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Abstract. Let X be an infinite-dimensional Banach space and let A be a Cp

Lipschitz bounded starlike body (for instance the unit ball of a smooth norm).
We prove that
(1) The boundary ∂A is Cp Lipschitz contractible.
(2) There is a Cp Lipschitz retraction from A onto ∂A.
(3) There is a Cp Lipschitz map T : A −→ A with no approximate fixed points.

1. Introduction and main results

The well known Brouwer’s fixed point theorem states that every continuous self-
map of the unit ball of a finite-dimensional Banach space admits a fixed point. This
is equivalent to saying that there is no continuous retraction from the unit ball onto
the unit sphere, or that the unit sphere is not contractible (the identity map on the
sphere is not homotopic to a constant map). This result is no longer true in infinite
dimensions (see [8]). In [14] B. Nowak showed that for several infinite-dimensional
Banach spaces Brouwer’s theorem fails even for Lipschitz mappings, and in [6] Y.
Benyamini and Y. Sternfeld generalized Nowak’s result for all infinite-dimensional
normed spaces, establishing that for every infinite-dimensional space (X, ‖ · ‖) there
exists a Lipschitz retraction from the unit ball BX = {x ∈ X : ‖x‖ ≤ 1} onto the
sphere SX = {x ∈ X : ‖x‖ = 1}, and that SX is Lipschitz contractible.

In recent years a lot of work has been done on smoothness and Lipschitz proper-
ties in Banach spaces (see [11, 5]). Following this trend it is natural to ask whether
Nowak-Benyamini-Sternfeld’s results can be sharpened so as to get Cp smooth Lips-
chitz retractions of the unit ball onto the sphere of every infinite-dimensional Banach
space whose norm is Cp smooth. In this note we will show that this is indeed pos-
sible. In fact we generalize those results in two ways. Not only do they hold for
the smooth category but also for a wider class of objects than balls and spheres: we
show that for every infinite-dimensional Banach space with a Cp Lipschitz bounded
starlike body A (where p = 0, 1, 2, . . . ,∞), there is a Cp Lipschitz retraction of A
onto its boundary ∂A, and ∂A is also Cp Lipschitz contractible.

At this point we need to introduce some terminology. A closed subset A of a
Banach space X is said to be a starlike body provided A has a non-empty interior
and there exists a point x0 ∈ intA such that each ray emanating from x0 meets the
boundary of A at most once. In this case we will say that A is starlike with respect to
x0. When dealing with starlike bodies, we can always assume that they are starlike
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with respect to the origin (up to a suitable translation), and we will do so unless
otherwise stated. For a starlike body A, we define the Minkowski functional of A as

qA(x) = inf{λ > 0 | 1
λ
x ∈ A}

for all x ∈ X. It is easily seen that for every starlike body A its Minkowski func-
tional qA is a continuous function which satisfies qA(rx) = rqA(x) for every r ≥ 0.
Moreover, A = {x ∈ X | qA(x) ≤ 1}, and ∂A = {x ∈ X | qA(x) = 1}, where ∂A
stands for the boundary of A. Conversely, if ψ : X −→ [0,∞) is continuous and
satisfies ψ(λx) = λψ(x) for all λ ≥ 0, then Aψ = {x ∈ X | ψ(x) ≤ 1} is a starlike
body. Convex bodies (that is, closed convex sets with nonempty interior) are an
important kind of starlike bodies. We will say that A is a Cp smooth (Lipschitz)
starlike body provided its Minkowski functional qA is Cp smooth (and Lipschitz) on
the set X \ q−1

A (0).
Smooth starlike bodies are interesting because they are strongly related to bump

functions and to n-homogeneous polynomials in Banach spaces (see [2] and [3]),
therefore their geometrical properties are worth studying. It is worth noting that
every Banach space having a Cp smooth (Lipschitz) bump function has a Cp smooth
(Lipschitz) bounded starlike body too (and the converse is also true).

Before stating our main result we need a few topological definitions. Let M , N
be closed subsets of a Banach space X. We will say that two maps f, g : M −→ N
are Cp Lipschitz homotopic provided there exist an open subset U of X containing
M , an ε > 0, and a Cp smooth mapping H : (−ε, 1 + ε) × U −→ X such that
the restriction of H to [0, 1] ×M is a Lipschitz homotopy joining f to g, that is,
H : [0, 1] × M −→ N is Lipschitz continuous and satisfies H(0, x) = f(x) and
H(1, x) = g(x) for all x ∈ M . Moreover we will demand that H(t, x) = f(x) for
t ≤ 0, x ∈M , and H(t, x) = g(x) for t ≥ 1, x ∈M .

