Publication:
Smooth extension of functions on a certain class of non-separable Banach spaces

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Let us consider a Banach space X with the property that every real-valued Lipschitz function f can be uniformly approximated by a Lipschitz, C1-smooth function g with Lip(g)⩽CLip(f) (with C depending only on the space X). This is the case for a Banach space X bi-Lipschitz homeomorphic to a subset of c0(Γ), for some set Γ, such that the coordinate functions of the homeomorphism are C1-smooth (Hájek and Johanis, 2010 . Then, we prove that for every closed subspace Y⊂X and every C1-smooth (Lipschitz) function f:Y→R, there is a C1-smooth (Lipschitz, respectively) extension of f to X. We also study C1-smooth extensions of real-valued functions defined on closed subsets of X. These results extend those given in Azagra et al. (2010) [4] to the class of non-separable Banach spaces satisfying the above property.
Description
Unesco subjects
Keywords
Citation
[[1] R. Aron and P. Berner, A Hahn-Banach extension theorem for analytic maps, Bull. Soc. Math. France 106 (1978), 3-24. [2] C.J. Atkin, Extension of smooth functions in infinite dimensions I: unions of convex sets, Studia Math. 146 (3) (2001), 201-226. [3] D. Azagra, R. Fry and A. Montesinos, Perturbed Smooth Lipschitz Extensions of Uniformly Continuous Functions on Banach Spaces, Proc. Amer. Math. Soc. 133 (2005), 727-734. [4] D. Azagra, J. Ferrera, F. López-Mesas, Y. Rangel Smooth approximation of Lipschitz functions on Riemannian manifolds, J. Math. Anal. Appl. 326 (2) (2007), 1370-1378. [5] D. Azagra, R. Fry and L. Keener, Smooth extension of functions on separable Banach spaces, Math. Ann. 347 (2) (2010), 285-297. [6] D. Azagra, R. Fry and L. Keener, Corrigendum to \Smooth extension of functions on separable Banach spaces", preprint. [7] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics vol. 64, (1993). [8] M. Fabian, P. Habala, P. Hájek, V.M. Santalucía, J. Pelant and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Math. vol. 8, Springer-Verlag, New York, (2001). [9] R. Fry, Approximation by functions with bounded derivative on Banach spaces, Bull. Austr. Math. Soc. 69 (2004), 125-131. [10] P. Hájek and M. Johanis, Uniformly Gâteaux smooth approximation on c0(Γ), J. Math. Anal. Appl. 350 (2009), 623-629. [11] P. Hájek and M. Johanis, Smooth approximations, J. Funct. Anal. 259 (3) (2010), 561-582. [12] K. John, H. Torunczyk and V. Zizler, Uniformly smooth partitions of unity on superreflexive Banach spaces, Studia Math. 70 (1981), 129-137. [13] J.M. Lasry and P.L. Lions, A remark on regularization in Hilbert spaces, Israel J. Math. 55 (3) (1986), 257-266. [14] J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 293-345. [15] N. Moulis, Approximation de fonctions differentiables sur certains espaces de Banach, Ann. Inst. Fourier (Grenoble) 21 (1971), 293-345. [16] M.E. Rudin, A new proof that metric spaces are paracompact, Proc. Amer. Math. Soc. 20 (2) (1969), 603.
Collections