, 7)) = / b (w8, 2))

which gives ¢). Taking w,,(t) as test function in the equation (P ,,) and using
the above property:

/Q%Ba (win(t) +7) wm(t)dx+/Q|Vwm(t,x)|2dx:/gzaG(wm+7)wm(t)_

Then, the proof follows exactly the same idea as for the proof of Corollary
4.1. [ |

Lemma 5.3 The sequence %’—tm remains in a bounded set of L*(Q) as m — oo,

and thus, w,, also remains in a bounded set of L*(0,T; H*(Q2)) as m — +oo.
Moreover, the sequence (W, )m>1 remains in a bounded subset of H' (0, T; L*(Q2))

NL?(0,T; H*(2)) NC([0,T]; Hy(S2)). Furthermore,

T e 1 2 | 2 2 2 2 2 2
@ < 19w+ 5 (s 21T+ (05eb) omlg) )
where o(s)cb denotes the oscillation of b in 2.

du (1)

Proof Multiplying (P...) by o

1,..., m, we get

/6’ wm(t) + 7)) Jw!( | dx+ /|Vwm | dr =

a(x)G (W, + v)w,, (t)dz + /QJ(wm + y)w,,dx.

and adding these equations for j =

Q
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Using the first assumption on /. and the estimates 0 < G < F,, |J(wn(t)+7)| <
A (Wi (t) 4+ 7) 0scab we obtain

1d )
il <

< Jal, F ol (8)], + A oscab / (wn + ), Wy (t)da

o, (1)]5 +

< al o Fy |1 [w), (£)], + A 0scab |wa(t)], [, ()]
where we used Holder’s inequality and the fact that v < 0. By applying Young’s
inequality, we get
1d
2dt
1
< 6o (1) + 7= (|l Fo 12177 + Aoscb [um (1))

oy, ()5 45— [V ()3

From the choice of 4 and integrating in |0,¢[, ¢t < T, we have:

t
1
[ i@ ds + 5 [Fun(o):
0 (6]
1 2 1 1/2 ! 2
< - |Vw,,(0)]; + ?C’g lal  Fy |77+ X oscab | |wn(o)|3do ),
0

which leads to the boundedness in H' (0, T; L*(2))NL> (0, T; Hy(Q2)) by applying
Lemma 5.2.

In order to show that w,, remains in a bounded set of L?*(0,T; H*(Q)), we
consider the orthogonal projection of L*(Q) onto V,,. The equation satisfied by
w,, 1s equivalent to:

{ P 2300 0) ) — A = Pa(aGian() ) + Tn) +9)), (55
Wi (t) € Vi, for ace. t € (0,7).

Lemma 5.2 and the estimate 0 < G < F, ensure that aG (w, (t)+7)+J (W, (t)+7)
remains in a bounded set of L?*(Q). Since 0<f! < 2, Lemma 5.3 implies that

%Bg(wm(t) + 7)) is bounded in L?*(Q). From the equation in (35), we infer that

Aw,, remains in a bounded set of L?(Q), and thus w,, remains in a bounded set
of L*(0,T; H*(Q)). Finally, by using standard results (see, e.g., [20] Chap. I):

Y = H'(0,T; L2(Q)) N L2 (0, T; HX(Q) N H(Q)) — C([0,T]; HL(Q)),

we obtain the remaining boundedness. W
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5.2 Solvability of the approximated problem. Passing to
the limit m — oo : Existence of solution for (P.).

By the above estimates, there exists a subsequence of (wy,),,~,, which we also
denote by (wp,),,s;, and w® € Y such that -

Wy, — w® weakly in Y,
and so, by compactness results (see [19]) we get
W, — wf strongly in L2(0,T; W, ?(Q)), with p € [2, +00). (36)
Due to the uniform boundedness

essinfl < bu(u ) ([ () > wi(:)]) < esssupb, (37)
Q

we get the existence of b € L*>(Q) such that
butwn i) (|wm(E) > win(t,)]) = 5 weakly star in L(Q).

Analogously, as |G(w,(t,z) +7)| < F, a. e. in Q, there exists G5, € L®(Q)
such that
G(wy +7v) = G5, in L®(Q) weakly star.