It is not difficult to see that, with this definition, ‘being Cp Lipschitz homo-
topic’ endows the set of Cp Lipschitz mappings from M into N with an equivalence
relationship (one can join Cp smooth homotopies without losing smoothness or Lip-
schitzness).

A closed subset M of X is said to be Cp Lipschitz contractible if the identity
map on M is Cp Lipschitz homotopic to a constant map on M . For instance, it is
easy to check that every Cp Lipschitz starlike body A is Cp Lipschitz contractible.
It is also easy to see that every two maps on a (Cp Lipschitz) contractible set are
always (Cp Lipschitz) homotopic (they are both homotopic to a constant).

Finally, we will say that r : A −→ ∂A is a Cp smooth Lipschitz retraction from
the starlike body A onto its boundary provided there exist an open subset U of X
containing A and a Cp smooth mapping R : U −→ X such that R fixes all the points
of ∂A, and the restriction of R to A is Lipschitz continuous and coincides with r.

Our main result is the following

Theorem 1.1. Let X be an infinite-dimensional Banach space and let A be a Cp

Lipschitz bounded starlike body. Then:

(1) The boundary ∂A is Cp Lipschitz contractible.
(2) There is a Cp Lipschitz retraction from A onto ∂A.
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(3) There is a Cp Lipschitz map T : A −→ A with no approximate fixed points,
that is, inf{‖x− T (x)‖ : x ∈ A} > 0.

As a corollary we obtain the following generalization of Benyamini-Sternfeld’s
theorem:

Corollary 1.2. Let (X, ‖·‖) be an infinite-dimensional Banach space with an equiv-
alent norm ‖ · ‖ which is Cp smooth, and let BX and SX be its unit ball and unit
sphere respectively. Then

(1) SX is Cp Lipschitz contractible.
(2) There is a Cp Lipschitz retraction of BX onto SX .
(3) There is a Cp Lipschitz map T : BX −→ BX with no approximate fixed

points.

If one is not interested in the Lipschitz property, it is a trivial consequence of the
main result in [1] (see also [4]) that the sphere SX is Cp contractible and there are Cp

smooth retractions from BX onto SX . Unfortunately, the deleting diffeomorphisms
obtained in [1, 4] are not Lipschitz, and corollary 1.2 cannot be deduced using those
results. As a matter of fact, corollary 1.2 provides a new result even in the case
X = `2 with the usual hilbertian norm.

2. The proofs

The proof of the main result is rather technical and will be split into three
propositions and several lemmas. The general scheme of the proof follows that of
[6], which in turn is a generalization with some modifications of Nowak’s approach
[14]. The proofs in [6, 14] are already involved in themselves and here they will be
complicated with the difficulties peculiar to smooth maps and starlike bodies.

First of all it should be noted that parts (2) and (3) of theorem 1.1 are straight-
forward consequences of (1). Indeed, assume that ∂A is Cp Lipschitz contractible.
Then there are an open subset U of X containing ∂A and a Cp smoth map H :
(−ε, 1 + ε) × U −→ X such that the restriction of H to [0, 1] × ∂A is a Lipschitz
homotopy joining the identity to a constant x0 in ∂A. Without loss of generality
we may assume that H is defined on (−∞,+∞) × U and has the property that
H(t, x) = x0 for all t ≤ 0, x ∈ ∂A, and H(t, x) = x for all t ≥ 1, x ∈ ∂A. Then the
formula

R(x) = H(2ψ(x)− 1,
x

ψ(x)
),

where ψ is the Minkowski functional of A, defines a Cp smooth map on X \{0} with
the property that R(x) = x/ψ(x) whenever ψ(x) ≥ 1 and R(x) = x0 if ψ(x) ≤ 1

2 .
Then one can obviously extend R (by putting R(0) = x0) to a Cp smooth map
R : X −→ X such that R(x) = x whenever ψ(x) = 1 and R(x) = x0 for ψ(x) ≤ 1

2 .
The restriction of R to the set A = {x ∈ X : ψ(x) ≤ 1} gives us a Cp smooth
retraction r from A onto its boundary. By using the fact that H : [0, 1]×∂A −→ ∂A
is Lipschitz, it is easily seen that r : A −→ ∂A is Lipschitz as well. This shows that
part (1) of the theorem implies (2). On the other hand, once we have such a Cp

Lipschitz retraction r one can easily get a Cp Lipschitz map T : A −→ A with no
approximate fixed points: it is enough to take T (x) = −r(x).
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Let us now start the proof of part (1) of 1.1. The following lemma tells us that
for every two Cp Lipschitz bounded starlike bodies A1, A2 the pair (A1, ∂A1) is Cp

Lipschitz equivalent to the pair (A2, ∂A2). We omit the proof of this result since it
is an easy adaptation of that of Proposition 3 in [2].

