Publication:
Characterization of doped GaInP nanowires for photovoltaics (Caracterización de nanohilos the GaInP con distintos dopados para aplicaciones en energía fotovoltaica)

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2011
Advisors (or tutors)
Borgström, Magnus T.
Wallentin, Jesper
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The interest in renewable energy sources has increased recently, which has resulted in increasing research in solar energy as an environmentally friendly way to obtain electricity. Direct harvesting of solar energy to electricity is called photovoltaics, where III-V semiconductors nanowires can be used to fabricate multijunction solar cells with promise to deliver high efficiency at low cost. The division of Solid State Physics at Lund University has been working during the last few years on a project for the fabrication of a tandem p-n junction solar cell. In this thesis project, doped nanowires of GaInP have been investigated and evaluated with optical and electrical measurements, with the aim to create high-bandgap p-n junctions. Electrical measurements show that both p- and n-doping can be achieved. Nanowires with p-i-n doping show excellent rectification with reasonably low ideality factors, and generate a clear photocurrent under illumination. Under forward bias, the p-i-n devices give yellow electroluminescence in agreement with photoluminescence experiments.[RESUMEN] El interés en las energias renovables ha crecido recientemente resultando en una gran motivación por la energía solar, la cual no causa gran impacto medioambiental a la hora de obtener electricidad. En relación con la energía fotovoltaica, nanohilos de materiales semiconductores del grupo III-V pueden ser usados para fabricar multiuniones de células solares prometiendo una mayor eficiencia y un bajo coste. El departamento de Física del Estado Sólido de la Universidad de Lund ha estado trabajando durante los últimos años en el projecto AMON-RA con el fin de obtener una nueva tecnología basada en la obtención de una célula solar tipo tándem con el uso de nanohilos semiconductores del grupo III-V. En este projecto de Máster, uniones p-n de nanohilos de GaInP dopados han sido investigados y caracterizados con medidas ópticas y eléctricas con el fin de obtener un alto gap de energía prohibida necesario en este projecto AMON-RA mencionado anteriormente.Contactos p y n han sido capaz de ser fabricados y estudiados. Uniones p-i-n han sido caracterizadas obteniendo una excelente curva de rectificación y fotocorriente al iluminar el dispositivo, con un razonable factor de idealidad. Por otro lado, la aplicación de voltaje en el dispositivo ha dado lugar a la emisión de luz en el rango amarillo, resultado que concuerda con las medidas de fotoluminiscencia obtenidas.
Description
Máster de Física Aplicada. Facultad de Ciencias Físicas. Curso 2010-2011
Unesco subjects
Keywords
Citation
[1] O. Schultz, R. P. S. W. G., Fraunhofer ISE, Freiburg, Germany ; A. Mette, Q-Cells AG, Thalheim, Germany, Silicon Solar Cells with Screen-Printed Front Side Metallization Exceeding 19% Efficiency. In 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milano, Italy, 2007. [2] http://www.pveducation.org/pvcdrom/solar-cell-peration/solar-cell-structure [3] Dimroth,F and Kurtz,S. “High-efficiency multijunction solar cells,” MRs Bull.,vol.32,pp.230-235,Mar.2007. [4] Borgström,M.T.; Wallentin,J.; Heurlin,M.; Fält ,S.; Wickert, P.; Leene, J.; Magnusson,M.H.; Deppert,K.; Samuelson ,L. “Nanowires with Promise for Photovoltaics”. Ieee Journal of selected topics in quantum electronics. [5] Hermle.M.; Létay.G.; Philips.P.S.; Bett.A.W. “Numerical Simulation of Tunnel Diodes for Multi-junction Solar Cells”. Res.Appl.vol 16.pp 409-418. 2008. [6] Wallentin ,J.; Persson , M.; Wganer,J.B.; Samuelson, L.; Deppert, K and Borgström ,M. “High Perfomance Single Nanowire Tunnel Diodes”. Nano Lett., vol.10, pp974-979, Mar. 2010. [7] Kupec,J and Witzigmann,B. “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,”Opt.Exp.,vol17,pp.10399-10410, Jun. 2009. 40 [8] Chan,Y-J.;Pavlidis,D.;Razeghi,M.;Omnes,F. “GaInP/GaAs HEMT’s Exhibiting Good Electrical Performance at Cryogenic Temperatures”. IEEE Transactions on electron devices. Vol 77, 10, Oct. 1990. [9] Khanal D.R., W. J. Nano Letters, 7, (9), pp.2778-2783, 2007. [10]http://www.utc.edu [11] Luque A and Hegedus S, Handbook of Photovoltaic Science and Engineering .Chap 3, The physics of solar cells.Wiley, England, 2003. [12] www.solar.udel.edu/ELEG620/05_Illuminatedpnjunction.pdf [13] http://www.pveducation.org/solarcells. [14] S.M. Sze, Semiconductor Devices, Physics and Technology. In John Wiley & Son: 1985. [15] Kempa,T.J.; Tian,B.Z.; Kim,D.R.; Hu,J.S.; Zheng,X.L.; Lieber,C.M. “Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices”. Nano Letters, vol.8, pp.3456-3460, Oct.2008 [16] Shah, J.M.; Li,Y.L.; Gessmann.Th.; Schubert.E.F. “Elemental analysis and theoretical model for anomalously high ideality factors (n≫2.0) in AlGaN/GaN p-n junction diodes”. Appl.Physics., vol 94 (4). August 2003. [17] Sah,C.; Noyce,R,n, and Shockley.W, Proc. IRE 45, 1228 ,1957. [18] Esaki,L. Phys.Rev.109 (2),603-604, 1958. [19] http://www.pfk.ff.vu.lt.vu.lt/lectures/funkc_dariniai/diod/p-n_devices.htm [20] Ivey D,G. “Platinum Metals in Ohmic Contacts to III-V Semiconductors”. Platinum Metals Rev., vol 43, (1), pp.2-12, 1999. [21] http://www.eecs.umich.edu/~singh/bk7ch07.pdf [22] Zhang Z.; Yao K.; Liu Y.; Jin C.; Liang X., Chen Q, and Peng L.M. “Quantitative analysis of current voltage characteristics of semiconducting nanowires : Decoupling od contacts effects”. Advanced functional materials, 17, pp.2478-2489,2007. [23] http://fillergroup.gatech.edu/research/ 41 [24] E.I. Givargizov, J.Cryst.Growth,31,p.20, 1975. [25] Borgström M,T.;, Wallentin J.; Trägardh J.; Ramvall P.; Ek M.; Wallenberg L.R.; Sameulson L, and Deppert K. “In situ Etching for Total control over Axial and Radial Nanowire Growth”. Nano Res, 3:264-270, 2010. [26] http://nanodim.kristianstorm.com [27] Borgström M.T.; Norberg E.; Wickert P.; Nilsson H.A.; Trägardh J.; Dick K.A.; Statkute G.; Ramvall.P.; Deppert.K and Samuelson.L. “Precursor evaluation for in situ InP nanowire doping”. Nanotechnology, 19, 445602, 2008.