Thus, w® is a solution of the following limit problem:

a A~
B0 +7) = Awr = aGe + A (we+7), [b=F]

U](O) = Uy — 7,
w €Y NL*0,T; H*(Q)).

(38)

Applying Lemma 3.9, we derive the following conclusion

Lemma 5.4 G5, = G(vw® + 7).

Proof Indeed from (36), we can deduce that there exists a subsequence of w,y,,
which we will denote also by w,,, such that w,,(t) — w®(t) in W"(Q) strong
for p € [2,4+00), a. e. t, and w(t) € H?*(Q2); thus, we may appeal to Lemma 3.9
to conclude.

Lemma 5.5 For any ¢ € C(R) and V8 € R

[Fotwyds= [b5(w)aa

{z:w®(t,z)>0} {z:we (t,z)>0}

for a.e. t €]0, T,

and

ess(%nfb <V (t,x) < esssupb a.e. on Q.
Q
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Proof For fixed ¢, it suffices to prove the equality for § such that |w®(t) = 6| = 0.
Let bE,(t, ) = by, (|wm(t) > wp(t, z)]). By Lemma 3.8, we know that

/bfn (t,x) ¢ (wp, (t,2)) do = /bqﬁ (W, (t,x)) dz

{z:wm (t,x) >0} {z:wm (t,x)>0}

(39)

Thus, since ¢(wp,(t)) = ¢(w(t)) € L*(Q) and lim X (g, (1)>01 () = X{zws(t)>0(2)
for a. e. x € Q a. e. t €]0,T], we deduce the result from (39). W

End of the proof of Theorem 5.2. It suffices to collect Lemma 5.3, Lemma
5.4 and eq. (38). W

5.3 The full solvability of the model when o > 0.

Collecting the uniform estimates with respect to € of the Theorem 4.1, Theorem
4.2 and Theorem 4.3 one has:

Lemma 5.6 There exist a constant ¢ > 0, independent of € and o, such that
T

i) / Jo [Vwe (0, 2)Pdodz < ¢,
0
i) 0 < G(uw* +) < F,,
111) ess{%nfb < b°(t, z)| < esssupb,
Q
<c.

L*(Q))

. 0
Z'U) |/8&-('LU8 +’Y)|L00(Q) S C, ‘&B&‘(wg +’Y)

-~

From the Lemma above, we may assume that there exists w,, G., b, such
that w® — w, weakly in L?(0,T; H}(Q?)), G° = G, weakly star in L>®(Q), and
b° — b, weakly star in L>*(Q) as € — 0. Then we have the following lemma (on
the strong convergence in which the estimates depend on é)

Lemma 5.7 There exists a constant ¢, > 0 such that |%|L2(Q) < ¢o. In par-
ticular, w® remains in a bounded set of L*(0,T; H*(Q)) as ¢ go to zero and
w, € L2(0,T; HX(Q)), w® — w, in L?(0,T; Hy ().

3
Proof Lemma 5.3 provides the estimate for

g; in L?(Q). From the equa-

tion satisfied by w®, we deduce that Aw® remains in a bounded set of L*(Q).
Thus, w® remains in a bounded set of L*(0,T; H*(Q))) and the weak conver-
gence in L*(0,T; Hy(Q)) implies the weak convergence in L*(0,T; H*(Q2)) to the
same w, € L?(0,T; H*(2)). Therefore, the strong convergence of w® to w, in
L*(0,T; H}()) is a direct consequence of standard compactness results (see [35]
or [34]). W
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Corollary 5.1 G,(t,z) = G(wa +7)(t,z) for a. e. (t,x) € Q.

Proof By the above lemma and a new application of the compactness results
(see [35] or [34]) it follows that for a. e. t €]0,T[, w, (t) € H?(Q) and w* (t)
converges to w, (t) in WP () for 2 < p < +00. So, we may appeal Lemma 3.9
to deduce the result. [ |
Proof of Theorem 5.1 The above estimates allow us to pass to the limit in
(38), and so, by using the results collected in this section, we get that w, is a
second category solution for (P,). The regularity is also a consequence of the
above estimates. [ |

Furthermore, we have proved that there exists a positive constant ¢, inde-
pendent of « such that:

Corollary 5.2 The following estimates holds
i) / Vwa(t, 2)[2dedt < c,

Q
i1) |wa_|L2(0,T;H01(Q)) <c,

Z’I,Z) |wa|Loo(Q) S C.