Lemma 2.1. Let X be a Banach space, and let A1, A2 be Cp Lipschitz bounded
starlike bodies. Then there exist a Cp bi-Lipschitz diffeomorphism g : X −→ X such
that g(A1) = A2, g(∂A1) = ∂A2, and g(0) = 0. Moreover, g(x) = µ(x)x, where
µ : X −→ [0,∞), and hence g preserves the rays emanating from the origin.

Therefore, any Cp Lipschitz property of a bounded starlike body or its boundary
is shared with all the bounded starlike bodies and their boundaries. In particular the
main theorem and all the auxiliary results which we will introduce in this section can
be proved for any particular Cp Lipschitz bounded starlike body in a Banach space
X and then, by using this lemma, extended for the rest of Cp Lipschitz bounded
starlike bodies, which are all equivalent. We will use this fact later on without
further notice.

We will also need the following technical definition.

Definition 2.2. Let X be a Banach space with a Cp smooth Lipschitz bounded
starlike body A, and let ψ be its Minkowski functional. Let M be a closed subset of
X, y0 ∈ M , and ε > 0. For every y ∈ M , δ > 0, define the pseudoball Bψ

M (y, δ) =
{x ∈M : ψ(x− y) ≤ δ}.

A point y0 is said to be an ε-escaping point for ψ in M provided there exists a
Cp smooth Lipschitz mapping T : M −→M satisfying:

(1) T is Lipschitz homotopic to the identity on M .
(2) inf{ψ(Tny0 − Tmy0) : n > m ≥ 0} ≥ 10ε.
(3) For all n ≥ 0, T maps Bψ

M (Tny0, 2ε) isometrically onto Bψ
M (Tn+1y0, 2ε)

and, moreover, T is merely a traslation when restricted to these sets.
(4) For all n ≥ 0, T−1(Bψ

M (Tn+1y0, 2ε)) = Bψ
M (Tny0, 2ε).

Now we state the three auxiliary propositions that we will use in the proof of the
main theorem.

Proposition 2.3. Let M , N be closed subsets of a Banach space X which has a
Cp Lipschitz bounded starlike body A with Minkowski functional ψ. Suppose there
is an ε-escaping point y0 in M . Let g : [−1, 1] ×M −→ N be a Cp Lipschitz map
which constantly attains the value z0 ∈ N outside the set [14 ,

3
4 ]×Bψ

M (y0, ε). Assume
moreover that there exists an open subset U of X containing M and an extension
g : (−1− ε, 1+ ε)×U −→ X of g such that g is Cp smooth and satisfies g(t, x) = z0
for all t ∈ (−1−ε, 1+ε) and x /∈ Bψ

U (y0, ε). Then g is Cp Lipschitz homotopic to the
constant function z0 in [−1, 1] ×M by means of a Cp Lipschitz homotopy Hτ (t, x)
(0 ≤ τ ≤ 1, (t, x) ∈ [−1, 1]×M) for which Hτ (t, x) = z0 whenever |t| ≥ 3

4 .

Proposition 2.4. Let X be an infinite-dimensional Banach space with a Cp Lips-
chitz bounded starlike body. Then there exist ε > 0 and another Cp Lipschitz bounded
symmetric starlike body W such that its boundary ∂W has an ε-escaping point with
respect to ψ = qW , the Minkowski functional of W .
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Proposition 2.5. Let X be a Banach space and let A be a Cp Lipschitz starlike body
which is bounded and symmetric, x0 ∈ ∂A, ε > 0. Then the identity map on ∂A is
Cp Lipschitz homotopic to a map f : ∂A −→ ∂A which constantly attains the value
−x0 outside the set {x ∈ ∂A : ψ(x− x0) < ε} (where ψ is the Minkowski functional
of A). Moreover, f can be assumed to have a Cp smooth extension f : U −→ X
(where U is an open subset of X containing ∂A) such that f(x) = −x0 whenever
ψ(x− x0) ≥ ε, x ∈ U .

Proof of the theorem.
Let Y be a closed hyperplane of X. By Proposition 2.4 there is a Cp Lipschitz

bounded symmetric starlike body W on Y such that its boundary ∂W admits an
ε-escaping point y0, for some ε > 0 that can be assumed to satisfy 0 < ε < 1

4 . Let
qW be the Minkowski functional of this starlike body. We may write X = R × Y .
Now, let V be a C∞ smooth Lipschitz bounded symmetric convex body of the plane
R2 such that its boundary ∂V contains the set

{(t, s) ∈ R2 : |t| ≤ 1, |s| = 1},

and consider the Minkowski functional qV of V , which is a C∞ smooth equivalent
norm on R2. Define now

ψ(t, y) = qV (t, qW (y))

for every (t, y) ∈ R×Y = X. It is clear that ψ is a Cp Lipschitz function on X \{0}
which is symmetric and positive homogeneous. Then

U = {(t, y) ∈ X : ψ(t, y) ≤ 1}

is a Cp Lipschitz bounded symmetric starlike body with the property that its bound-
ary ∂U contains the band [−1, 1] × ∂W . Without loss of generality we can assume
that U = A (see Lemma 2.1 and the preceding remarks), and it suffices to prove the
theorem for this particular starlike body.

Next put x0 = (1
2 , y0) ∈ ∂A and z0 = −x0. By Proposition 2.5 there exists a

Cp Lipschitz map f : ∂A −→ ∂A which is Cp Lipschitz homotopic to the identity
on ∂A, and which has a Cp smooth extension f : U −→ X such that f(x) =
−x0 whenever ψ(x − x0) ≥ ε, x ∈ U . Note that if x = (t, y) ∈ ∂A satisfies
ψ(x − x0) < ε then, since ε < 1

4 , and taking into account the particular shape of
∂A, we have that (t, y) ∈ [14 ,

3
4 ] × Bψ

∂W (y0, ε) ⊂ [−1, 1] × ∂W . Then it is clear that
g = f|[−1,1]×∂W satisfies the conditions of Proposition 2.3 with M = ∂W (bear in
mind that g(t, y) = f(t, y) = z0 whenever ψ(0, y − y0) ≥ ε because the pseudoball
{x ∈ X : ψ(x− x0) < ε} is contained in the cilynder {(t, y) ∈ X : qW (y − y0) < ε}).
Since y0 is an ε-escaping point in ∂W , it follows that g is Cp Lipschitz homotopic,
as a map from [−1, 1] × ∂W into ∂A, to the constant z0 = −x0 ∈ ∂A, by a Cp

Lipschitz homotopy Hτ (t, y) satisfying Hτ (t, y) = z0 whenever |t| ≥ 3
4 .

Now, from the particular construction of ∂A, it is clear that one can extend Hτ

to a Cp Lipschitz homotopy Fτ by defining Fτ (x) = z0 for x ∈ ∂A \ ([−1, 1]× ∂W ),
and it is easily checked that Fτ is a Cp Lipschitz homotopy joining f to the constant
z0 in ∂A. Since f is itself Cp Lipschitz homotopic to the identity on ∂A, we can
conclude that ∂A is Cp Lipschitz contractible to a point.
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Now we will give the proofs of Propositions 2.3, 2.4 and 2.5.

Proof of Proposition 2.3.

Let T be the map associated to ψ and the ε-escaping point y0 in Definition 2.2.
Let θ : R −→ [0,∞) be a Cp Lipschitz mapping such that θ is strictly increasing
in (0,∞), θ(−t) = θ(t), θ(0) = 0, and θ(t) = |t| for |t| ≥ 1

8 . Pick another non-
decreasing Cp map ζ : R −→ R such that ζ(t) = 0 for t ≤ 1

4 and ζ(t) = 1 for t ≥ 3
4 .

Now let us define two maps f0, f1 : [−1, 1]×M −→ N by

f0(t, x) =

 g(θ(t), T−n(x)) whenever t ≥ 0, x ∈ Bψ
M (Tn(y0), ε), and n ≥ 0;

g(θ(t), T−n(x)) whenever t ≤ 0, x ∈ Bψ
M (Tn(y0), ε), and n ≥ 1;

z0 otherwise;

and

f1(t, x) =
{

g(θ(t), T−n(x)) whenever t ≥ 0, x ∈ Bψ
M (Tn(y0), ε), and n ≥ 0;

z0 otherwise.