5.4 The case o = 0.

In this last section we full solve problem (P), that is the case v = 0. For the sake
of simplicity in the notation, we introduce the notation

— f(was) = aG(wa + ) + (we + 7)1 [b — bal.

We have proved that this function remains in a bounded set of L>((Q) as « goes
to zero. We denote by M > esssup|f(wq(t,x))|. Then the equation satisfied by
Q

w, can be written as:

0 0
&(wa + 7)* - aa(wa + 7)+ + Aw, = f(wa+)
(Pa) _ v
Y wy = on X, =|0,T[x0S2
we (0, 2) = wy

where
Ow,

ot

Lemma 5.8 The sequence (wq+7)_ remains in a bounded set of L°°(0,T; Hy (Q)N
H'Y(0,T;L*(Q)) as a goes to zero. Furthermore,

/

w, € L?(0,T; H*(Q) N Hy (), € L*(Q).

2

0

57 (o) +7)_

da+/ ‘V(wa(t)—l—’y)ffdx
Q) Q

2
< |V (wo + 7)7\L2(Q) + T|Q| M2

L2(
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Proof The following integration by parts can be justified by using a smooth
approximation (which is possible thanks to the above regularity):

2dt/‘v wo(t) +7)_ \ dx—/at we(t) +7)_ Awg(t)dz.

0
Multiplying the equation that w, satisfies by E(wa + 7)_ we find:

2

—— <M
+2dt/‘v wa(t) +7)_|* de ‘ (walt) +7)_

5 a0 +)

L2(Q) LY(Q)

From which we deduce after integration:
/t

The uniform boundedness of (w, + 7)_ follows from this last inequality. H
From the uniform boundedness of w, (see Theorem 5.1), it follows the existence
of we L*(0,T; H(2)) N L>*(Q) such that

2

0
o (wa(or) +)

da+/QW (wa(t) +7)_|* de

L2()

< |V (wo+7)_ ‘LQ +TIQ|M?

w, — w weakly in L?(0,T; H}(Q)),
we — w weakly star in L®(Q).

Using a standard compactness result, we may assume that there exists z € L*(Q)
such that (w, +7)_ — z in L?(Q) as « goes to zero. The following lemma allows
as to identify z :

Lemma 5.9 The following identity s verified:
z=(w+7)-=-Bw+7).

Proof The R*-graph 3 generates a maximal monotone operator A on L? (0, T; L* (Q))
(see [6], Chap. II), defined as

Av=—(w+7v)_ Yo e L*0,T;L*(Q)).

From the weak convergence of (wq +7),-o in L?(0,T; Hy (2)) and the strong
convergence of ([ (wq + 7))o in L? (0,75 L? (), i.e.,

(wa +7) = w+ 7 weakly in L3(Q),

B (wq + ) — —z strongly in L*(Q).
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Thus, by using the theory of maximal monotone operators (see [6]) we arrive to
(wa +7),—2) € A

and so —z = 3 (w, + 7y) which ends the proof of the lemma. |
Finally, if we assume that f(w,) converge weakly star to a function h in
L*>(Q), the, w satisfies the following limit problem (P)

%(er’y)_ + Aw = h,
w € L2(0,T; HY(Q)) N L=(Q),
(w+7)- =uo .

Furthermore, from Lemma 5.8 and Agmon—Douglis—Nirenberg, we deduce from
the equation above that
w e L*(0,T; H*(Q)) . (40)

It remains to identify the function h. For this purpose we need the strong conver-
gence of w, (t) in WH* (Q) with § > 0 and a.e. t € (0,7T) .(see Lemma 3.9) We
shall obtain this convergence, whenever (wq (t)),., converges weakly in L? ()
to w (t) a.e. t, by using a recent compactness result due to Rakotoson & Temam
[26]. Previously, we shall prove the following proposition

Proposition 5.1 Let us set, for every ¢ € L* () and h > 0,

t+h
Pha (1 / / W (0,7) ¢ (z) dedo.

Then, we (t) — w (t) in L? (Q) for a. e. t € (0,T) if and only if

- 2
Illlir(l] lim pa (t) = lim }lllir(l) Oha (t) for a.e. t € (0,T) and Vo € L7 (Q).  (41)
Proof: Assume (41) then, from the boundedness of (wq),, given in Theorem

5.1 it follows the existence of a subsequence, that we still denote by (wg)
such that

a>0"

we = w in L? (0,T; L* (Q)) -weak.

In particular,

//watx dxdt—)// (1) (1) 6 () dadt

Vip € L? (0,T) and Vo € L? (Q), when o — 0. Let us fix ty € (0,7), h > 0 small
enough and we define the sequence (¢),., C L?(0,T) as

1
Ui (t) = 7 Xltoto-+h] (t),
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where Xp,10+4] denotes the characteristic function of [tg, o + h]. Then,

/ /wa (t,x) Yy (t (x)dxdt—>/0T/Qw(t,x)1/)h (t) ¢ (x) dzdt

when o — 0 and by (41) this convergence is uniformly in h. Then, passing to
the limit A~ — 0 in the above expression and taking into account that for any
integrable function the complementary of its Lebesgue points is a set of zero
measure (see, e.g., [6] pp. 140) we get

/wa(to, d:v—>/ w (tg, ) ¢ (x) dr when o — 0, a.e. to € (0,7),
Q
and thus w, (t) — w (t) in L? (Q)-weak a.e. t € (0,7T).

Assume now that the L? (2)-weak convergence of (wq (%))
for a.e. t € (0,7). We always have that

to w (t) holds

a>0

lim lim ¢y, (t) = lim [/ / (t,x) Yy () & (x) dxdt} =

h—0 a—0 h—0
= / w(t,z) ¢ (r)dr ae. t € (0,T). (42)
Q

Moreover, by the Lebesgue theorem,

T
lim lim / /Q wa (t,2) ¥ (1) 6 (@) dadt = lim [ wa (,2) ¢ (x) do =

:/Qw(t,x)¢(x)dx ae. te(0,T),
(43)
and so (41) holds. u

We arrive then to our main result:

Theorem 5.4 Let (w,),., be the sequence given in Theorem 5.1 and assume
that (41) holds. Then wy, — w in L*(0,T; H} (Q))-strong and v = w + 7 is a
second category weak solution to problem (P) . Furthermore,

uwe L?(0,T;C' (Q) and B (u) € C([0,T];L* ().

Proof From the hypothesis (41) it follows that wq (t) — w () in L? (Q) for a.
e. t € (0,7). We can then appeal to the compactness result of Rakotoson and
Temam [26] and we deduce that w, — w in L? (Q) and for a. e. ¢ €]0, T[. Then,
from Lemma 5.8 and the boundedness of w, in L*(Q) one has:

9] 9]
li — _ = 44
lim . Wags (o + ) _dxdt / 8t(w +v)_dxdt (44)
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and

9,
ii{r(l)a/cgwaa(wa + ) dxdt =0

Since f(wa,) converges weakly to h in L?(Q))

lim | wyf(wa) = | wh.
a\0 Q f( t) A

Multiplying by w, the first equation of (P,) one deduces from (Py):

lim/ |Vwa|2d$dt:/wg(w+7)_dxdt—/hwdmdt:/ \Vw|*dxdt (45)
N0 Jq o 0O Q Q

Thus, the weak convergence of w, to w in L?(0,T; Hj(2)) and (45) implies that

wa(t)@w(t) in Hy () for a.e. t €]0,TT.

In fact, as w, remains in a bounded set of L?(0,7; H*(Q2)), from the above
convergence we deduce, by Gagliardo—Nirenberg interpolation, that

wa(t)ﬁw(t) in W(Q) for a.e. t €]0,T[, and 2 < p < 4.