Note that on each “rectangle” [14 ,
3
4 ]× Bψ

M (Tn(y0), ε) or [−3
4 ,−

1
4 ]× Bψ

M (Tn(y0), ε),
n ≥ 0, the mappings f0 and f1 are defined by the corresponding value (with respect
to T−n) of g in the rectangle [14 ,

3
4 ] × Bψ

M (y0, ε). All these rectangles are disjoint,
by the definition of ε-escaping point. Since T−n is merely an affine traslation of
Bψ
M (Tn(y0), 2ε) onto Bψ

M (y0, 2ε) and g is Cp smooth and Lipschitz, it is clear that
the maps f0, f1 are Cp and Lipschitz as well.

By assumption, T is Cp Lipschitz homotopic to the identity; let Gτ , τ ∈ [0, 1],
be a Cp Lipschitz homotopy joining the identity to T in M . Then

Fτ (t, x) =
{

f0(t, x) for t ≥ 0;
f0(t, Gτ (x)) for t ≤ 0,

is a Cp Lipschitz homotopy joining f0 to f1 in [−1, 1]×M . Now, the map F 1
τ (t, x) =

f1(θ(t)(1−ζ(τ))+ζ(τ), x) defines a Cp Lipschitz homotopy joining f1 to the constant
z0, and it is not difficult to see that the map

F 0
τ (t, x) =

{
f0(θ(t)ζ(τ) + (1− ζ(τ)), x) for x /∈ Bψ

M (y0, ε);
g(t, x) for x ∈ Bψ

M (y0, ε)

is a Cp Lipschitz homotopy joining g to f0 (here we use the fact that g(t, x) = z0
whenever ψ(x − x0) ≥ ε, x ∈ U). We can then obtain the desired homotopy Hτ

by applying successively F 0
τ , Fτ and F 1

τ . Since all of these homotopies have the
constant value z0 for |t| ≥ 3

4 , the same is true of Hτ .

In order to prove Proposition 2.4 a number of rather technical lemmas and facts
will be required. Let us fix some standard notation used throughout these state-
ments. If K is a subset of X and x ∈ X, we denote by dψ(x,K) := inf{ψ(x − y) :
y ∈ K}. Also, the closed starlike body Bψ

X(x, r) = {y ∈ X : ψ(y − x) ≤ r} will be
simply written as Bψ(x, r).

The first technical tool we need is somehow a smooth version of Uryshon’s lemma.
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Lemma 2.6. Let X be a Banach space, and let A be a Cp Lipschitz bounded sym-
metric starlike body with Minkowski functional ψ and K be a compact subset of X.
Then, for every r > 0 there exists a Cp Lipschitz function f = fψ,r,K : X −→ [0, 1]
such that

(1) f(x) = 1 whenever dψ(x,K) ≤ r/2, and
(2) f(x) = 0 whenever dψ(x,K) ≥ r.

Proof. Let Lψ be the Lipschitz constant of ψ (i.e., ψ(x)−ψ(y) ≤ Lψ‖x− y‖, for all
x, y ∈ X). Since K is compact there exist x1, . . . , xl ∈ K such that

K ⊂
l⋃

j=1

B‖·‖
(
xj ,

r

4Lψ

)
. (∗)

Then pick a non-decreasing C∞ function g : R −→ [0, 1] such that g−1(0) = (−∞, 3
4r]

and g−1(1) = [78r,∞). Put

h(x) =
l∏

j=1

g(ψ(x− xj))

for all x ∈ X. Since the functions x 7→ g(ψ(x− xj)) are all bounded, Lipschitz and
Cp, the function h, being a finite product of such functions, is also Cp smooth and
Lipschitz. Moreover, note that the Lipschitz constant of h only depends on ψ, r and
the number of elements of the covering (∗).

By the construction of h it is quite clear that h(x) = 1 if x /∈ ∪lj=1B
ψ(xj , 7

8r), and
therefore h(x) = 1 whenever dψ(x,K) ≥ r. Moreover, is easy to see that h(x) = 0 if
x ∈ G := ∪lj=1B

ψ(xj , 3
4r). Let us check that G ⊇ {x ∈ X : dψ(x,K) ≤ r/2}. In fact,

if x ∈ X is such that dψ(x,K) = r/2, take y ∈ K in such a way that ψ(x− y) = r/2
and xj so that y ∈ B‖·‖(xj , r

4Lψ
). Then it follows

ψ(x− xj) ≤ ψ(x− y) + Lψ‖y − xj‖ ≤
3
4
r.