Since w(t) € H?(2), we may appeal Lemma 3.9 to derive that:
lim G (wa(t) +7) (7) = G (w(t) +7) (2)

a\0
fora. e. (t,z) € Q. From the boundedness ofga, there exists /b\[] such that /b\a — /b\[]

weakly star in L>(Q), essg%nfb <Dy < esssupb and
Q

Jrotwoyas =tim [Gow.@)dr =[5 w®)d

{z:w(t)(z)>0} {z:wa (t)(z)>0} {z:w(t)(z)>0}

for a. e. t €]0, T, for any ¢ € C(R) and for all # € R. Then, passing to the limit
in D/(Q)
i (1) = ~aGiw-+7) = (7)1~

which implies that: h = —aG(w + ) — (w + 7)4[b — by]. Using the equation in
problem (Py) we deduce that w + 7 is a second category weak solution of (P).
By arguing as in Lemma 5.3, we deduce that 3 (u) € C([0,T];L?(2)) and
u € L*(0,T; H*(2)), we can then use Sobolev embedding to conclude that
ue L*(0,T;C"(Q)). ]
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Remark 5.1 We conjecture that condition (41) holds under stronger reqularity
on the initial datum (and so on the approzimating solutions w,).

Finally, we give two results indicating when the second category weak solution
we have found is a solution of the first category to problem (P).

Theorem 5.5 Let u be the second category weak solution of (P) given in the
above theorem, and assume that a (x) does not have any flat regions. Then, if

1 —
X [[b]|.. < <—”> inf a2, (46)
14 Q

2A bl ST1€2]
F;
regions for a. e. t €]0,T.

where v 1= <1 and S := |uyl|, it follows that u (t) has not flat

Proof Suppose that there exists I C]0,7, |I| > 0, and a constant ¢ € R such
that
meas{x € Q:u(t,x) =c} >0, forae. tel.

Then, if ¢ < 0, by Stampacchia’s theorem we can deduce that Au () =0 a. e.
onS,:={reQ:u(tz)=c}.
Let us denote by v:=u_ € H'(0,T; L*(Q)), then by Lemma 3.7, it follows
Ou_(t)

that T = K. constant a. e. on S.. Thus, necessarily
K.=a(x)F,ae. €S, ae tel,
and so a has a positively measured flat region ({z :a =0} if K. = 0, and

{x ta = %} otherwise), which measure is at least meas (S.), which contradicts

the assumption on a. Let us assume now that ¢ > 0. In this case, necessarily

0=1aG (u) + \uy (b —/l;o> a.e. on S, and a.e. t € I.

But then, using the estimates we have on G (u), u; and /b\g, we arrive to
@A 0l s lloo)® 2 inf a® [ = 2216l llus 5]
which is a contradiction with (46). |

It remains to state some conditions in order to identify l;) as by,, and so to
obtain a first category solution:

Corollary 5.3 Let us assume that there exists a Borel map ¢g" : R — R such
that g* ou = by. Then, under the hypothesis of Theorem 5.5, u is a first category
solution of (P) .
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Proof It is a direct consequence of Theorem 5.5 and Lemma 4.2. l

Proposition 5.2 Ifmes{x € Q: |Vw® (t,z)| =0} = meas{z € Q: |Vw, (t,x)| =
0} =meas{r € Q: |Vw (t,x)| =0} =0 for a. e. t, then w*, ws and w are so-
lutions of the first category of their respective problems (P.), (P,) and (P).

Proof Following Lemma 3.5, as the sequence w,, given in Theorem 5.3 satisfies
that mes {x € Q: |[Vw,, (t,x)] =0} = 0 for a. e. t €]0,T], then the condition
mes{x € Q: |Vw* (t,z)] = 0} = 0 implies that

bt t) ([0 (8) > Wi (2, -)[) = uwe ) (|07 () > w* (8, -)[) in L7 (),

asm — 400, for 1 < p < +00. Thus, we obtain that b, = bawe(r) (|w* (1) > w* (t,2)]).
Repeating the same argument for w,, we get by = by, (1) (|wa (t) > wa (¢, )[) and
bo = buw(y (|w (t) > w (t,)|), and so the conclusion is reached. |
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