In order to conclude the proof it suffices to take f(x) = 1− h(x). �

Fact 2.7. Let X be a Banach space which has a Cp Lipschitz bounded symmetric
starlike body A with Minkowski functional ψ and r > 0. Then for some M > 0
one has that for every a, b with ‖a‖ = ‖b‖ = 1

4 there exists a Cp Lipschitz function
fa,b : X −→ [0, 1] whose Lipschitz constant is less than or equal to M , and which
satisfies that

(1) fa,b(x) = 1 whenever dψ(x, [a, b]) ≤ r/2, and
(2) fa,b(x) = 0 whenever dψ(x, [a, b]) ≥ r.

Proof. Fix r > 0. For every two arbitrary points a, b of X satisfying ‖a‖ = ‖b‖ = 1
4 ,

consider the compact set K = [a, b]. From Lemma 2.6, there exists a function fa,b
that verifies conditions (1) and (2). We only have to ensure that the function fa,b
constructed in the proof of Lemma 2.6 can be chosen with a Lipschitz constant
that does not depend on the segment [a, b]. As we remarked before, the Lipschitz
constant of fa,b only depends on the number of elements of the finite covering chosen
in (∗). But, since the diameter of any segment [a, b] is uniformly bounded, for every
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pair a and b it is easy to find an appropriate covering of [a, b] with a fixed number
of elements. �

Lemma 2.8. Let X be a Banach space which has a Cp Lipschitz bounded symmetric
starlike body A with Minkowski functional ψ. Then for every r > 0 there exists a
constant L > 0 so that for every a, b ∈ X with ‖a‖ = ‖b‖ = 1

4 there is a map
F = Fa,b : A −→ A satisfying

(1) F is Cp Lipschitz, and the Lipschitz constant of F is less than or equal to L
(and therefore only depends on ψ and r, but not on a, b).

(2) F maps Bψ(a, r/2) isometrically onto Bψ(b, r/2); in fact F is merely a trans-
lation when restricted to these sets, and F (a) = b.

(3) F−1(Bψ(b, r/2)) = Bψ(a, r/2).
(4) F (x) = x whenever dψ(x, [a, b]) ≥ r.
(5) F maps lines parallel to the segment [a, b] into themselves.

Proof. For every such a, b let us define F = Fa,b : X −→ X by

F (x) = x+ fa,b(x)(b− a)

for all x ∈ X, where fa,b is the corresponding function obtained from fact 2.7. It is
clear that F is Cp smooth and Lipschitz on X, with a Lipschitz constant not greater
than L = M + 1. Therefore F satisfies condition (1) of the lemma.

It is evident from the definitions of F and fa,b that F satisfies properties (2), (4)
and (5) as well. Let us see that F satisfies property (3). If F (x) ∈ Bψ(b, r/2) then

r

2
≥ ψ(b− F (x)) = ψ(fa,b(x)a+ (1− fa,b(x))b− x).

Since 0 ≤ fa,b(x) ≤ 1 we have fa,b(x)a + (1 − fa,b(x))b ∈ [a, b] and, therefore, it
follows that dψ(x, [a, b]) ≤ r/2 and fa,b(x) = 1. Henceforth, we have

r

2
≥ ψ(b− F (x)) = ψ(b− (x+ (b− a)) = ψ(a− x),

which means that x ∈ Bψ(a, r/2). This shows that F−1(Bψ(b, r/2)) = Bψ(a, r/2).
�

Lemma 2.9. Let X be an infinite-dimensional Banach space which has a Cp Lip-
schitz bounded symmetric starlike body A with Minkowski functional ψ. Then there
exist some ε > 0 and a point x0 in the interior of A which is an ε-escaping point
in A with respect to a map T : A −→ A which in addition to properties (1)–(4) of
Definition 2.2 satisfies T (x) = x whenever ψ(x) ≥ 3

4 .

Proof. Without loss of generality we can assume that BX ⊆ A. Since A is a bounded
starlike body we know that there exists some α > 0 such that α‖x‖ ≤ ψ(x) ≤ ‖x‖ for
all x ∈ X. Note that no matter how T is defined, T will be Cp Lipschitz homotopic
to the identity on A because A is starlike and hence Cp Lipschitz contractible (so
that both T and the identity are homotopic to a constant on A).

Let (wn)n∈N be a normalized basic sequence in X with biorthogonal functionals
(w∗

n)n∈N ⊂ X∗ satisfying ‖w∗
n‖ ≤ 4 (one can always take such a sequence, see [10],

p. 93), and put zn = 1
4wn for all n ∈ N. Let us denote by Ln,k the straight line

{tzn + (1 − t)zk : t ∈ R} passing through zn and zk (for n 6= k). It is easy to see
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that, if {n, k}∩ {m, l} = ∅ then ‖x− y‖ ≥ 1
32 for all x ∈ Ln,k, y ∈ Lm,l. This implies

that ψ(x− y) ≥ α
32 for all x ∈ Ln,k, y ∈ Lm,l; that is, dψ(Ln,k, Lm,l) ≥ α

32 .
Now take r = α

320 , and for every n, k ∈ N, n 6= k, pick a function Fn,k : A −→ A
satisfying the conditions of Lemma 2.8 for a = zn and b = zk, and put ε = r/4. For
this choice of ε and r we have

dψ(Ln,k, Lm,l) ≥
α

32
≥ 10r > 20ε. (∗∗)

Note that, by this inequality and the construction of F , if {n, k} ∩ {m, l} = ∅ then
Fn,k(x) = x whenever dψ(x, Lm,l) ≤ r = 4ε, and in particular whenever Fm,l(x) 6= x
or x = Fm,l(y) for some y 6= x. Then the infinite composition

V1(x) = (· · · ◦ F2n−1,2n ◦ · · · ◦ F3,4 ◦ F1,2)(x)

is well defined and satisfies
(1) V1 is Lipschitz. Indeed, take into account that all the maps Fn,k involved in

the definition of V1 have a Lipschitz constant which is less than or equal to a
fixed constant L, and the infinite composition defining V1 is uniformly locally
finite. In fact for every x ∈ A there exists a neighbourhood of x in A such
that V1 coincides with one of the Fn,k when restricted to this neighbourhood.
From these properties and from the facts that A contains the unit ball BX ,
which is a convex set, and V1 obviously restricts to the identity outside BX ,
one can easily deduce that V1 is Lipschitz (with a Lipschitz constant less
than or equal to L) on A.

(2) V1 is Cp smooth (this is again a consequence of the fact that the infinite
composition defining V1 is locally finite and all the functions Fn,k are Cp

smooth).
(3) V1 maps Bψ(z2n−1, 2ε) isometrically (in fact it is merely a translation when

restricted to this set) onto Bψ(z2n, 2ε).
(4) V −1

1 (Bψ(z2n, 2ε)) = Bψ(z2n−1, 2ε).
(5) V1(x) = x whenever ψ(x) ≥ 3

4 .
Let us define as well

V2(x) = (· · · ◦ F2n,2n+1 ◦ · · · ◦ F4,5 ◦ F2,3)(x).

Then V2 is also a Cp Lipschitz map that satisfies
(3’) V2 maps Bψ(z2n, 2ε) isometrically (in fact it is a translation when restricted

to this set) onto Bψ(z2n+1, 2ε).
(4’) V −1

2 (Bψ(z2n+1, 2ε)) = Bψ(z2n, 2ε).
(5’) V2(x) = x whenever ψ(x) ≥ 3

4 .
Now let us define T = V2◦V1. It is clear that T is a Cp Lipschitz map. It only remains
to check that z1 is an ε-escaping point for T . Indeed, as said above, condition (1) of
Definition 2.2 is trivially satisfied. It is also clear that Tnz1 = z2n+1, and condition
(2) of 2.2 follows from (∗∗) above. Finally, conditions (3) and (4) of 2.2 follow
respectively from (3, 3’) and (4, 4’) above. �

Proof of Proposition 2.4.
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Let Y be a closed hyperplane of X and identify X = Y × R. Let A be a Cp

Lipschitz bounded symmetric starlike body in Y with Minkowski functional qA. By
Lemma 2.9 there exist ε > 0 and y0 ∈ A with qA(y0) < 3

4 such that y0 is an ε-
escaping point with respect to a map V : A −→ A which satisfies V (x) = x for
qA(x) ≥ 3

4 . Take a C∞ Lipschitz convex body U on the plane R2 such that its
boundary ∂U contains the set

{(s, t) : |s| = 1, |t| ≤ 3
4
} ∪ {(s, t) : |s| ≤ 3

4
, |t| = 1},

and consider the Minkowski functional of U , qU , which is Cp and Lipschitz. Define
now

ψ(y, t) = qU (qA(y), t)
for every (y, t) ∈ Y ×R = X. It is clear that ψ is a Cp Lipschitz function on X \{0}
which is symmetric and positive homogeneous. Then W = {(y, t) ∈ X : ψ(y, t) ≤
1} is a Cp Lipschitz bounded symmetric starlike body with the property that its
boundary ∂W contains the set

{(y, t) ∈ X : qA(y) = 1, |t| ≤ 3
4
} ∪ {(y, t) ∈ X : qA(y) ≤ 3

4
, |t| = 1}.

Now define T : ∂W −→ ∂W by

T (y, t) =
{

(V (y), 1) if t = 1;
(y, t) if t 6= 1

It is clear that T is a well-defined Lipschitz map. Moreover T is Cp smooth on ∂W
because T can be extended to a map T : X −→ X which is Cp smooth (indeed,
T (y, t) = (1

2(t + 1)V (y) + 1
2(1 − t)y, t) does the job; note that if (y, t) ∈ ∂W and

|t| 6= 1 then qA(y) ≥ 3
4 and therefore V (y) = y; this implies that T |∂W = T ).

Let us check that (y0, 1) is an ε-escaping point of ∂W associated with this map T .
Conditions (2), (3) and (4) of Definition 2.2 follow directly from the corresponding
properties of V (take into account that ψ(y, 0) = qA(y) for all y ∈ Y ). It only
remains to prove that T is Cp Lipschitz homotopic to the identity on ∂W . Take a
C∞ smooth function θ : R −→ R such that θ(t) = 0 for t ≤ 1

4 and θ(t) = 1 for t ≥ 3
4 ,

and define H : [0, 1]× ∂W −→ ∂W by

Hτ (x) = Hτ (y, t) =
θ(τ)T (x) + (1− θ(τ))x

ψ(θ(τ)T (x) + (1− θ(τ))x)
.

Note that, since T (x) 6= x only for points x = (y, t) with t = 1 and qA(y) ≤ 3
4 ,

we have ψ(τT (x) + (1 − τ)x) ≥ 1 for all x, τ , so that H is clearly well defined and
Lipschitz on [0, 1] × ∂W . It is also clear that H is a homotopy joining T to the
identity on ∂W . Moreover, H is Cp smooth because it can be extended to a Cp

defined on an open neighbourhood of [0, 1]× ∂W (indeed, it is enough to consider

Hτ (x) = Hτ (y, t) =
θ(τ)(1

2(t+ 1)V (y) + 1
2(1− t)y, t) + (1− θ(τ))(y, t)

ψ(θ(τ)(1
2(t+ 1)V (y) + 1

2(1− t)y, t) + (1− θ(τ))(y, t))
,

which is Cp smooth on the subset of points of R×X for which the denominator of
this quotient is not zero, an open neighbourhood of [0, 1]× ∂W ).
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Proof of Proposition 2.5.
Let θ : R −→ [0, 1] be a non-increasing C∞ smooth function such that θ(t) = 1

for t ≤ ε/2 and θ(t) = 0 for t ≥ ε. Let us define

f(x) =
θ(ψ(x− x0))x− (1− θ(ψ(x− x0)))x0

ψ(θ(ψ(x− x0))x− (1− θ(ψ(x− x0)))x0)

for every x such that the above denominator is not zero. It is clear that f is a Cp

smooth map with the property that f(x) = −x0 whenever ψ(x − x0) ≥ ε. The
restriction of f to ∂A gives us a Cp smooth Lipschitz function f : ∂A −→ ∂A which
constantly attains the value −x0 outside {x ∈ ∂A : ψ(x− x0) < ε}. To see that f is
Lipschitz it is enough to take into account that there is some δ > 0 such that

‖θ(ψ(x− x0))x− (1− θ(ψ(x− x0)))x0‖ ≥ δ

for all x ∈ ∂A, and the maps θ, ψ are Lipschitz. Finally, define H : [0, 1]×∂A −→ ∂A
by

H(τ, x) =
(1− θ(τ))x+ θ(τ)f(x)

ψ((1− θ(τ))x+ θ(τ)f(x))
.

It is not difficult to see that H is a Cp Lipschitz homotopy joining the identity to
the function f on ∂A.
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